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ABSTRACT  

This research explores a novel technique for precise mass sensing, involving the detection of an object's 

position and mass when affixed to a flexoelectric cantilever Euler-Bernoulli microbeam. Third-order relation of 

the curvature is considered to obtain the nonlinear governing equations and the related boundary conditions, 

from the Hamilton’s principle on the basis of size-dependent piezoelectricity theory. The Galerkin method is 

employed to discredited the partial differential equation of motion into ordinary differential equations. The 

Lindstedt-Poincare technique is employed to derive a concise mathematical expression that describes the 

frequency alteration resulting from the presence of a concentrated mass on the microbeam's exterior. By 

applying direct current voltage, the natural frequency shift of the flexoelectric cantilever Euler-Bernoulli micro 

beam under an added mass is examined. Finally, after validation of the results, the effects of size-dependent 

parameters, input voltage, and flexoelectric coefficient on static deformation and frequency behavior are shown. 

It can be found that the maximum sensitivity for l/h = 0.0 is at V0 = 2600v, By adjusting the material length scale 

factor relative to the beam thickness ratio, the sensitivity is observed to diminish. Also, by increasing the position 

of the added mass, the sensitivity is decrease and, where the flexoelectric effect is small, the increment in the 

position of added mass decreases the first and second frequency shift. 
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1. Introduction 

The integration of Micro-Electro-Mechanical 

Systems (MEMS) and Nano-Electro-Mechanical 

Systems (NEMS) presents significant opportunities in 

various engineering disciplines, including mechanical, 

civil, and aerospace engineering. These technologies 

offer exceptional capabilities for precise measurement 

of physical parameters, such as minute gas 

concentrations, microscopic biological entities, and 

subtle variations in temperature and pressure [1]. 

Piezoelectric micro and nano beams, in particular, have 

been extensively utilized within MEMS and NEMS as 

specialized piezoelectric sensors, actuators, energy 

harvesting [2], vibration control [3], vibration responses 

[4, 5] and positioning systems [6]. Particularly, 

flexoelectric cantilever micro and nano beams have 

been developed with a novel micro/nano-

electromechanical system process very useful for low 

frequency vibration sensors and energy harvesters 

[7].The application of micro-materials as active sensing 

particles in micro-sensors has increased the sensitivity 

performance of micro-sensors that can be able to detect 

particles, for example, bacteria with very nano-

dimensions and low concentrations [8]. Also, micro and 

nano beams are often implemented in the form of mass 

detector’s sensors of very small biological and chemical 

species, such as viruses, bacteria, and cells [8]. Several 

methods e.g. static deflection and natural frequencies, 

have been used to measure mass of very small elements, 

such as chemical and biological elements [9]. The static 

deflection method involves the detection of mass 

variations through precise measurements of 

microstructural deflections [9]. Another approach that is 

more attractive method in terms of sensitivity, is 

frequency shift tracking. The frequency shift method, 

operating in dynamic mode, involves inducing 

vibrations in a microstructure, often a beam, near its 

natural frequency [10]. This technique is highly 

sensitive to mass variations on the microstructure's 

surface. When an additional mass is introduced, the 

altered beam mass causes a corresponding shift in its 

natural frequency. Ilic et al. utilized this principle to 

create a biosensor for detecting Escherichia coli, a 

pathogenic bacterium, by coating a microsensor with 

specific antibodies, thus demonstrating its potential in 

medical diagnostics and food safety monitoring [11]. 

Burg et al. [12] further advanced this concept by 

designing a suspended microchannel sensor that 

correlates the mass of particles within a microfluidic 

channel to the decrease in resonance frequency. 

Cantilever micro beams, in particular, have been 

extensively utilized in resonant mass sensors. Dohn et 

al. [13] investigated the sensitivity of such cantilever 

beam mass sensors, finding that maximum sensitivity 

occurs at the beam tip, and the added mass has minimal 

impact on the Q-factor damping. They also emphasized 

that employing multiple bending modes significantly 

enhances sensitivity. The exploration of flexoelectric 

micro beams as mass sensors offers promising 

advantages. Recent advancements in size-dependent 

theories have led to the development of higher-order 

continuum theories for micro and nano structures. These 

theories also incorporate electromechanical effects, 

leading to the formulation of size-dependent 

piezoelectricity and similar electromechanical theories.  

However, in micro and nano scale some studies have 

depicted size-effect phenomena of piezoelectric solids 

and linear electromechanical coupling in isotropic 

dielectrics, the conventional piezoelectric theory fails to 

elucidate the size-dependent correlation between electric 

polarization and uniform strain in dielectric substances. 

[14]. On the other hand, dielectric polarization is 

influenced not solely by the strain tensor but also by the 

curvature tensor, adding complexity to the 

understanding of these materials. Therefore, it is 

necessary to develop a size-dependent piezoelectricity 

theory to employ the micro/nanostructures which is 

included by the curvature and the higher gradients of 

deformation. This size-dependent parameter for linear 

electromechanical coupling in isotropic dielectrics is 

called the flexoelectric effect [15]. Hence, it can be 

deduced that typically, the flexoelectric phenomenon 

can be found in all dielectrics. The study of size-

dependent piezoelectricity has led to the development of 

various theories, addressing the complexities of 

deformation gradients [16] and rotation gradients within 

the context of couple stress theory [17]. This 

electromechanical approach, as presented in [18], 

reveals the unique behavior of materials at nanoscales, 

incorporating the size-dependent piezoelectric and 

flexoelectric effects influenced by mean curvature [18]. 

Building upon these theories, researchers have explored 

piezoelectric nanobeams, analyzing their mechanical 

and electrical properties [19]. Notably, Tadi [20] 

endeavored to formulate a comprehensive piezoelectric 

nanobeam model, utilizing the size-dependent 

piezoelectricity theory to capture the intricate behavior 

of these nanoscale structures. The flexoelectric micro 

beams are often used in MEMS devices as actuators.  

 

The micro actuators are designed to operate with 

either AC or DC voltage application. When a DC 

voltage is applied, the actuator adjusts to a new 

equilibrium, resulting in a static deflection [21]. 

Numerous studies have investigated the nonlinear 

behaviour of electrostatic micro-actuated beams under 

DC or combined AC-DC electrostatic actuation [22]. 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



3 

 

Flexoelectric micro beams, due to their distinct 

characteristics, can be employed as sensitive sensors for 

detecting minute masses, including viruses, bacteria, 

and cells with great accuracy [23]. Wu [24] by 

implementing the static deflection analysis, detect the 

mass of chemical and biological elements. In terms of 

sensitivity, a great attractive method is to operate a 

MEMS device in the vibration mode. In this case a 

micro beam as a typically element of MEMS device, is 

driven to vibrate around one of its natural frequencies 

[25]. Raiteri et al. [26], studied the sensitivity of NEMS 

devices, specifically when they operate in a vibrational 

state near their natural frequencies. This investigation 

aligns with a comprehensive review of existing 

literature, which reveals a significant body of prior 

research centered on the phenomena of vibration, 

buckling, and static deflection in flexoelectric 

microbeams. 

 Also, investigation of changes in frequency has 

been limited to electrostatic sensors. Because of some 

advantages in employing flexoelectric micro beams 

instead of electrostatically micro beams, it can consider 

as the most preferable for MEMS and NEMS. One can 

note that given that electrically conductive assemblies 

are composed of distinct components, namely the beam 

and electrode, which are susceptible to detrimental 

elongation effects, the use of electrostatic actuators and 

sensors with a flexoelectric beam can be desirable. 

In this paper, for the first time, an efficient model 

has been used to analyze a flexoelectric microtear as a 

mass sensor, and the effect of different parameters of 

the model on the measurement accuracy is shown with 

the help of different diagrams in the results section. A 

comprehensive investigation is required to explore the 

nonlinear frequency response of flexoelectric 

microstructures, particularly when considering the 

influence of minimal surface-absorbed mass and the 

application of direct current voltage. Hence, the 

objective of this paper is to use a nonlinear formulation 

for a flexoelectric cantilever micro Euler- Bernoulli 

beam is derived based on the size-dependent 

piezoelectricity theory, this study presents a 

comprehensive analysis of the flexoelectric cantilever 

micro beam's behaviour under an applied voltage, 

utilizing the Hamilton principle. The focus is on 

deriving the nonlinear static deflection and vibration, 

considering the initial pre-static deformation. The 

Galerkin projection technique simplifies the governing 

partial differential equations to ordinary differential 

equations. Subsequently, the Lindstedt-Poincare 

perturbation method is employed to solve the resulting 

nonlinear ordinary differential equation. Following the 

validation of results, a detailed numerical investigation 

is performed to evaluate the frequency shifts in 

flexoelectric micro beam resonators due to the influence 

of added mass.  

2. Governing Equations 

This study investigates the potential of a 

microcantilever beam, composed of isotropic 

piezoelectric material, as a mass sensing device when 

exposed to a direct current (DC) voltage, VDC, (Figure 

1). The micro cantilever mass sensor width, length, and 

thickness are, respectively, b, L and h. 

Figure 1. Schema of an isotropic flexielectric micro-beam 

Based on size-dependent piezoelectricity, the strain 

energy of piezoelectric isotropic elastic materials with 

infinitesimal deformations occupying volume V is 

expressed as [14]: 

(1) 
21
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where λ and µ are Lame’s constants, and l, f, and ε 

are the size effect parameters, so called flexoelectric 

coefficient, dielectric constant (electric permittivity), 

and Ei stand for the electric field, respectively. By 

defining ui as small displacement field in the continuum, 

eij and κi are defined, respectively, as [14]: 

(2) 
 

 

1
    ,     ,      

2

1
,     2

2

eij ui j uj i and

i uk ki ui

 

  

 

If the position of a point on the elastic axis 

before deformation and after deformation is given 

by r0 = sex and r = (s + u) e1 + we3 respectively, 

the strain along the elastic axis of a differential 

element ds is equal to [14]: 

(3) 

 

11

22 2 20 0. . 1 , , 1x x

r rr r
e u w

s s s s
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By assuming inextensibility condition, the 

elongation eds become zero, therefore [27]: 

(4)  
2 21 , , 1x xu w    

Expanding the result of Eq. 3 in a Taylor expansion 

one can obtain [27]: 

(5) 
2

, ,

1

2
x xu w   

 

The kinetic energy formulation for a 

flexoelectric microstructure with an additional 

mass is derived from the displacement field, 

utilizing the Euler-Bernoulli beam theory as a 

foundational framework. [27]: 

(6) 

   
 

2 2 2 2

1, 2, 3, 3,

1 1
ρ δ

2 2
t t t m t

v

T u u u dV m x l u      

Where ρ is the mass density of the microbeam, δ(x − 

lm) is the Dirac delta function and m is the added point 

mass at x = lm. The curvature relationship, expressed as 

a third-order equation, intricately links axial and 

transverse deformations, offering a comprehensive 

understanding of their intricate interplay [27]: 

(7)    3 2

, , , , ,,xx x x x xxx
w u w w w     

Substituting Eq. 5 into Eq. 7 and after some 

simplifications, the micro beam's kinetic energy 

and strain energy variations can be mathematically 

represented as distinct entities: 

(8) 
   
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And 

(9) 
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Hamilton's principle is used to derive the equations of 

motion of the microbeam and the corresponding 

boundary conditions. [20]: 

(10

)    

 

, , , , , ,
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2 0
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Where 

 
/2 /2

12
/2 /2

ρ δ
b h

m
b h

m
F dydz x l

L 
     

Neglecting the rotary inertia effect [28], i.e. H11, 

and assuming   0e  , the governing equations for a 

flexoelectric cantilever micro-beam system are 

presented in Eqs. 10 and 11, encompassing both 

mechanical and electrical boundary conditions. These 

equations provide a comprehensive framework to 

describe the intricate dynamics of such micro-scale 

structures.: 

(12)   
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(13)  , , , ,Φ Φ 2 0xx zz z xxf w    

And 
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If the reverse effect of the electric potential is 

considered for the piezoelectric microbeam, the 

electric potential filed, i.e. Φ, and the electric field 

relationship respectively, is expressed by [29]: 

(17

)      
 0

Φ , , cos Φ ,
V t

x z t z x t z
h

   

And [29]: 

(18) 
i ,iΦ i.e., E Φ   E  

 

Where 
h


   and V0 is the electric voltage which 

applied to the micro-beam. Through the 

application of Equation 17 within Equation 18, the 

electric potential field vector components are 

derived [29]: 

(19)        
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By considering f to be a constant, 
11 0    E bf V  

and hence (E11),xx = 0. Consequently, the equations 

of motion and their associated boundary conditions 

are transformed into the subsequent representation: 

(20
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(21
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For convenience, the following nondimensional 

variables are introduced as [30]: 

(22) 

 
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λ 2μ
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m
m

w
w
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x
x

L

I
t

AL

l
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





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Upon simplifying the notation (·), the governing 

equation for the flexoelectric cantilever micro sensor 

(FCMS) can be represented in non-dimensional form, 

accompanied by its respective boundary conditions. 
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 (28)    ,ττ ,
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In Eq. 28 d superscript, due to brevity, is omitted. 

3. Galerkin Approximate Method 

 

The Galerkin projection method is employed to 

discretize the nonlinear dynamic equations of motion, 

specifically Equation 28. This approach enables the 

approximation of the complex nonlinear vibration 

behavior exhibited by the flexoelectric micro sensor 

[31]: 

(29) 
   

1
ψ

n

i ii
w x q t


  

where the qi(t) and ψi(x) are the ith generalized 

displacement coordinate, and the ith linear normal mode 

of a cantilever beam respectively, that given by [31]: 

(30)      

   

   

    
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i i i

i i

i i
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x r x r x

r r
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r x r x

 








 

where ri is the ith root of the characteristic equation for 

clamped-free beams given by 

   .   1cos r cosh r   . By substituting Equation 

29 into the nonlinear transverse equation of motion, 

represented by Equation 28, and employing the Galerkin 

method, we derive a reduced-order model of the 

equation of motion: 

(31) 
   

   

   

3

3,

2

2, 1

..
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0 0 0

k k k

k k k k
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q t q t

q t q t

q a q

 

 

 

 

where α3,k, α2,k and α1,k are given, respectively, by: 

(32) 

 
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In which ξ1,k to ξ16,k relations are: 

(33) 
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4. Perturbation Technique Journal 

This study utilizes the Lindstedt-Poincare 

perturbation method to derive a closed-form 

formula for calculating the microbeam's natural 

frequency shifts caused by additional mass, as 
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presented in Equation 28. In this context, the 

generalized coordinate is denoted as 
2 3

1 2 3( ) ( ) ( ) ), (kq t x x x         , where ɛ 

represents a bookkeeping parameter employed in 

perturbation techniques to organize variables 

systematically.  NL NL

k kt    is the kth 

nonlinear frequency, as derived in [32] 

  2 3

1, 2, 3,

NL

k k k k k        , is 

expressed in terms of ωk, the kth linear natural 

frequency, and ωi,k, which are determined during 

the solution process. Inserting this generalized 

coordinate into Equation (31) yields a subsequent 

expression. 
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It follows from Eq. 34 and some simplifications, that 

the frequency shift due to the added mass of the FCMS 

is given by [31]: 

(35)  2 2

3, 2, 2

3

9 101
Δ

4 6

k k kNL

k k k k
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a
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  
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 
 

 

5. Numerical results and discussion 

The flexoelectric phenomenon is a crucial aspect at 

the micro and nanoscopic levels, warranting 

further investigation. To elucidate this, we examine 

a flexoelectric cantilever microsensor composed of 

BaTiO3, with its geometric and material 

characteristics detailed in Table 1. 

To verify the current results, the obtained Galerkin 

outcomes for the nonlinear static deflection due to a 

DC voltage without added mass are compared with 

the available linear analytical results which is 

accessible in Ref. [33], and the current bvp4c 

results. The comparison is depicted in Fig. 2 for V0 

= 4000v by the consideration of 1 and 3 linear 

normal modes in Galerkin projection. A very good 

agreement is clear between the current 3-mode 

Galerkin projection, the bvp4c method and the 

analytical results. Because the Galerkin approach 

is very handy in the implementation hence, hereafter 

3-mode Galerkin technique is employed for the static 

deflection computations. 

Also, another validation for the natural 

frequency of the current model with reference [34] 

is given in Table 2. The model presented in [34] 

for a rotating macro beam made of epoxy with  

E=1.4 Gpa, υ=0.3, ρ=1220 kg/m^3 and l=17.6 μm, 

where ρ is beam density, υ is Poisson's coefficient, 

E is elastic modulus and l is size factor. 

Considering that the beam studied in reference [34] 

is a rotating beam, to compare the linear 

frequencies with the present model, in reference 

[34], λ_R=0 is considered and in the current 

model, the mass value is considered to be zero. 

Table 2 presents a comparative analysis of the 

initial two natural frequencies, revealing a high 

degree of consistency in the outcomes. Notably, 

this alignment is observed when contrasted with 

the reference data [34], the results were obtained 

by considering the effect of rotational inertia, while 

this effect was omitted in this research. 

Table 1. The geometrical and material data of the 

assumed piezoelectric nanobeam [20]. 

Parameter Description Value (Unit) 

L Beam Length 50 (µm) 

b Beam Width 2 (µm) 

h Beam Thickness 1 (µm) 

l Scale factor 0.2h 

f Flexoelectric 

Coefficient 

5e−9 (C/m) 

µ Lame Constant 42.9 (GPa) 

λ Lame Constant 45.2 (GPa) 

ρ Density 4000 (Kg/m3) 

After validation, the effect of other parameters will 

be examined. 

 

Figure 2. Nonlinear static deflection of the proposed model 

with first-order Galerkin (dotted lines), third-order Galerkin 

(solid lines) and bvp4c subroutine (dashed lines) versus the 

corresponding linear analytical results of Ref. [33] (dotted 

lines): (V0 = 4000v). 

Table 2. Comparison of the first natural frequency of the 

current model with reference results [34] (MHz) 

Natural Ref. [30] Current Difference % 
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Frequency Model 

ω1 0.3108 0.3107 0.03 

ω1 1.9326 1.9468 0.73 

 

The variation of the first, second and third natural 

frequency with respect to the position of the added 

mass for different effect of the length scale parameter 

to the beam thickness ratio, i.e. l/h are demonstrated 

in Figs. 3- 5. It can be seen that by increasing l/h 

parameter due to the stiffening of the beam structure 

the natural frequencies increase. Also the maximum 

frequency is at lm = 1, lm = 0.78 and lm = 0.5 for the 

first, second and third natural frequency, respectively. 

The first, second and third frequency shift of the 

FCMS which undergoes different flexoelectric 

coefficient as a function of the position of the added 

mass are illustrated in Figs. 6-8. It can be seen that 

(Figs. 6 and 7) the first and second frequency shift 

are decrease by increasing the position of the 

added mass in the small flexoelectric coefficient. But 

by increasing flexoelectric coefficient, because of the 

softening behavior [30], the first and second 

frequency shift are increase by increasing the 

position of the added mass. In the context of the 

fexoelectric constant, the third frequency shift of 

the FCMS consistently indicates a hardening trend, 

as illustrated in Figure 8. Figures 9- 11 illustrate 

the first, second and third frequency shift of the 

FCMS under different position of the added mass, 

as a function of the effect of the length scale 

parameter to the beam thickness ratio, i.e. l/h. Figs. 

9- 11 show, by increasing l/h, the frequency shifts 

are decrease. Also, in Figs. 9- 11 one can note that 

the maximum frequency shifts are at lm = 1, lm = 

0.78 and lm = 0.5 for the first, second and third 

frequency shift, respectively. 

 

Figure 3. The first frequency of FCMS for different the effect 

of the length scale parameter to the beam thickness ratio, i.e. 

l/h: l/h = 0.0, solid-lines, l/h = 0.2, dashed-lines, and l/h = 0.5, 

dotted-dashed-lines. 

 

Figure 4. The second frequency of FCMS for different the 

effect of the length scale parameter to the beam thickness 

ratio, i.e. l/h: l/h = 0.0, solid-lines, l/h = 0.2, dashed-lines, 

and l/h = 0.5, dotted-dashed-lines 

 

Figure 5. The third frequency of FCMS for different the 

effect of the length scale parameter to the beam thickness 

ratio, i.e. l/h: l/h = 0.0, solid-lines, l/h = 0.2, dashed-lines, 

and l/h = 0.5, dotted-dashed-lines 

 

Figure 6. The first frequency shift of FCMS for different 

position of the added mass: lm = 0.2L, solid-lines, lm = 

0.6L, dashed-lines, and lm = L, dotted-dashed-lines 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



9 

 

 

Figure 7. The second frequency shift of FCMS for 

different position of the added mass: lm = 0.2L, solid-lines, 

lm = 0.6L, dashed-lines, and lm = L, dotted-dashed-

lines 

 

Figure 8. The third frequency shift of FCMS for different 

position of the added mass: lm = 0.2L, solid-lines, lm = 

0.6L, dashed-lines, and lm = L, dotted-dashed-lines 

 

Figure 9. The first frequency shift of FCMS for different 

effect of the material length scale factor with respect to 

the beam thickness ratio: l/h = 0.0, solid-lines, l/h = 0.2L, 

dashed-lines, and l/h = 0.5, dotted-dashed-lines 

 

Figure 10. The second frequency shift of FCMS for 

different effect of the material length scale factor with 

respect to the beam thickness ratio: l/h = 0.0, solid-lines, 

l/h = 0.2L, dashed-lines, and l/h = 0.5, dotted-dashed-

lines 

Figure 11. The third frequency shift of FCMS for 

different effect of the material length scale factor with 

respect to the beam thickness ratio: l/h = 0.0, solid-lines, 

l/h = 0.2L, dashed-lines, and l/h = 0.5, dotted-dashed-

lines 

The similar study as the frequency shift under DC 

voltage are performed for the sensitivity 

respectively, in Figs. 12- 14. From Fig. 12 it can be 

inferred that the maximum sensitivity is at V0 = 

2600v for l/h = 0.0 and more than V0 = 4000v for 

l/h = 0.2. The comparison of the fig. 12 and fig. 13 

shows that by increasing the material length scale 

factor with respect to the beam thickness ratio: l/h 

the sensitivity is decrease. 
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Figure 12. The sensitivity in terms of applied DC 

voltage for l/h = 0 

 

Figure 13. The sensitivity in terms of applied DC 

voltage for l/h = 0.2 

 

Also, comparison of the fig. 14 and fig. 15 it can be 

deduced that by increasing the position of the added 

mass lm the sensitivity is decrease. 

 

Figure 14. The sensitivity in terms of applied DC voltage 

for position of the added mass lm = 1 

 

Figure 15. The sensitivity in terms of applied DC 

voltage for position of the added mass lm = 0.2L 

6. Conclusions 

This study investigates the frequency shifts of a 

micro-cantilever beam with an attached point mass, 

utilizing a pre-actuated isotropic design. The analysis 

is based on the Euler-Bernoulli beam theory, derived 

from the Hamilton principle, and incorporates size-

dependent piezoelectric effects. Given the negligible 

size of the added mass relative to the beam length, a 

high-order curvature displacement relationship was 

formulated. Through the application of Galerkin 

approximation and Lindstedt-Poincare perturbation 

methods, analytical expressions were derived to 

determine frequency shifts, considering variables 

such as added mass position, DC voltage, material 

length scale, and flexoelectric coefficient. These 

expressions elucidate the influence of these 

parameters on the linear natural frequency, frequency 

shifts, and sensitivity. The main findings are as 

follows: 

The increment in the scale factor to the beam thickness 

ratio increases the linear natural frequency; 

In the small flexoelectric region, the increment in the 

position of added mass decreases the first and second 

frequency shift; 

The increment in the scale factor to the beam thickness 

ratio decreases the frequency shifts; 

The maximum sensitivity for l/h = 0.0 is at V0 = 2600v; 

By increasing the material length scale factor with 

respect to the beam thick- ness ratio, the sensitivity is 

decrease; 

By increasing the position of the added mass, the 

sensitivity is decrease. 
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