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ABSTRACT: In this work, it is looked into how adding silicon nitride (Si3N4) particles into Functionally 
Graded Material (FGM) plates affects their resistance to fracture propagation. A comprehensive 
numerical study is performed using the extended finite element method (XFEM) implemented in 
the Abaqus software to investigate the impacts of different Si3N4 particle characteristics, including 
geometry, size, and volume percentage, on the fatigue behavior of FGM plates. The results indicate that 
these variables have a significant influence on the fracture formation rate and overall fatigue life of the 
FGM. Specifically, square Si3N4 particles displayed higher efficiency in arresting crack development 
compared to alternative shapes, which was attributable to their optimal stress distribution. Results show 
that adding 10, 20, and 30 weight percent of square Si3N4 particles with a side length of 0.89 μm to the 
FGM increased the fatigue life by 70.47, 57.69, and 53.79 percent, respectively, compared to the case 
without reinforcing particles. Furthermore, increasing the volume percentage of Si3N4 particles while 
concurrently reducing their size resulted in a significant gain in both fatigue life and overall strength of 
the FGM plates. These findings highlight the potential of Si3N4-reinforced FGMs as a highly effective 
method for reducing fatigue-induced damage and increasing the service life of engineering components. 
The findings of this study provide useful insights for the design and optimization of FGM-based 
structures under cyclic loading conditions.
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1- Introduction
Rapid advances in technology have made the development 

of materials with exceptional mechanical and thermal 
properties necessary, particularly in delicate fields like 
microelectronics and aerospace.  Researchers have been 
looking at new materials with complex structures and variable 
characteristics in response to these needs. By integrating the 
various qualities of multiple  components, FGMs, one such 
growing class of materials, provide a unique solution. The 
concept of FGM was initially presented during Japanese 
space programs in the 1980s. Parts that could withstand 
severe temperature fluctuations were the aim of the study. 
The primary objective was to develop a material that could 
shift from being a durable metal surface to a heat-proof 
ceramic surface. This new approach allowed for the creation 
of parts with great mechanical strength that can withstand 
high temperatures for extended periods. FGM is commonly 
practiced in many fields and has gained significant scholarly 
interest in recent times because of its varied manifestations 
and evolving characteristics. These materials constitute a new 
generation of composites in which mechanical parameters 
including Young’s modulus, Poisson’s ratio, and shear 

modulus vary continuously and gradually throughout the 
material. This unique quality allows for the creation of 
components that have an optimal distribution of stress and 
enhanced performance. In other words, the mechanical 
properties of FGMs change gradually depending on specific 
application requirements, as opposed to staying consistent 
across the entire material. Unlike traditional composites made 
up of separate layers of materials, FGMs exhibit property 
change on a microscopic scale. This distinguishing property 
makes FGMs an excellent alternative for applications that 
need a graded distribution of attributes. In essence, by 
progressively adjusting the ratio of constituent components, 
desirable qualities may be adjusted in various parts of the 
material. FGMs exhibit greater structural strength than 
layered composites because they have a continuous 
distribution of properties on a microscopic scale. This 
integrity decreases the chance of cracks starting and spreading 
at interfaces, enhancing resistance to fatigue. Yet, their graded 
structures make them prone to fracturing when subjected to 
cyclic loading. In numerous practical situations, repetitive 
loads can rapidly propagate small cracks leading to unforeseen 
breakdowns. Therefore, it is important to accurately assess 
how cracks behave and predict the lifespan due to fatigue 
when developing components made from FGMs. Using *Corresponding author’s email: m.taghizadeh@hsu.ac.ir
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numerical simulations to study crack propagation in FGMs 
has become crucial for improving our knowledge of failure 
processes and advancing the progress of these cutting-edge 
materials. Recently, numerical simulations have emerged as 
an effective method for analyzing the fatigue characteristics 
of FGMs in depth. Using these techniques, scientists aim to 
gain a more profound insight into the intricate processes that 
control the initiation and growth of cracks in these substances. 
Singh et al. [1] and Bhattacharya et al. [2] have used the finite 
element method (FEM) to model crack behavior in FGM 
plates with discontinuities. These studies have shown that the 
stress intensity factor (SIF) and fatigue life of these materials 
are greatly affected by the location, type, and density of 
cracks and discontinuities. Wang et al. [3] showed that adding 
silica nanoparticles to an epoxy matrix improves the 
mechanical characteristics of these composite materials. 
Nevertheless, an excess number of nanoparticles may result 
in a decrease in strength. Using FEM, Bhattacharya and 
Sharma [4], modeled the fatigue performance of FGMs 
exposed to thermal loading and investigated the influence of 
discontinuities on their fatigue life. According to their studies, 
it was discovered that the ceramic components in FGMs are 
less resistant to crack propagation. By utilizing numerical 
simulations with Abaqus software, Zakari and Jafari [5], 
analyzed the stress intensity factors of both plain and 
reinforced isogrid plates. Their results indicated that 
reinforcements and geometric variations such as crack length 
and angle have a significant impact on stress distribution and 
stress intensity factors in reinforced plates. Bartaula et al. [6] 
studied the accuracy of XFEM in predicting fatigue crack 
propagation in compact tension (CT) specimens and pipelines. 
Their research demonstrated that when XFEM is paired with 
appropriate methods, it can forecast the fatigue life of pipeline 
structures. Bhattacharya et al. [7] studied the expansion of 
fatigue cracks in a bi-layered FGM using an extended finite 
element technique. The researcher studied the effects of 
exponential variations in material characteristics, as well as 
simultaneous thermal and mechanical stresses, on the 
longevity of components and stress intensity factor. Bharti et 
al. [8] carried out research on the uses of FGMs reinforced 
with carbon nanotubes (CNTs). Their results suggest that 
CNT-enhanced FGMs could be used in magnetic resonance 
imaging (MRI)  in cryogenic tubes, automotive combustion 
chambers, rocket nozzles, and solar panels. Anari and Salehi 
[9] simulated crack initiation and growth in a functionally 
graded dental implant under cyclic axial loading. The research 
utilized the Mori-Tanaka model to investigate material 
gradation, developed a Fortran program to describe FGM in 
Abaqus, and employed an XFEM to analyze crack 
propagation. Their findings indicated that FGM implants 
with a power-law index lower than one demonstrated 
enhanced resistance to crack propagation under cyclic loading 
conditions. Shedbale et al. [10] examined the linear and 
nonlinear characteristics of a cracked plate with random 
discontinuities through the FEM. During cyclic loading tests, 
researchers looked into how yield stress affects fatigue life. 
The evaluation used the von Mises failure criterion, Ramberg-

Osgood material behavior model, and Paris’ equation. Singh 
et al. [11] researched the propagation of cracks in a 
hydroxyapatite-titanium plate with a gradient in the Y 
direction, considering the impact of dislocations. A particular 
FEM was employed in Abaqus to demonstrate the impact of 
the loading method, FGM composition, and gradient on the 
crack trajectory. Zaidi et al. [12] performed a comparison of 
different modeling techniques for FGMs. Their findings 
showed that the self-consistent grading method is more 
effective than other methods because it is highly accurate and 
easy to use. Furthermore, the effect of incorporating silica 
nanoparticles on the mechanical characteristics of polymer 
composites was examined by Diyar Kaka et al. [13]. 
According to their findings, the elasticity modulus increased 
and the ductility decreased as the concentration of silica 
nanoparticles decreased. Ulukoy et al. [14] investigated the 
fatigue crack behavior of a functionally graded cylindrical 
material made of aluminum alloy 2014 reinforced with silicon 
carbide (SiC) particles. They tested samples with three 
different notch types (center, single-edge on SiC-rich side, 
and single-edge on aluminum-rich side) under tensile cyclic 
loading and showed that the SiC distribution has a significant 
effect on the initiation and propagation of fatigue cracks. 
Their results showed that increasing the SiC ratio leads to an 
increase in fatigue life, a delay in crack initiation, and an 
improvement in crack growth resistance. Xu et al. [15] 
investigated the fatigue crack growth behavior in a 
Functionally Graded Metal Matrix Composite (FGMMC) 
consisting of SiC particles reinforced with Al matrix. The 
results showed that the fatigue crack growth rate increases 
with increasing stress ratio, which can be explained by the 
crack closure mechanism. Also, a decrease in crack growth 
was observed during crack propagation from SiC layers with 
low volume fraction to SiC layers with high volume fraction. 
Furthermore, crack deflection and branching at the interfaces 
were observed, which reduced the fatigue crack growth rate. 
Sources and related content. Bhattacharya et al. [16] designed, 
synthesized, and characterized two types of multilayered 
FGMs, namely aluminum-silicon carbide (Al/SiC) and 
nickel-alumina (Ni/Al2O3), with varying ceramic volume 
fractions. Three key properties, including effective flexural 
strength, thermal fatigue behavior, and thermal shock 
resistance, were evaluated to characterize the FGMs. The 
results demonstrated that increasing the number of layers led 
to a progressive improvement in the performance of the 
FGMs. Xu et al. [17] investigated the fatigue crack growth 
properties of homogeneous and graded SiC particulate-
reinforced aluminum composites using three-point bending 
fatigue testing. The results showed that the fatigue crack 
growth rate increases with increasing SiC particulate volume 
fraction in the homogeneous composites. However, the 
graded composite exhibited better fatigue crack growth 
resistance than the homogeneous composites. They observed 
that crack deflection and branching occurred at the transition 
region between the 5% SiC and 15% SiC layers in the graded 
composite, which led to a decrease in the fatigue crack growth 
rate. Agrawal et al. [18] investigated the fatigue crack growth 
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behavior and life prediction of Si3N4/TiB2-reinforced hybrid 
metal matrix composites (HMMCs). They found that adding 
6 wt% TiB2 to the AA7075 composite improved fatigue life 
and fracture toughness. They also proposed an exponential 
model for predicting the fatigue life of HMMCs, which 
showed good agreement with experimental data. Lal et al. 
[19] investigate the mixed-mode stress intensity factor 
(MMSIF) analysis in cracked FGM plates with different 
material distribution models using the XFEM. The primary 
objective of this study is to evaluate the mean and variance of 
MMSIF with crack growth and probability of failure analysis 
(PFA) of edge-cracked FGM plates under various loading 
conditions. This evaluation is conducted utilizing XFEM in 
conjunction with the Second-order Perturbation Technique 
(SOPT). The simulated results are then compared with 
published results to validate the efficacy of the user-defined 
MATLAB code. Lai et al. [20] investigated the fatigue crack 
growth behavior and life prediction of Si3N4/TiB2-reinforced 
hybrid metal matrix composites. They found that adding 6 
wt% TiB2 to the AA7075 composite improved fatigue life and 
fracture toughness. They also proposed an exponential model 
for predicting the fatigue life of HMMCs, which showed 
good agreement with experimental data. Chiu et al. [21] 
investigated the deformation, interfacial behavior, and 
particle damage in magnesium-partially stabilized zirconia 
(Mg-PSZ) particle-reinforced transformation-induced 
plasticity (TRIP) steel composites using a scanning electron 
microscope (SEM) in-situ tensile tests and finite element 
simulations. In this study, simulation models employing an 
elastic model for ceramic particles and a Johnson-Cook 
plastic model for the matrix were utilized to compare the 
performance of various interface models (perfect, cohesive 
zone model (CZM), and combined CZM/ XFEM). The results 
demonstrated good agreement between the simulations and 
experimental results, with a relative error in crack length of 
only 4.6%. Furthermore, debonding angle analysis revealed 
that particle geometries with sharp edges accelerate damage 
initiation. Mosayyebi et al. [22] numerically investigated the 
effect of using composite patches with different geometric 
shapes to improve the fatigue life of cracked aluminum alloy 
panels AA7075-T6 and AA2024-T3 and compared them with 
the available experimental results. The CZM and the XFEM 
were used for static and fatigue analyzes. Four types of 
rectangular, trapezoidal, left-oriented triangular and right-
oriented triangular composite patches were used in the 
numerical analysis. By combining XFEM and CZM methods 
and using the Paris equation, fatigue crack propagation and 
fatigue life of cracked aluminum panels were logically 
predicted. A composite patch with proper shape and geometry 
can significantly improve the fatigue life of the repaired 
panel. With a 204% improvement in fatigue life compared to 
the unrepaired panel, the repaired sample made of AA2024-T3 
aluminum alloy achieved the most significant improvement 
in fatigue life. In AA7075-T6 alloy samples repaired with 
composite patches, the samples repaired with rectangular and 
trapezoidal patches experienced the highest fatigue life 
increases, respectively with 342% and 290% compared to the 

unrepaired samples. The comparison of numerical simulation 
results with the available experimental results shows a good 
agreement. Bouchlarhem et al. [23] numerically investigated 
the influence of material grading on the fracture path in 
ceramic/metal FGMs. The finite element method was used to 
model the crack growth path, and two types of ceramic/metal 
FGMs were considered to examine the effect of material 
grading on the fracture path. The results showed that the 
difference in crack growth path can be attributed to the 
influence of the material gradient. Additionally, it was found 
that the easiest way for crack propagation is when the crack is 
perpendicular to the material grading. A crack located on the 
stiff side of the specimen exhibits less deviation compared to 
a crack on the soft side. Karci et al. [24] investigated the 
fatigue crack growth rate and propagation mechanisms in SiC 
particle-reinforced aluminum alloy matrix composites. This 
research was conducted experimentally, and composites 
reinforced with 5, 10, and 15 volume percentages of SiCp and 
unreinforced 2124 aluminum alloy billets were produced 
using the powder metallurgy (PM) production technique. The 
results were analyzed comparatively. Optical microscope 
results to determine the microstructural properties of the 
billet and samples showed that although SiC particles were 
rarely clustered in the Al alloy matrix, they were generally 
homogeneously dispersed. Fatigue crack propagation rates 
were determined experimentally. While the highest crack 
initiation resistance was achieved at 5% SiC volume ratio, the 
slowest crack propagation rate in the stable crack propagation 
region was found in the unreinforced 2124 Al alloy. At 
volume ratios greater than 5%, the number of crack initiation 
cycles decreases and the propagation rate increases.

Based on the literature review that has been conducted, it 
is observed that the previous studies have rarely performed 
comprehensive analyses of fatigue crack growth in FGM 
reinforced with various particles under diverse conditions. In 
this study, using the XFEM, the influence of parameters such 
as shape, size, and volume fraction of reinforcing particles on 
the fatigue life of these materials, in the presence of an initial 
crack, has been investigated. 

The rest of the paper is structured as follows. Section 
2 introduces the XFEM as the primary analytical tool and 
elaborates on its fundamental concepts. Section 3 delves into 
the phenomenon of material fatigue and crack propagation 
mechanisms. Section 4 focuses on FGMs, examining the 
gradual distribution of material properties within various 
structures. Section 5 presents the numerical modeling of the 
problem, including plate geometry and crack, and analyzes 
the simulation results. Finally, Section 6 summarizes the 
research findings and presents the final conclusions.

2- Extended finite element method
The XFEM is a flexible numerical method aimed 

at accurately representing discontinuous behaviors in 
engineering problems. XFEM can effectively manage 
complicated geometries with high accuracy by enhancing 
the shape functions near discontinuities and utilizing the 
partition of unity. In this approach, the main equations are 
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expanded with extra degrees of freedom to account for the 
abrupt behavior. However, the traditional FEM encounters 
difficulties when dealing with significant disruptions 
such as crack growth. The high computational costs and 
decreased accuracy are the outcomes of utilizing polynomial 
approximations and requiring a detailed mesh that mirrors the 
complicated crack shape. Moreover, the ongoing updating 
of the mesh while cracks are spreading makes the analysis 
procedure lengthy and complicated. Therefore, XFEM has 
become a viable option for studying problems with significant 
discontinuities and is widely used in different branches of 
engineering, such as structural mechanics, fluid mechanics, 
and thermal problems.

The basic principles of XFEM originate from Melenk 
and Babuška’s work [25] on the Partition of Unity Finite 
Element Method (PUFEM) in the late 20th century. 
Nevertheless, Belytschko and Black [26] were the first 
to take innovative actions in this area by implementing 
discontinuous enrichment functions in the FEM, allowing 
for crack propagation simulation without requiring mesh 
restructuring. Moës [27] expanded on this technique and 
introduced the term “Extended Finite Element Method”. 
Later on, Dolbow, Sukumar, and Stolarska [28-30] furthered 
the development and expansion of XFEM applications in 
different solid mechanics fields. These researchers used a 
variety of enrichment methods to create effective approaches 
for simulating individual and multiple cracks, voids, and 
other discontinuities [31]. Additionally, methods based on 
XFEM have been developed to predict crack propagation and 
adjust crack shape. For instance, enriched shape functions are 
commonly employed to represent the discontinuity associated 
with the crack, while the level set method utilizes a level set 
function to implicitly define the crack path. Additionally, 
the phase field method offers a diffuse interface approach 
to model crack propagation. These methods have been 
successfully applied to a wide range of engineering problems 
and have been extensively validated against experimental 
data [30, 32]. Overall, XFEM is now a useful tool for 
analyzing engineering problems with significant variations, 
allowing for accurate and efficient modeling without the need 
for frequent mesh modifications.

XFEM enhances the FEM displacement field to 
accommodate weak discontinuities caused by inclusions and 
strong discontinuities due to cracks. Eq. (1) represents the 
general formulation of XFEM [33].
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where ( )FEu x  is the displacement field for the FEM, 
( )enru x  is the enrichment displacement field for the XFEM, 
( )iN x  and ( )jN x  shape functions for nodes i  and j

, respectively, iu  is the displacement field for the FEM 
nodes, ( )xϕ  is the enrichment function (which is changed 

for different problems), jq  is the displacement field for the 
XFEM nodes, and n  and p  denote the number of nodes for 
the FEM and XFEM, respectively.

In the context of crack propagation problems, the XFEM 
partitions elements into three distinct regions based on their 
proximity to the crack: a standard continuous region, a region 
intersected by the crack, and a region encompassing the crack 
tip. This elemental classification enables the modification of 
Eq. (1) to yield Eq. (2).
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where ( )Hu x  is the approximate displacement field 
for the elements intersected by cracks, and ( )tipu x  is the 
approximate displacement field for the elements containing 
a crack tip. To accurately represent displacement fields, two 
enrichment functions, F(x) and H(x) (depicted in Fig. 1a), are 
introduced. F(x) addresses the stress singularity at the crack 
tip, while H(x) accounts for the displacement jump across 
crack surfaces within fully cut elements. The displacement 
field for both ( )F x  and ( )H x  is defined by Eq. (3).
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In this formulation, the sets I , stepI , and tipI  represent 
conventional continuous elements, elements enriched by 

( )H x , and elements enriched by ( )F x , respectively. The 
displacement fields of the elements enriched by ( )H x  and 
( )F x  are denoted by ja  and kb , respectively. ( )jN x  and 
( )kN x  represent the shape functions associated with nodes 

j  and k .
Equation (4) represents the formula of ( )H x .
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where x  denotes the integration point, *x  is the point 
that is closest to x  on the crack surface, and n is the normal 
vector of *x . Equation (5) is the formula of ( )F x , that 
applies to isotropic material.
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where ρ  and ψ  are the local polar coordinates of point 
x with respect to the crack tip. One main difference between 
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FEM and XFEM is that XFEM can avoid the necessity of 
remeshing. This is accomplished by utilizing a level set 
function. The enrichment functions employed within the 
XFEM are explicitly defined in terms of this level-set 
function. Consequently, updates to the level set function 
during crack growth automatically adjust the enrichment, as 
demonstrated in [30]. The crack front is represented using 
two-level set functions. The first, denoted by ( ),x tϕ , 
defines the crack surface, where x corresponds to the mesh 
nodes and t represents time. A point is considered above the 
crack surface when the value of ( ),x tϕ  is positive, and 
conversely, it is below the surface when the value is negative 
(see Fig. 1b). The orthogonal surface is described by the level 
set function ( ),x tφ  (Fig. 1b). Equations (6) and (7) give the 
explicit formulas for both level set functions.

     

     
1 1

,

h FE enr

pn

i i j j
i j

u x u x u x

N x u N x x q
 

  

 
 (1) 

 

       ,FE H tip
xfemu x u x u x u x    (2) 

 

       

    .
step

tip

xfem i i j j
i I j I

k k
k I

u x N x u N x H x a

N x F x b
 



 



 


 (3) 

 

   *1               if 0

1            other conditions

x x n
H x

    


 (4) 

 

  sin cos sin sin sin cos ,
2 2 2 2

F x             
 (5) 

 

   , ,tipx t x x t     (6) 

 , ,ix t x x     (7) 

 

3

2

cos

cos ,

2

3 sin
2 2

c
Ieq I

c c
II

K K

K



 

 
  
   
 



     

 (8) 

2 2
1 8

2tan ,
4

I I II
c

I

K K K
K

 
  
 
 
 

 (9) 

 

   (6)

     

     
1 1

,

h FE enr

pn

i i j j
i j

u x u x u x

N x u N x x q
 

  

 
 (1) 

 

       ,FE H tip
xfemu x u x u x u x    (2) 

 

       

    .
step

tip

xfem i i j j
i I j I

k k
k I

u x N x u N x H x a

N x F x b
 



 



 


 (3) 

 

   *1               if 0

1            other conditions

x x n
H x

    


 (4) 

 

  sin cos sin sin sin cos ,
2 2 2 2

F x             
 (5) 

 

   , ,tipx t x x t     (6) 

 , ,ix t x x     (7) 

 

3

2

cos

cos ,

2

3 sin
2 2

c
Ieq I

c c
II

K K

K



 

 
  
   
 



     

 (8) 

2 2
1 8

2tan ,
4

I I II
c

I

K K K
K

 
  
 
 
 

 (9) 

 

   (7)

where tipx  is the coordinate of the crack tip, and ix  is 
the point on the crack path.

3- Fatigue crack growth
In this research, Paris’ law is utilized to predict the rate of 

crack growth. The Umixmodefatigue subroutine is employed 
to calculate the maximum and minimum stress intensity 
factors caused by cyclic loading. The maximum principal 
stress theory is used to identify the crack propagation path 
at specific locations along the crack tip. This theory suggests 
that the crack expands at a right angle to the direction of the 
highest principal stress. As a result, the same Mode I stress 
intensity factor and crack growth angle are determined by 

utilizing Eq. (8) and Eq. (9).

     

     
1 1

,

h FE enr

pn

i i j j
i j

u x u x u x

N x u N x x q
 

  

 
 (1) 

 

       ,FE H tip
xfemu x u x u x u x    (2) 

 

       

    .
step

tip

xfem i i j j
i I j I

k k
k I

u x N x u N x H x a

N x F x b
 



 



 


 (3) 

 

   *1               if 0

1            other conditions

x x n
H x

    


 (4) 

 

  sin cos sin sin sin cos ,
2 2 2 2

F x             
 (5) 

 

   , ,tipx t x x t     (6) 

 , ,ix t x x     (7) 

 

3

2

cos

cos ,

2

3 sin
2 2

c
Ieq I

c c
II

K K

K



 

 
  
   
 



     

 (8) 

2 2
1 8

2tan ,
4

I I II
c

I

K K K
K

 
  
 
 
 

 (9) 

 

   (8)

     

     
1 1

,

h FE enr

pn

i i j j
i j

u x u x u x

N x u N x x q
 

  

 
 (1) 

 

       ,FE H tip
xfemu x u x u x u x    (2) 

 

       

    .
step

tip

xfem i i j j
i I j I

k k
k I

u x N x u N x H x a

N x F x b
 



 



 


 (3) 

 

   *1               if 0

1            other conditions

x x n
H x

    


 (4) 

 

  sin cos sin sin sin cos ,
2 2 2 2

F x             
 (5) 

 

   , ,tipx t x x t     (6) 

 , ,ix t x x     (7) 

 

3

2

cos

cos ,

2

3 sin
2 2

c
Ieq I

c c
II

K K

K



 

 
  
   
 



     

 (8) 

2 2
1 8

2tan ,
4

I I II
c

I

K K K
K

 
  
 
 
 

 (9) 

 

   (9)

where, IK  and IIK  are the Mode I and Mode II stress 
intensity factors, respectively. From Eq. (8) the equivalent 
SIF can be found as:
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For stable crack propagation, the generalized Paris’ law 
is given as:
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where, ( )C x  and ( )m x  are the functions of the 
location. In numerical computations, a value is assumed for 
crack growth increment Δa, and Eq. (11) is used to determine 
the corresponding cycles count, ΔN. When multiple crack 
tips exist, the main crack tip is identified and the value of 
ΔN is calculated from this. The growth of other crack tips 
is then assessed using the same ΔN value. The simulation 
stops when the maximum IeqK  for any crack tip surpasses 

  

(a) (b) 

Fig. 1. Principle figure of XFEM. (a) Classification of enrichment elements. (b) Level set Function of crack tip [14]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Principle figure of XFEM. (a) Classification of enrichment elements. (b) Level set Function of 
crack tip [14].
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the local fracture toughness, IcK . This marks the end of the 
FGM’s fatigue life.

4- Material properties of FGM
This research examines an FGM plate, shown in Fig. 

2, with properties that change gradually from aluminum to 
alumina. By incorporating different quantities of alumina 
in the x-direction, a gradient in material characteristics is 
produced in this plate made of strengthened aluminum alloy. 
The USDFLD subroutine in ABAQUS finite element analysis 
software is utilized to accurately determine the characteristics 

of the FGM and incorporate the continuous variation of 
properties. The USDFLD subroutine is a useful tool that 
allows the user to establish varied connections between 
material characteristics and field variables like coordinates. 
It is noted that a custom subroutine is used to specify the 
gradual change in material characteristics from aluminum 
to alumina. By using this subroutine, the material properties 
could change based on spatial coordinates, creating a smooth 
shift from metallic aluminum at x=0 to ceramic alumina at 
x=L. In all analyses, a starting crack is assumed at the middle 
of the FGM plate, going through its entire thickness. Table 
1 lists the mechanical characteristics of the silicon nitride 
particle-reinforced FGM.

The variation of the elastic modulus for FGM is assumed 
as [34]:
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Given the gradient composition of the FGM, the local 
elastic modulus is approximated using a rule of mixtures based 
on the local alumina volume fraction. The varying volume 
fractions of ceramic and aluminum alloy are consequently 
determined as:
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Fig. 2. Geometry of the FGM plate along with its dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Geometry of the FGM plate along with its 
dimensions.

Table 1. Quantified parameters in two segments [34-36]

Table 1. Quantified parameters in two segments [34-36] 

 

 

Materials Properties Aluminum alloy Alumina Silicon nitride 

E(GPa) 70 300 270 

  0.33 0.21 0.27 

Fracture toughness IcK  29 3.5 5.7 

Paris law parameter C 1010  122.8 10  211.01 10  

Paris law parameter m 3 10 12-18 
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The Poisson’s ratio of the FGM is computed as follows:
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The fracture toughness of the FGM can be correlated to 
the volume fraction of the ceramic component, as described 
by the following equation.
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Paris law parameters exhibit an exponential correlation 
with elastic modulus, thus their variation is assumed to follow 
an exponential trend.
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5- Problem description, results, and discussions
This study considers a square FGM plate with dimensions 

of 30 μm × 30 μm. The plate exhibits a compositional 
gradient, transitioning from 100% aluminum alloy on the left 
side to 100% alumina ceramic on the right side, reinforced 
with silicon nitride particles. A fully clamped boundary 
condition is applied to the bottom edge of the plate, and plane 
strain conditions are assumed throughout the simulation. The 
material properties are graded along the x-direction, varying 
from 0 μm to 30 μm. The silicon nitride reinforcement 
particles are distributed randomly within the FGM plate using 
a numerical algorithm. This algorithm ensures a uniform 
distribution of particles, preventing overlapping. The center 
positions of the particles are determined using random 
numbers within the plate’s dimensions. To avoid overlapping, 
a minimum distance between particle centers is enforced. The 
reinforcement particles are modeled as squares, triangles, and 
circles with fixed side lengths, triangular edge lengths, and 
radius. The number of reinforcement particles is determined 
based on the desired volume fraction. An initial crack with 
a length of 6 μm is introduced at the left edge of the FGM 
plate. XFEM is employed for crack modeling, eliminating 

the need for remeshing during crack growth. XFEM utilizes 
enrichment functions to model discontinuities such as 
cracks. Specific enrichment functions are used to accurately 
represent the singular stress field around the crack tip. These 
enrichment functions are automatically updated as the crack 
propagates. The finite element analysis is performed using 
Abaqus software. The plate is discretized using four-node 
bilinear plane strain elements (CPE4R). A cyclic Mode I 
tensile load, ranging from σmin = 0 MPa to σmax = 70 MPa, 
is applied to the upper edge of the plate. The cyclic loading 
is defined using a tabular amplitude in Abaqus, with the 
following points: (0, 0), (0.5, 1), and (1, 0). The direct cycles 
solver in Abaqus is used to analyze the fatigue behavior of the 
FGM plate under cyclic loading. Two predefined fields are 
defined to assign distinct fatigue properties to the reinforcing 
particles and the FGM matrix. The first field is reinforcement 
particle field. This field identifies the regions occupied by 
the silicon nitride particles. Fatigue properties specific to 
the particle material are assigned to this field. The second 
field is FGM matrix field. This field defines the remaining 
volume of the FGM plate, representing the graded aluminum-
alumina matrix. Fatigue properties corresponding to the local 
material composition within the gradient are assigned to this 
field. By utilizing these predefined fields, the simulation 
accurately captures the heterogeneous fatigue behavior of 
the FGM plate, considering the distinct properties of both the 
reinforcing particles and the graded matrix.

5- 1- Validation
To validate the finite element model for fatigue crack 

growth in FGMs using the XFEM, a simulation is conducted 
and the results are compared with those reported by 
Bhattacharya et al. [34]. The present model simulates the 
fatigue life of an FGM plate with an initial crack located at 
the mid-plane. To analyze the fatigue strength of the FGM 
plate under cyclic loading, the fatigue life of the FGM plate is 
compared with that of an aluminum plate with various crack 

 

Fig. 3. Fatigue life vs. crack growth rate comparison for a simulated FGM plate and the model proposed by Bhattacharya et al. 

[34]. 
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lengths and locations. As shown in Fig. 3, the fatigue life-
crack growth rate curve of the simulated model exhibits good 
agreement with the results reported in the reference paper.
5- 2- Analysis of unreinforced FGM plates

Initially, to determine the increase in fatigue life due 
to the addition of reinforcing particles, the fatigue life of 
the plate without reinforcing particles must be calculated. 
Figure 4 depicts an FGM plate with an edge crack located 
on the alloy-rich side, along with its corresponding boundary 
conditions. The FGM plate is fully clamped at the bottom 
edge and subjected to cyclic loading on the top surface. 
The mean fatigue life plot is presented in Fig. 5. Simulation 

results indicate that the equivalent FGM plate can withstand 
353,010 cycles before failure. Figure 6 illustrates the crack 
propagation path for the FGM plate.
5- 3- Analysis of square particles reinforced FGM plates

The initial phase of model creation involves a random 
distribution of reinforcement particles within the plate using 
a numerical algorithm, subject to the constraints of the 
plate and particle dimensions. This arrangement guarantees 
that the particles remain completely enclosed by the plate 
and do not cross the initial crack path. Reinforcements are 
randomly distributed in the form of silicon nitride particles. 
The convergence of the mesh for the FGM plate reinforced 

 

 

Fig. 4. Model geometry and dimensions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Model geometry and dimensions.

 

 

 Fig. 5. Fatigue crack growth rate versus cycles to failure. 
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Fig. 6 Crack growth in an FGM plate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Crack growth in an FGM plate.
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with 10% of 2.66 μm square particles is then examined. As 
shown in Fig. 7, the number of fatigue life cycles initially 
increases significantly with the increase in element count. 
However, after reaching an element count of 12,200, the 
increase in the number of cycles becomes minimal. This 
indicates that up to 12,200 elements, the accuracy of the 
calculations improves considerably, leading to more precise 
results. Beyond this point, the enhancement in computational 
accuracy is negligible, resulting in only a slight increase 
in the number of cycles. Therefore, an element number of 
12,200 is selected as the optimal size, as it provides a good 
balance between computational accuracy and processing 
time.  To further validate the results, calculations were also 
performed with an element count of 14,100. As illustrated 
in Fig. 7, the number of cycles at this mesh size does not 

differ significantly from that at the 12,200 elements count. 
This confirms that the element number of 12,200 is optimal, 
and the results obtained are acceptably accurate. Hence, all 
further calculations are conducted with this mesh number and 
size. To study how the size and volume fraction of square 
reinforcement particles affect crack growth and fatigue life 
of the FGM plate, 9 samples are analyzed. For this purpose, 
volume fractions of 10%, 20%, and 30% and the sizes of 
0.89 μm, 1.77 μm, and 2.66 μm of silicon nitride particles are 
considered. Figure 8 schematically illustrates the distribution 
of silicon nitride particles and the corresponding crack growth 
path within the plate for particles of size 1.77 μm and various 
volume fractions.

Figures 9,10 and 11 depict the fatigue life of the FGM plate 
reinforced with silicon nitride particles of varying volume 

 

Fig. 7. Convergence study for an edge crack problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Convergence study for an edge crack problem.

   

(a) (b) (c) 

Fig. 8. Distribution of silicon nitride particles and fatigue crack growth path in an FGM plate containing 1.77 μm side 

length particles with varying volume fractions a) 10%; b) 20%; c) 30%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Distribution of silicon nitride particles and fatigue crack growth path in an FGM plate con-
taining 1.77 μm side length particles with varying volume fractions a) 10%; b) 20%; c) 30%.
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fractions and sizes. These results indicate that the size of the 
reinforcement particles has a substantial influence on the 
crack growth behavior and fatigue life. Significantly, 0.89 μm 
particles show the biggest improvement in fatigue life when 
compared to 2.66 μm particles, resulting in enhancements of 
11.34%, 7.79%, and 10.86% at 10%, 20%, and 30% volume 
fractions, respectively. Fatigue life improvement remains 
relatively constant when particle size exceeds 0.89 μm. The 
findings shown in Figs. 12 to 14 clearly indicate the crucial 
influence of the volume fraction of reinforcement particles 
on reducing crack propagation. By increasing the percentage 
of silicon nitride particles in an FGM plate and keeping 
the particle size constant, the fatigue life was significantly 
prolonged. For example, at a 30% higher volume fraction, 

there was a boost of 70.47%, 57.69%, and 53.76% in fatigue 
life for particle sizes of 0.89, 1.77, and 2.66 μm, respectively, 
in comparison to the plate without reinforcement.
5- 4- Analysis of circular particles reinforced FGM plates

In this section, similar to the square particles, a numerical 
algorithm is utilized to simulate the random arrangement of 
circular silicon nitride reinforcement particles in the plate’s 
matrix. This algorithm is designed to randomly disperse the 
particles on the plate with no overlapping geometric shapes. 
The circular-shaped reinforcement particles, assuming equal 
surface areas with the square particles, have been simulated 
with radius of 0.5, 1, and 1.5 μm, and volume fractions of 
10%, 20%, and 30%. Figure 15 schematically illustrates 
the distribution of 0.5 μm silicon nitride particles and the 

 

 

Fig. 9. Effect of square particle size on fatigue life of FGM plates with 10% silicon nitride reinforcement.  
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Fig. 9. Effect of square particle size on fatigue life of FGM plates with 10% silicon 
nitride reinforcement.

 

 

 Fig. 10. Effect of square particle size on fatigue life of FGM plates with 20% silicon nitride reinforcement. 
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Fig. 11. Effect of square particle size on fatigue life of FGM plates with 30% silicon nitride reinforcement.  
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Fig. 11. Effect of square particle size on fatigue life of FGM plates with 30% silicon 
nitride reinforcement.

 

 

 Fig. 12. Effect of square silicon nitride particle volume fraction on fatigue life for a constant particle size 

of 0.89 μm. 
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Fig. 12. Effect of square silicon nitride particle volume fraction on fatigue life for a 
constant particle size of 0.89 μm.

 

 

Fig. 13. Effect of square silicon nitride particle volume fraction on fatigue life for a constant particle size of 1.77 

μm. 
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corresponding crack propagation path within the plate for 
various volume fractions.

Fatigue life diagrams of FGM plates in the presence of 
silicon nitride reinforcement particles with three different 
volume fractions and sizes are presented in the Figs. 16 to 
20. Based on Figs. 16 to 18, it is observed that the addition 
of circular silicon nitride particles as reinforcements in 
FGM plates significantly enhances the fatigue resistance 
of these plates.  The reason for this strengthening effect 
is believed to be the particles ensuring a more even 
distribution of stress in the FGM matrix, thus avoiding 
stress buildup at key points and the start of fatigue cracks. 
Numerical studies indicate that reducing the size of silicon 
nitride particles improves their ability to reinforce FGM 
plates. Particles measuring 0.5 μm in radius resulted in 
fatigue life enhancements of 6.90%, 8.76%, and 6.15% 
at volume fractions of 10%, 20%, and 30%, respectively, 

when compared to particles of 1.5 μm in radius. The 
boost is mainly due to the larger contact area between the 
particles and the FGM matrix as the particle size decreases. 
Moreover, Figs. 19 to 21 show a direct relationship between 
the fatigue life of the FGM plate and the volume fraction 
of silicon nitride particles. In other words, an increased 
amount of reinforcing particles in the matrix improves the 
plate’s ability to resist crack propagation, thus prolonging 
its fatigue life. As an example, plates containing particles 
amounting to 30% of their volume show increases in fatigue 
life by 61.14%, 56.73%, and 52.08%, when compared to 
plates without reinforcement, using particles with a radius 
of 0.5, 1, and 1.5 μm, respectively. Based on the findings 
of this investigation, the mechanical characteristics of FGM 
plates are considerably enhanced when circular silicon 
nitride particles are used as reinforcement, with a particular 
improvement in fatigue resistance. There is a particular 

 

 

 Fig. 14. Effect of square silicon nitride particle volume fraction on fatigue life for a constant particle size 

of 2.66 μm. 
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Fig. 14. Effect of square silicon nitride particle volume fraction on fatigue life for a 
constant particle size of 2.66 μm.

   

(a) (b) (c) 

Fig. 15. Distribution of silicon nitride particles and fatigue crack growth path in an FGM plate containing 0.5 μm particles 

with varying volume fractions a) 10%; b) 20%; c) 30%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Distribution of silicon nitride particles and fatigue crack growth path in an FGM plate con-
taining 0.5 μm particles with varying volume fractions a) 10%; b) 20%; c) 30%.
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Fig. 15. Effect of circular particle size on fatigue life of FGM plates with 10% silicon nitride reinforcement.  
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Fig. 16. Effect of circular particle size on fatigue life of FGM plates with 10% silicon 
nitride reinforcement.

 

 

 Fig. 16. Effect of circular particle size on fatigue life of FGM plates with 20% silicon nitride 

reinforcement. 
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Fig. 17. Effect of circular particle size on fatigue life of FGM plates with 20% silicon 
nitride reinforcement.

 

Fig. 17. Effect of circular particle size on fatigue life of FGM 

Plates with 30% silicon nitride reinforcement. 
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Fig. 18. Effect of circular particles volume fraction on fatigue life 

for a constant particle size of 0.5 μm. 
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Fig. 19. Effect of circular particles volume fraction on fatigue life for a constant par-
ticle size of 0.5 μm.

 

Fig. 19. Effect of circular particles volume fraction on fatigue life 

for a constant particle size of 1 μm 
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Fig. 20. Effect of circular particles volume fraction on fatigue life for a constant par-
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Fig. 20. Effect of circular particles volume fraction on fatigue life 

for a constant particle size of 1.5 μm. 
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improvement in fatigue resistance. The results imply that 
silicon nitride-reinforced FGM materials may find broader 
uses across several industrial domains.
5- 5- Analysis of triangle particles reinforced FGM plates

In this section, an initial crack of 6 μm  is introduced 
at the left edge of a small square plate (30 μm ×  30 μm). 
Subsequently, ceramic reinforcement particles (silicon 
nitride) are randomly distributed within the plate using 
numerical methods. These particles are triangular in shape 
and considered at three volume fractions of 10%, 20%, 
and 30%. Assuming the area of triangular particles is equal 
to that of square and circular particles, the edge length of 
these triangular reinforcement particles was considered to 
be 1, 2, and 3 μm. A critical aspect of this modeling was 
ensuring that the particles were entirely contained within the 
plate and did not overlap. The distribution of silicon nitride 
particles with the size of 0.5 micrometers and the associated 
crack propagation path within the plate for different volume 
fractions are schematically shown in Fig. 22.

Results from the simulations, shown in Figs. 23 to 25, 
clearly show that adding reinforcing triangular particles 
to FGM boosts fatigue resistance. This improvement 
becomes significantly more noticeable as the particle size 
decreases. In particular, particles with 1.35 μm radius show 
the greatest enhancements in fatigue life compared to 4.04 
μm  particles at 10%, 20%, and 30% volume fractions, 
leading to increases of 4.07%, 18.26%, and 6.72%, 
respectively. Figures 26-28 further corroborate the direct 
correlation between increasing the volume fraction of 
triangular particles and enhanced fatigue life of the FGM. 
In essence, a higher concentration of reinforcing particles 
results in greater resistance to fatigue crack propagation in 
the FGM. Significantly, the plate containing 30% particles 
shows the greatest enhancements in fatigue life compared 

to the plate without particles, with boosts of 53.70%, 
49.20%, and 47.67% for particle sizes of 1.35, 2.66, and 4 
μm, respectively.
5- 6- Effect of reinforcer geometry on the fatigue life of FGM 
plates

The geometry of silicon nitride reinforcement particles 
has been identified as a critical parameter in governing the 
fatigue behavior of FGM plates. Analysis of simulation 
data (Figs. 29 and 30) reveals that rectangular particles, 
owing to their more effective stress distribution around 
crack tips, result in a significant enhancement in fatigue 
life. Rectangular particles covering 30% of the plate volume 
showed notable improvements in fatigue life. More precisely, 
these particles measuring 0.89 μm resulted in a 70.47% boost 
in fatigue life. Although circular and triangular particles 
showed enhancements of 61.44% and 53.70%, respectively, 
rectangular particles displayed the most significant impact, 
as shown in Fig. 29. Comparable studies were carried 
out on strengthening particles measuring 2.66 μm, with 
the findings displayed in Fig. 30. In this case, rectangular 
particles, taking up 30% of the plate volume, still showed 
better performance, with a 30.24% boost in fatigue life. The 
increase was significantly greater than that seen in circular 
and triangular particles, which showed enhancements of 
23.53% and 22.62%, respectively. Examination of different 
levels with different particle sizes showed comparable 
results. Rectangular particles show better performance in the 
FGM because they distribute stress more evenly compared 
to circular and triangular particles. Rectangular particles 
can better disperse loads across the plate, resulting in higher 
strength and stiffness.

   

(a) (b) (c) 

Fig. 21. Distribution of triangular silicon nitride particles and fatigue crack growth path in an FGM plate containing 2.66 

μm particles with varying volume fractions a) 10%; b) 20%; c) 30%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. Distribution of triangular silicon nitride particles and fatigue crack growth path in an FGM 
plate containing 2.66 μm particles with varying volume fractions a) 10%; b) 20%; c) 30%.
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Fig. 22. Effect of triangular particle size on fatigue life of FGM 

plates with 10% silicon nitride reinforcement. 
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Fig. 23. Effect of triangular particle size on fatigue life of FGM plates with 10% sili-
con nitride reinforcement.

 

Fig. 23. Effect of triangular particle size on fatigue life of FGM 

plates with 20% silicon nitride reinforcement. 
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Fig. 24. Effect of triangular particle size on fatigue life of FGM plates with 20% sili-
con nitride reinforcement.

 

Fig. 24. Effect of triangular particle size on fatigue life of FGM 

plates with 30% silicon nitride reinforcement. 
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Fig. 25. Effect of triangular particle volume fraction on fatigue life 

for a constant particle size of 1.35 μm. 
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Fig. 26. Effect of triangular particle volume fraction on fatigue life for a constant 
particle size of 1.35 μm.

 

Fig. 26. Effect of triangular particle volume fraction on fatigue life 

for a constant particle size of 2.66 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14

N
um

be
r o

f c
yc

le
s 
×1

04

Crack length (μm)

Reinforcement volume fractions=30%
Reinforcement volume fractions=20%
Reinforcement volume fractions=10%
Withourt reinforcement

Fig. 27. Effect of triangular particle volume fraction on fatigue life for a constant 
particle size of 2.66 μm.

 

Fig. 27. Effect of triangular particle volume fraction on fatigue life 

for a constant particle size of 4.04 μm. 
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Fig. 28. Effect of triangular particle volume fraction on fatigue life for a constant 
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Fig. 28. Effect of particles shape on FGM fatigue life at 30% 

volume fraction. 
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Fig. 29. Effect of particles shape on FGM fatigue life at 30% volume fraction.

 

Fig. 29. Comparative study of various particle shapes in FGM 

fatigue life at 30% volume fraction. 
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Fig. 30. Comparative study of various particle shapes in FGM fatigue life at 30% 
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Fig. 30. Effect of particles shape on FGM fatigue life at 30% volume fraction under mixed-mode loading conditions. 
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Fig. 31. Effect of particles shape on FGM fatigue life at 30% volume fraction under 
mixed-mode loading conditions.
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5- 7- Fatigue life of reinforced FGM plates under mixed-
mode loading

As can be seen in Fig. 31, the application of cyclic shear 
loading significantly influences the fatigue behavior of the 
material. Compared to the results under purely tensile loading 
(Fig. 30), mixed-mode loading leads to a notable reduction 
in the number of cycles endured until failure. This decrease 
in fatigue life can be attributed to the alteration in failure 
mechanisms. Shear loading induces mixed-mode fracture 
(comprising a combination of tensile and shear fracture) 
instead of purely tensile fracture, consequently accelerating 
crack growth and diminishing fatigue life. Specifically, a 
comparison of the results reveals that shear loading results in 
an approximate 60% reduction in fatigue life, demonstrating 
the substantial impact of shear loading on the fracture 
behavior of the material. For instance, square, circular, 
and triangular particles with sizes of 2.69 µm, 1.5 µm, and 

4.04 µm, respectively,  and a weight percentage of 30%, 
exhibited fatigue lives of 469,880, 459,191, and 419,430 
cycles under tensile loading, while under shear loading, these 
values decreased to 204,670, 185,860, and 179,690 cycles, 
respectively. Nevertheless, similar to the previous results, 
square particles still demonstrated the most significant effect 
on the fatigue life of the plate, and triangular particles the 
least.

5- 8- Effect of particle size on fatigue life of FGM plates
To investigate the effects of size and to determine the 

lower limit of particle sizes, the square particles were 
reduced to three additional levels, and the fatigue life of the 
FGM plate was calculated. Fig. 32 shows the distribution of 
particles and the associated crack propagation path within the 
plate for different particle sizes. As demonstrated in Fig. 33, 
reducing the size of square-shaped reinforcement particles 

   
(a) (b) (c) 

Fig. 31. Distribution of silicon nitride particles and fatigue crack growth path in an FGM plate containing 20% particles 

with varying square side length a) 0.62 μm; b) 0.71 μm; c) 0.80 μm. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 32. Distribution of silicon nitride particles and fatigue crack growth path in an FGM plate con-
taining 20% particles with varying square side length a) 0.62 μm; b) 0.71 μm; c) 0.80 μm.

 

Fig. 32. Effect of square particle size on fatigue life of FGM plates with 20% reinforcement. 
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Fig. 33. Effect of square particle size on fatigue life of FGM plates with 20% reinforcement.
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at a 20% volume fraction continues to enhance fatigue life. 
These findings suggest that the trend of improved fatigue 
life persists with decreasing particle size. However, two 
primary challenges arise with the reduction of particle size. 
First, decreasing particle size directly results in an increased 
number of particles within a fixed matrix volume. This surge 
in particle count can lead to particle agglomeration and non-
uniform particle distribution within the matrix, ultimately 
compromising the material’s mechanical properties. 
Additionally, as particle size diminishes and particle count 
increases, the inter-particle spacing decreases, resulting 
in meshing difficulties during numerical analyses. In other 
words, generating an appropriate and precise mesh around 
very small and closely spaced particles becomes challenging, 
potentially reducing the accuracy of the results. Considering 
these challenges, it can be concluded that there exists a lower 
limit for particle size, beyond which the reinforcing effect 
of the particles diminishes or other issues such as particle 
agglomeration and meshing difficulties arise. However, 
accurately determining this lower limit requires further 
investigation and more detailed analyses.

6- Conclusion
A comprehensive understanding of fatigue crack growth 

mechanisms is crucial for improving the service life of 
structures made from FGMs. This research explored how the 
fatigue properties of FGMs reinforced with silicon nitride 
ceramic particles are influenced by the shape, size, and 
volume fraction of the reinforcing particles through numerical 
simulations. A random distribution of reinforcement particles 
within the plate was achieved using a numerical algorithm, 
constrained by the dimensions of the plate and particles. 
Three different shapes (square, triangular, and circular) and 
volume fractions of 10%, 20%, and 30% were examined with 
varying particle sizes, resulting in a total of 27 different cases. 
The loading was performed under cyclic tensile conditions. 
The convergence of the present results was assessed and the 
converged findings were compared with those available in the 
literature for simpler problems. From the detailed numerical 
study conducted, the following conclusions were drawn:
• Fatigue life increases with a decrease in particle size up to 

a certain point, beyond which it decreases again.
• As the size of the particles increases and reaches a specific 

threshold, the fatigue life remains relatively constant.
• Increasing the volume fraction of reinforcement particles 

significantly improved the fatigue life of the material.
• Square particles performed better in terms of fatigue 

resistance because of their optimized stress distribution 
and limited crack propagation.

• The plate with 30% square particles exhibited substantial 
improvements in fatigue life compared to the unreinforced 
plate, showing increases of 70.47%, 57.69%, and 53.76% 
for particle sizes of 0.89, 1.77, and 2.66 μm, respectively.

• Similarly, plates containing circular particles at 30% of 
their volume showed increases in fatigue life of 61.14%, 
56.73%, and 52.08% when using particles with radii of 
0.5, 1, and 1.5 μm, respectively.

• For triangular particles at a 30% volume fraction, fatigue 
life improved by 53.70%, 49.20%, and 47.67% compared 
to the unreinforced plate for particle sizes of 1.35, 2.66, 
and 4 μm, respectively.

• Square, circular, and triangular particles with sizes of 
2.69 µm, 1.5 µm, and 4.04 µm, respectively, and a weight 
percentage of 30%, exhibited fatigue lives of 469,880, 
459,191, and 419,430 cycles under tensile loading, while 
under shear loading, these values decreased to 204,670, 
185,860, and 179,690 cycles, respectively.
The findings of this study can be utilized for designing and 

manufacturing engineering components under cyclic loading 
conditions. The results demonstrate a complex interactive 
relationship between particle size, volume fraction, and 
shape, which significantly affects the material’s fatigue life.

References
[1]  I.V. Singh, B. Mishra, S. Bhattacharya, XFEM simulation 

of cracks, holes and inclusions in functionally graded 
materials, International Journal of Mechanics and 
Materials in Design, 7 (2011) 199-218.

[2] S. Bhattacharya, I.V. Singh, B. Mishra, Fatigue-life 
estimation of functionally graded materials using XFEM, 
Engineering with computers, 29 (2013) 427-448.

[3] Z. Wang, F. Liu, W. Liang, L. Zhou, Study on tensile 
properties of nanoreinforced epoxy polymer: macroscopic 
experiments and nanoscale FEM simulation prediction, 
Advances in Materials Science and Engineering, 2013 
(2013).

[4] S. Bhattacharya, K. Sharma, Fatigue crack growth 
simulations of FGM plate under cyclic thermal load by 
XFEM, Procedia Engineering, 86 (2014) 727-731.

[5] M. Zakeri, A. Jafari, Investigation of stress field 
parameters in a cracked stiffened plate under mixed mode 
I/II, Aerospace Knowledge and Technology Journal, 5(2) 
(2016) 93-107.

[6] D. Bartaula, Y. Li, S. Koduru, S. Adeeb, Simulation of 
fatigue crack growth using XFEM, in:  Pressure Vessels 
and Piping Conference, American Society of Mechanical 
Engineers, 2020, pp. V003T003A046.

[7] S. Bhattacharya, I. Singh, B. Mishra, T. Bui, Fatigue 
crack growth simulations of interfacial cracks in bi-
layered FGMs using XFEM, Computational Mechanics, 
52 (2013) 799-814.

[8] I. Bharti, N. Gupta, K. Gupta, Novel applications 
of functionally graded nano, optoelectronic and 
thermoelectric materials, International Journal of 
Materials, Mechanics and Manufacturing, 1(3) (2013) 
221-224.

[9] A. Mohammadi Anari, E. Selahi, Crack initiation and 
growth simulations of functionally graded dental implant 
subjected to cyclic axial loads, Fatigue & Fracture of 
Engineering Materials & Structures, 45(11) (2022) 3123-
3136.



E. Naderi et al., AUT J. Mech. Eng., 9(3) (2025) 295-316, DOI: 10.22060/ajme.2025.23786.6155

315

[10] A. Shedbale, I.V. Singh, B. Mishra, Nonlinear 
simulation of an embedded crack in the presence of holes 
and inclusions by XFEM, Procedia Engineering, 64 
(2013) 642-651.

[11] A.P. Singh, A. Tailor, C.S. Tumrate, D. Mishra, Crack 
growth simulation in a functionally graded material 
plate with uniformly distributed pores using extended 
finite element method, Materials Today: Proceedings, 60 
(2022) 602-607.

[12] M. Zaidi, K.K. Joshi, A. Shukla, B. Cherinet, A review 
of the various modelling schemes of unidirectional 
functionally graded material structures, in:  AIP 
Conference Proceedings, AIP Publishing, 2021.

[13] D. Kaka, R.A. Fatah, P. Gharib, A. Mustafa, Mechanical 
Properties of Polyester Toughened with Nano-Silica, 
Iraqi Journal of Industrial Research, 8(3) (2021) 61-68.

[14] A. Ulukoy, M. Topcu, S. Tasgetiren, An Experimental 
Crack Propagation Analysis of Aluminum Matrix 
Functionally Graded Material, Advances in Functionally 
Graded Materials and Structures,  (2016).

[15] F. Xu, S. Zhu, J. Zhao, M. Qi, F. Wang, S. Li, Z. Wang, 
Effect of stress ratio on fatigue crack propagation in a 
functionally graded metal matrix composite, Composites 
Science and Technology, 64(12) (2004) 1795-1803.

[16] M. Bhattacharyya, A.N. Kumar, S. Kapuria, Synthesis 
and characterization of Al/SiC and Ni/Al2O3 functionally 
graded materials, Materials Science and Engineering: A, 
487(1-2) (2008) 524-535.

[17] F. Xu, S. Zhu, J. Zhao, M. Qi, F. Wang, S. Li, Z. Wang, 
Fatigue crack growth in SiC particulates reinforced 
Al matrix graded composite, Materials Science and 
Engineering: A, 360(1-2) (2003) 191-196.

[18] A.P. Agrawal, S.K. Srivastava, Investigations of fatigue 
crack growth rate behaviour and life prediction of 
Si3N4/TiB2 reinforced hybrid metal matrix composites, 
International Journal of Fatigue, 186 (2024) 108373.

[19] A. Lal, N.M. Kulkarni, S. Singh, A. Mahto, R. Kumar, 
Mixed mode stress intensity factor analysis on edge 
cracked FGM plate with different material distribution 
models by XFEM, Journal of Mechanical Science and 
Technology,  (2024) 1-15.

[20] J. Lai, Y. Xia, Z. Huang, B. Liu, M. Mo, J. Yu, Fatigue 
life prediction method of carbon fiber-reinforced 
composites, e-Polymers, 24(1) (2024) 20230150.

[21] C. Chiu, V. Prabhakar, S. Tseng, F. Qayyum, S. Guk, C. 
Chao, U. Prahl, Integrating experimental and numerical 
analyses for microscale tensile behavior of ceramic 
particle reinforced TRIP steel composites: a study on 
local deformation and damage evolution, Composites 
Part A: Applied Science and Manufacturing, 186 (2024) 
108384.

[22] E. Mosayyebi, T.N. Chakherlou, Numerical investigation 
of patch geometry effect on the fatigue life of aluminum 
panels containing cracks repaired with CFRP composite 

patch using XFEM and CZM approach, International 
Journal of Adhesion and Adhesives, 136 (2025) 103882.

[23] M. Bouchelarm, M. Chafi, A. Boulenouar, N. Benseddiq, 
Effect of the material gradation on the fracture trajectory 
in ceramic/metal functionally graded materials, Archives 
of Metallurgy and Materials,  (2024) 955-963-955-963.

[24] A. Karci, V. Erturun, E. Çakir, Y. Çam, Fatigue crack 
growth rate and propagation mechanisms of SiC 
particle reinforced Al alloy matrix composites, Aircraft 
Engineering and Aerospace Technology, 96(2) (2024) 
185-192.

[25] J.M. Melenk, I. Babuška, The partition of unity finite 
element method: basic theory and applications, Computer 
methods in applied mechanics and engineering, 139(1-4) 
(1996) 289-314.

[26] T. Belytschko, T. Black, Elastic crack growth in finite 
elements with minimal remeshing, International journal 
for numerical methods in engineering, 45(5) (1999) 601-
620.

[27] N. Moës, J. Dolbow, T. Belytschko, A finite element 
method for crack growth without remeshing, International 
journal for numerical methods in engineering, 46(1) 
(1999) 131-150.

[28] J.E. Dolbow, An extended finite element method 
with discontinuous enrichment for applied mechanics, 
Northwestern university, 1999.

[29] N. Sukumar, N. Moës, B. Moran, T. Belytschko, 
Extended finite element method for three-dimensional 
crack modelling, International journal for numerical 
methods in engineering, 48(11) (2000) 1549-1570.

[30] M. Stolarska, D.L. Chopp, N. Moës, T. Belytschko, 
Modelling crack growth by level sets in the extended 
finite element method, International journal for numerical 
methods in Engineering, 51(8) (2001) 943-960.

[31] S. Mohammadi, Extended finite element method: for 
fracture analysis of structures, John Wiley & Sons, 2008.

[32] B. Bourdin, G.A. Francfort, J.-J. Marigo, Numerical 
experiments in revisited brittle fracture, Journal of the 
Mechanics and Physics of Solids, 48(4) (2000) 797-826.

[33] W. Lv, B. Ding, K. Zhang, T. Qin, High-Cycle Fatigue 
Crack Growth in T-Shaped Tubular Joints Based on 
Extended Finite Element Method, Buildings, 13(11) 
(2023) 2722.

[34] S. Bhattacharya, I.V. Singh, B. Mishra, Mixed-mode 
fatigue crack growth analysis of functionally graded 
materials by XFEM, International Journal of Fracture, 
183 (2013) 81-97.

[35] K. Hasikin, N. Soin, F. Ibrahim, Modeling an optical 
diaphragm for human pulse pressure detection, in:  
WSEAS International Conference. Proceedings. 
Mathematics and Computers in Science and Engineering, 
World Scientific and Engineering Academy and Society, 
2009.

[36] G.D. Quinn, J. Salem, I. Bar-On, K. Cho, M. Foley, H. 



E. Naderi et al., AUT J. Mech. Eng., 9(3) (2025) 295-316, DOI: 10.22060/ajme.2025.23786.6155

316

Fang, Fracture toughness of advanced ceramics at room 
temperature, Journal of research of the National Institute 
of Standards and Technology, 97(5) (1992) 579.

HOW TO CITE THIS ARTICLE
E. Naderi, M. Taghizadeh, Y. Alinia, An Extended Finite Element Method Study on the Effect 
of Reinforcing Particles on the Fatigue Crack Propagation Behavior of Functionally Graded 
Plates, AUT J. Mech Eng., 9(3) (2025) 295-316.

DOI: 10.22060/ajme.2025.23786.6155

https://dx.doi.org/10.22060/ajme.2025.23786.6155

