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ABSTRACT: This research explores a novel technique for precise mass sensing, involving the 
detection of an object’s position and mass when affixed to a flexoelectric cantilever Euler-Bernoulli 
microbeam. Third-order relation of the curvature is considered to obtain the nonlinear governing 
equations and the related boundary conditions, from Hamilton’s principle on the basis of size-dependent 
piezoelectricity theory. The Galerkin method is employed to discredit the partial differential equation of 
motion into ordinary differential equations. The Lindstedt-Poincare technique is employed to derive a 
concise mathematical expression that describes the frequency alteration resulting from the presence of a 
concentrated mass on the microbeam’s exterior. By applying direct current voltage, the natural frequency 
shift of the flexoelectric cantilever Euler-Bernoulli microbeam under an added mass is examined. Finally, 
after validation of the results, the effects of size-dependent parameters, input voltage, and flexoelectric 
coefficient on static deformation and frequency behavior are shown. It can be found that the maximum 
sensitivity for l/h = 0.0 is at V0 = 2600v, By adjusting the material length scale factor relative to the 
beam thickness ratio, the sensitivity is observed to diminish. Also, by increasing the position of the 
added mass, the sensitivity is decreased and, where the flexoelectric effect is small, the increment in the 
position of added mass decreases the first and second frequency shift.
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1- Introduction
The integration of Micro-Electro-Mechanical Systems 

(MEMS) and Nano-Electro-Mechanical Systems (NEMS) 
presents significant opportunities in various engineering 
disciplines, including mechanical, civil, and aerospace 
engineering. These technologies offer exceptional 
capabilities for precise measurement of physical parameters, 
such as minute gas concentrations, microscopic biological 
entities, and subtle variations in temperature and pressure [1]. 
Piezoelectric micro and nanobeams, in particular, have been 
extensively utilized within MEMS and NEMS as specialized 
piezoelectric sensors, actuators, energy harvesting [2], 
vibration control [3], vibration responses [4, 5], and 
positioning systems [6]. Particularly, flexoelectric cantilever 
micro and nanobeams have been developed with a novel 
micro/nano-electromechanical system process very useful for 
low-frequency vibration sensors and energy harvesters [7]. 
The application of micro-materials as active sensing particles 
in micro-sensors has increased the sensitivity performance of 
micro-sensors that can be able to detect particles, for example, 
bacteria with very nano-dimensions and low concentrations 
[8]. Also, micro and nanobeams are often implemented in 
the form of mass detector sensors of very small biological 

and chemical species, such as viruses, bacteria, and cells 
[8]. Several methods e.g. static deflection and natural 
frequencies, have been used to measure the mass of very 
small elements, such as chemical and biological elements [9]. 
The static deflection method involves the detection of mass 
variations through precise measurements of microstructural 
deflections [9]. Another approach that is the more attractive 
method in terms of sensitivity, is frequency shift tracking. The 
frequency shift method, operating in dynamic mode, involves 
inducing vibrations in a microstructure, often a beam, near 
its natural frequency [10]. This technique is highly sensitive 
to mass variations on the microstructure’s surface. When an 
additional mass is introduced, the altered beam mass causes a 
corresponding shift in its natural frequency. Ilic et al. utilized 
this principle to create a biosensor for detecting Escherichia 
coli, a pathogenic bacterium, by coating a microsensor 
with specific antibodies, thus demonstrating its potential in 
medical diagnostics and food safety monitoring [11]. Burg 
et al. [12] further advanced this concept by designing a 
suspended microchannel sensor that correlates the mass of 
particles within a microfluidic channel to the decrease in 
resonance frequency. Cantilever micro beams, in particular, 
have been extensively utilized in resonant mass sensors. 
Dohn et al. [13] investigated the sensitivity of such cantilever 
beam mass sensors, finding that maximum sensitivity occurs 
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at the beam tip, and the added mass has minimal impact on 
the Q-factor damping. They also emphasized that employing 
multiple bending modes significantly enhances sensitivity. 
The exploration of flexoelectric micro beams as mass sensors 
offers promising advantages. Recent advancements in size-
dependent theories have led to the development of higher-
order continuum theories for micro and nano structures. 
These theories also incorporate electromechanical effects, 
leading to the formulation of size-dependent piezoelectricity 
and similar electromechanical theories. 

However, in the micro and nanoscale some studies have 
depicted size-effect phenomena of piezoelectric solids and 
linear electromechanical coupling in isotropic dielectrics, 
the conventional piezoelectric theory fails to elucidate the 
size-dependent correlation between electric polarization and 
uniform strain in dielectric substances. [14]. On the other hand, 
dielectric polarization is influenced not solely by the strain 
tensor but also by the curvature tensor, adding complexity 
to the understanding of these materials. Therefore, it is 
necessary to develop a size-dependent piezoelectricity theory 
to employ the micro/nanostructures which is included by the 
curvature and the higher gradients of deformation. This size-
dependent parameter for linear electromechanical coupling 
in isotropic dielectrics is called the flexoelectric effect [15]. 
Hence, it can be deduced that typically, the flexoelectric 
phenomenon can be found in all dielectrics. The study of 
size-dependent piezoelectricity has led to the development of 
various theories, addressing the complexities of deformation 
gradients [16] and rotation gradients within the context of 
couple stress theory [17]. This electromechanical approach, 
as presented in [18], reveals the unique behavior of materials 
at nanoscales, incorporating the size-dependent piezoelectric 
and flexoelectric effects influenced by mean curvature [18]. 
Building upon these theories, researchers have explored 
piezoelectric nanobeams, analyzing their mechanical and 
electrical properties [19]. Notably, Tadi [20] endeavored to 
formulate a comprehensive piezoelectric nanobeam model, 
utilizing the size-dependent piezoelectricity theory to capture 
the intricate behavior of these nanoscale structures. The 
flexoelectric micro beams are often used in MEMS devices 
as actuators. 

The microactuators are designed to operate with either 
AC or DC voltage applications. When a DC voltage is 
applied, the actuator adjusts to a new equilibrium, resulting in 
a static deflection [21]. Numerous studies have investigated 
the nonlinear behavior of electrostatic micro-actuated beams 
under DC or combined AC-DC electrostatic actuation [22]. 
Flexoelectric microbeams, due to their distinct characteristics, 
can be employed as sensitive sensors for detecting minute 
masses, including viruses, bacteria, and cells with great 
accuracy [23]. Wu [24] by implementing the static deflection 
analysis, detects the mass of chemical and biological elements. 
In terms of sensitivity, a great attractive method is to operate 
a MEMS device in the vibration mode. In this case, a micro 
beam as a typical element of a MEMS device, is driven to 
vibrate around one of its natural frequencies [25]. Raiteri et 

al. [26], studied the sensitivity of NEMS devices, specifically 
when they operate in a vibrational state near their natural 
frequencies. This investigation aligns with a comprehensive 
review of existing literature, which reveals a significant body 
of prior research centered on the phenomena of vibration, 
buckling, and static deflection in flexoelectric microbeams.

 Also, investigation of changes in frequency has 
been limited to electrostatic sensors. Because of some 
advantages of employing flexoelectric micro beams instead 
of electrostatically micro beams, it can be considered as the 
most preferable for MEMS and NEMS. One can note that 
given that electrically conductive assemblies are composed 
of distinct components, namely the beam, and electrode, 
which are susceptible to detrimental elongation effects, the 
use of electrostatic actuators and sensors with a flexoelectric 
beam can be desirable.

In this paper, for the first time, an efficient model has been 
used to analyze a flexoelectric microtear as a mass sensor, 
and the effect of different parameters of the model on the 
measurement accuracy is shown with the help of different 
diagrams in the results section. A comprehensive investigation 
is required to explore the nonlinear frequency response of 
flexoelectric microstructures, particularly when considering 
the influence of minimal surface-absorbed mass and the 
application of direct current voltage. Hence, the objective of 
this paper is to use a nonlinear formulation for a flexoelectric 
cantilever micro Euler- Bernoulli beam is derived based on 
the size-dependent piezoelectricity theory, this study presents 
a comprehensive analysis of the flexoelectric cantilever 
micro beam’s behavior under an applied voltage, utilizing the 
Hamilton principle. The focus is on deriving the nonlinear 
static deflection and vibration, considering the initial pre-
static deformation. The Galerkin projection technique 
simplifies the governing partial differential equations to 
ordinary differential equations. Subsequently, the Lindstedt-
Poincare perturbation method is employed to solve the 
resulting nonlinear ordinary differential equation. Following 
the validation of results, a detailed numerical investigation 
is performed to evaluate the frequency shifts in flexoelectric 
microbeam resonators due to the influence of added mass. 

2- Governing Equations
This study investigates the potential of a microcantilever 

beam, composed of isotropic piezoelectric material, as a 
mass sensing device when exposed to a direct current (DC) 
voltage, VDC, (Figure 1). The microcantilever mass sensor 
width, length, and thickness are, respectively, b, L, and h.

Based on size-dependent piezoelectricity, the strain energy 
of piezoelectric isotropic elastic materials with infinitesimal 
deformations occupying volume V is expressed as [14]:
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where λ and µ are Lame’s constants, and l, f, and ε are 
the size effect parameters, so called flexoelectric coefficient, 
dielectric constant (electric permittivity), and Ei stand 
for the electric field, respectively. By defining ui as small 
displacement field in the continuum, eij and κi are defined, 
respectively, as [14]:
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If the position of a point on the elastic axis before 
deformation and after deformation is given by r0 = sex 
and r = (s + u) e1 + we3 respectively, the strain along the 
elastic axis of a differential element ds is equal to [14]:
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By assuming the inextensibility condition, the elongation 
eds become zero, therefore [27]:
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Expanding the result of Eq. 3 in a Taylor expansion one 
can obtain [27]:
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The kinetic energy formulation for a flexoelectric 

microstructure with an additional mass is derived from the 
displacement field, utilizing the Euler-Bernoulli beam theory 
as a foundational framework. [27]:
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Where ρ is the mass density of the microbeam, δ(x − lm) 
is the Dirac delta function and m is the added point mass at 
x = lm. The curvature relationship, expressed as a third-order 
equation, intricately links axial and transverse deformations, 
offering a comprehensive understanding of their intricate 
interplay [27]:
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Substituting Eq. 5 into Eq. 7 and after some 
simplifications, the micro beam’s kinetic energy 
and strain energy variations can be mathematically 
represented as distinct entities:
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Fig. 1. Schema of an isotropic flexielectric micro-beam 
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Hamilton’s principle is used to derive the equations of 
motion of the microbeam and the corresponding boundary 
conditions. [20]:
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Where

( )
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= + −∫ ∫

Neglecting the rotary inertia effect [28], i.e. H11, 
and assuming  0eρ = , the governing equations for a 
flexoelectric cantilever micro-beam system are presented 
in Eqs. 10 and 11, encompassing both mechanical and 
electrical boundary conditions. These equations provide 
a comprehensive framework to describe the intricate 
dynamics of such micro-scale structures.:
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If the reverse effect of the electric potential is 
considered for the piezoelectric microbeam, the electric 
potential filed, i.e. Φ, and the electric field relationship 
respectively, is expressed by [29]:
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And [29]:
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Where 
h
πβ =  and V0 is the electric voltage which 

applied to the micro-beam. Through the application of 
Equation 17 within Equation 18, the electric potential 
field vector components are derived [29]:
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By considering f to be a constant, 11 0   E bf V=  
and hence (E11),xx = 0. Consequently, the equations of 
motion and their associated boundary conditions are 
transformed into the subsequent representation:
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For convenience, the following nondimensional variables 
are introduced as [30]:
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Upon simplifying the notation ( )· , the governing 
equation for the flexoelectric cantilever micro sensor 
(FCMS) can be represented in non-dimensional form, 
accompanied by its respective boundary conditions.
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In Eq. 23 d superscript, due to brevity, is omitted.

3- Galerkin Approximate Method
The Galerkin projection method is employed to discretize 

the nonlinear dynamic equations of motion, specifically 
Equation 23. This approach enables the approximation of 
the complex nonlinear vibration behavior exhibited by the 
flexoelectric microsensor [31]:
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where the qi(t) and ψi(x) are the ith generalized 

displacement coordinate, and the ith linear normal mode of a 
cantilever beam respectively, given by [31]:
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where ri is the ith root of the characteristic equation for 
clamped-free beams given by ( ) ( ).   1cos r cosh r = −
. By substituting Equation 24 into the nonlinear transverse 
equation of motion, represented by Equation 23, and 
employing the Galerkin method, we derive a reduced-order 
model of the equation of motion:
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where α3,k, α2,k and α1,k are given, respectively, by:
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In which ξ1,k to ξ16,k relations are:
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4- Perturbation Technique Journal
This study utilizes the Lindstedt-Poincare 

perturbation method to derive a closed-form formula 
for calculating the microbeam’s natural frequency 
shifts caused by additional mass, as presented in 
Equation 23. In this context, the generalized coordinate 
is denoted as 2 3

1 2 3( ) ( ) ( ) ), (kq t x x xε ε τ ε τ ε τ= + +
, where ɛ represents a bookkeeping parameter 
employed in perturbation techniques to organize 
variables systematically. ( )NL NL

k ktτ ω ω= ∈  is 
the kth nonlinear frequency, as derived in [32] 

( ) 2 3
1, 2, 3,

NL
k k k k kω ω ω ω ω= +∈ +∈ +∈ ∈ , is expressed in 

terms of ωk, the kth linear natural frequency, and ωi,k, 
which are determined during the solution process. 
Inserting this generalized coordinate into Equation (26) 
yields a subsequent expression.
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It follows from Eq. 29 and some simplifications, that the 
frequency shift due to the added mass of the FCMS is given 
by [31]:
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5- Numerical results and discussion
The flexoelectric phenomenon is a crucial aspect 

at the micro and nanoscopic levels, warranting 
further investigation. To elucidate this, we examine 
a flexoelectric cantilever microsensor composed of 
BaTiO3, with its geometric and material characteristics 
detailed in Table 1.

To verify the current results, the obtained Galerkin 
outcomes for the nonlinear static deflection due to a 
DC voltage without added mass are compared with the 
available linear analytical results which is accessible in 
Ref. [33], and the current bvp4c results. The comparison 
is depicted in Fig. 2 for V0 = 4000v by the consideration 
of 1 and 3 linear normal modes in Galerkin projection. 
A very good agreement is clear between the current 
3-mode Galerkin projection, the bvp4c method, and the 
analytical results. Because the Galerkin approach is 
very handy in the implementation hence, hereafter 3-mode 
Galerkin technique is employed for the static deflection 
computations.

Table 1. The geometrical and material data of the as-
sumed piezoelectric nanobeam [20].Table 1. The geometrical and material data of the assumed piezoelectric nanobeam [20]. 

Parameter Description Value (Unit) 
L Beam Length 50 (µm) 
b Beam Width 2 (µm) 
h Beam Thickness 1 (µm) 
l Scale factor 0.2h 
f Flexoelectric 

Coefficient 
5e−9 (C/m) 

µ Lame Constant 42.9 (GPa) 
λ Lame Constant 45.2 (GPa) 
ρ Density 4000 (Kg/m3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Nonlinear static deflection of the proposed model with first-order Galerkin (dotted lines), third-order Galerkin (solid 
lines), and bvp4c subroutine (dashed lines) versus the corresponding linear analytical results of Ref. [33] (dotted lines): (V0 = 

4000v). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Nonlinear static deflection of the proposed mod-
el with first-order Galerkin (dotted lines), third-order 
Galerkin (solid lines), and bvp4c subroutine (dashed 
lines) versus the corresponding linear analytical results 

of Ref. [33] (dotted lines): (V0 = 4000v).
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Also, another validation for the natural frequency of 
the current model with reference [34] is given in Table 
2. The model presented in [34] for a rotating macro 
beam made of epoxy with  E=1.4 Gpa, υ=0.3, ρ=1220 
kg/m^3, and l=17.6 μm, where ρ is beam density, υ is 
Poisson’s coefficient, E is elastic modulus and l is size 
factor. Considering that the beam studied in reference 
[34] is a rotating beam, to compare the linear frequencies 
with the present model, in reference [34], λ_R=0 is 
considered and in the current model, the mass value is 
considered to be zero. Table 2 presents a comparative 
analysis of the initial two natural frequencies, revealing 
a high degree of consistency in the outcomes. Notably, 
this alignment is observed when contrasted with 
the reference data [34], the results were obtained by 
considering the effect of rotational inertia, while this 
effect was omitted in this research.

After validation, the effect of other parameters will be 
examined.

The variation of the first, second and third natural frequency 
with respect to the position of the added mass for different 
effects of the length scale parameter to the beam thickness 
ratio, i.e. l/h are demonstrated in Figs. 3- 5. It can be seen that 
by increasing l/h parameter due to the stiffening of the beam 
structure the natural frequencies increase. Also, the maximum 
frequency is at lm = 1, lm = 0.78 and lm = 0.5 for the first, second, 
and third natural frequency, respectively.

The first, second, and third frequency shifts of the FCMS 
which undergoes different flexoelectric coefficients as a 
function of the position of the added mass are illustrated 
in Figs. 6-8. It can be seen that (Figs. 6 and 7) the first 
and second frequency shifts are decreased by increasing 
the position of the added mass in the small flexoelectric 
coefficient. But by increasing the flexoelectric coefficient, 
because of the softening behavior [30], the first and second 
frequency shift are increased by increasing the position 
of the added mass. In the context of the fexoelectric 
constant, the third frequency shift of the FCMS 
consistently indicates a hardening trend, as illustrated 

Table 2. Comparison of the first natural frequency of the 
current model with reference results [34] (MHz)

Table 2. Comparison of the first natural frequency of the current model with reference results [34] (MHz) 

Natural 
Frequency Ref. [30] Current 

Model Difference % 

ω1 0.3108 0.3107 0.03 
ω1 1.9326 1.9468 0.73 

 

 
Fig. 3. The first frequency of FCMS for different the effect of the length scale parameter to the beam thickness ratio, i.e. l/h: l/h = 

0.0, solid-lines, l/h = 0.2, dashed-lines, and l/h = 0.5, dotted-dashed-lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The first frequency of FCMS for different the ef-
fect of the length scale parameter to the beam thickness 
ratio, i.e. l/h: l/h = 0.0, solid-lines, l/h = 0.2, dashed-lines, 

and l/h = 0.5, dotted-dashed-lines.

 

Fig. 4. The second frequency of FCMS for different the effect of the length scale parameter to the beam thickness ratio, 
i.e. l/h: l/h = 0.0, solid-lines, l/h = 0.2, dashed-lines, and l/h = 0.5, dotted-dashed-lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The second frequency of FCMS for different the 
effect of the length scale parameter to the beam thick-
ness ratio, i.e. l/h: l/h = 0.0, solid-lines, l/h = 0.2, dashed-

lines, and l/h = 0.5, dotted-dashed-lines

 

Fig. 5. The third frequency of FCMS for different the effect of the length scale parameter to the beam thickness ratio, 
i.e. l/h: l/h = 0.0, solid-lines, l/h = 0.2, dashed-lines, and l/h = 0.5, dotted-dashed-lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The third frequency of FCMS for different the ef-
fect of the length scale parameter to the beam thickness 
ratio, i.e. l/h: l/h = 0.0, solid-lines, l/h = 0.2, dashed-lines, 

and l/h = 0.5, dotted-dashed-lines
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in Figure 8. Figures 9- 11 illustrate the first, second, 
and third frequency shift of the FCMS under different 
positions of the added mass, as a function of the effect 
of the length scale parameter to the beam thickness ratio, 
i.e. l/h. Figs. 9- 11 show, by increasing l/h, the frequency 
shifts are decrease. Also, in Figs. 9- 11 One can note 
that the maximum frequency shifts are at lm = 1, lm 
= 0.78 and lm = 0.5 for the first, second, and third 
frequency shifts, respectively.

The similar study as the frequency shift under DC voltage 
are performed for the sensitivity respectively, in Figs. 12- 14. 
From Fig. 12 it can be inferred that the maximum sensitivity 

is at V0 = 2600v for l/h = 0.0 and more than V0 = 4000v for l/h 
= 0.2. The comparison of the fig. 12 and fig. 13 shows that by 
increasing the material length scale factor with respect to the 
beam thickness ratio: l/h the sensitivity is decrease.

Also, by comparison of Fig. 14 and Fig. 15 it can be 
deduced that by increasing the position of the added mass lm 
the sensitivity is decreased.

6- Conclusions
This study investigates the frequency shifts of a micro-

cantilever beam with an attached point mass, utilizing a 
pre-actuated isotropic design. The analysis is based on the 

 

Fig. 6. The first frequency shift of FCMS for different position of the added mass: lm = 0.2L, solid-lines, lm = 0.6L, 
dashed-lines, and lm = L, dotted-dashed-lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The first frequency shift of FCMS for different 
position of the added mass: lm = 0.2L, solid-lines, lm = 

0.6L, dashed-lines, and lm = L, dotted-dashed-lines

 

Fig. 8. The third frequency shift of FCMS for different position of the added mass: lm = 0.2L, solid-lines, lm = 0.6L, 
dashed-lines, and lm = L, dotted-dashed-lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The third frequency shift of FCMS for different 
position of the added mass: lm = 0.2L, solid-lines, lm = 

0.6L, dashed-lines, and lm = L, dotted-dashed-lines

 

Fig. 7. The second frequency shift of FCMS for different positions of the added mass: lm = 0.2L, solid-lines, lm = 0.6L, 
dashed-lines, and lm = L, dotted-dashed-lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The second frequency shift of FCMS for different 
positions of the added mass: lm = 0.2L, solid-lines, lm = 

0.6L, dashed-lines, and lm = L, dotted-dashed-lines

 

Fig. 9. The first frequency shift of FCMS for different effect of the material length scale factor with respect to the beam 
thickness ratio: l/h = 0.0, solid-lines, l/h = 0.2L, dashed-lines, and l/h = 0.5, dotted-dashed-lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The first frequency shift of FCMS for different 
effect of the material length scale factor with respect to 
the beam thickness ratio: l/h = 0.0, solid-lines, l/h = 0.2L, 

dashed-lines, and l/h = 0.5, dotted-dashed-lines
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Euler-Bernoulli beam theory, derived from the Hamilton 
principle, and incorporates size-dependent piezoelectric 
effects. Given the negligible size of the added mass relative 
to the beam length, a high-order curvature displacement 
relationship was formulated. Through the application 
of Galerkin approximation and Lindstedt-Poincare 
perturbation methods, analytical expressions were derived 
to determine frequency shifts, considering variables such 
as added mass position, DC voltage, material length scale, 
and flexoelectric coefficient. These expressions elucidate 
the influence of these parameters on the linear natural 
frequency, frequency shifts, and sensitivity. The main 

 

Fig. 10. The second frequency shift of FCMS for the different effect of the material length scale factor with respect to 
the beam thickness ratio: l/h = 0.0, solid-lines, l/h = 0.2L, dashed-lines, and l/h = 0.5, dotted-dashed-lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The second frequency shift of FCMS for the dif-
ferent effect of the material length scale factor with re-
spect to the beam thickness ratio: l/h = 0.0, solid-lines, l/h 
= 0.2L, dashed-lines, and l/h = 0.5, dotted-dashed-lines

 

Fig. 12. The sensitivity in terms of applied DC voltage for l/h = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The sensitivity in terms of applied DC voltage 
for l/h = 0

 
 

Fig. 11. The third frequency shift of FCMS for different effect of the material length scale factor with respect to the 
beam thickness ratio: l/h = 0.0, solid-lines, l/h = 0.2L, dashed-lines, and l/h = 0.5, dotted-dashed-lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The third frequency shift of FCMS for different 
effect of the material length scale factor with respect to 
the beam thickness ratio: l/h = 0.0, solid-lines, l/h = 0.2L, 

dashed-lines, and l/h = 0.5, dotted-dashed-lines

 

Fig. 13. The sensitivity in terms of applied DC voltage for l/h = 0.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The sensitivity in terms of applied DC voltage 
for l/h = 0.2

 

Fig. 14. The sensitivity in terms of applied DC voltage for position of the added mass lm = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The sensitivity in terms of applied DC voltage 
for position of the added mass lm = 1
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findings are as follows:
The increment in the scale factor to the beam thickness 

ratio increases the linear natural frequency;
In the small flexoelectric region, the increment in the 

position of added mass decreases the first and second 
frequency shifts;

The increment in the scale factor to the beam thickness 
ratio decreases the frequency shifts;

The maximum sensitivity for l/h = 0.0 is at V0 = 2600v;
By increasing the material length scale factor with respect 

to the beam thickness ratio, the sensitivity is decreased;
By increasing the position of the added mass, the 

sensitivity is decreased.
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