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 Mixed Longitudinal - Lateral Stability Control of Electric Vehicle Based on Online 
Tire - Road Friction Coefficients Estimation
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ABSTRACT: In this paper, a two-layer stability control system based on output feedback is designed 
for electric vehicles with four in-wheel motors using super twisting sliding mode control and extended 
Kalman filter. The joint-extended Kalman filter method is used at the same time for estimating the state 
of the vehicle and the friction coefficients between the wheels and the road. In the upper layer controller, 
the control torque required to ensure the lateral stability of the vehicle is calculated. In the second layer, 
by using torque vectoring, the required traction forces for each wheel are determined so that the control 
torque calculated in the first layer is provided. Then the corresponding slip rates are calculated for the 
new adjusted longitudinal forces. Using the obtained slip rates as the desired slip rate for each wheel, 
the required wheel torques are computed by using appropriate longitudinal controller. Using the Kalman 
filter largely eliminates the effects of sensor noise and structural uncertainty on estimated parameters. 
The present algorithm can calculate the control inputs for the lateral and longitudinal control of the 
vehicle, as well as estimate the state of the system and estimate the friction coefficients between the 
wheels and the road at the same time. The results show the efficiency of the designed control system 
which is discussed on different maneuvers.
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1- Introduction
In recent years, a series of ecological problems and 

limitations due to the lack of fossil fuels led to more researches 
have been considered on the replacement of electric vehicles 
(EVs) with conventional vehicles powered by an internal 
combustion engine. Among the types of designs used for EVs 
, those driven by four in-wheel-motors (IWMs) inside each 
tire, have been considered as popular architecture for their 
advantages compared with other kinds of EVs [1].

In this kind of EVs; the removal of the transmission 
mechanism can improve the energy efficiency, and the total 
weight of the vehicle can be reduced, which is directly related 
to production cost. However, in EVs with IWMs due to the 
independent action of each wheel, the controllability of the 
system increases which ensures a more flexible response in 
different situations. Therefore, it seems that the use of this 
model is more suitable for EVs than other more complex 
models[2].

Today, many advanced cars are compared with each 
other in terms of their ability to provide safety and comfort 
to the passengers.  To this end, the use of vehicle stability 
control systems has been given a lot of attention. The most 
determining aspects of stability in these vehicles, due to their 
weight range and the center of gravity height, are longitudinal 
and lateral stability systems [3, 4]. 

In these systems, the primary objective is to precisely 
follow the reference path by minimizing tracking errors. 
Typically, achieving effective path-following requires 
accounting for both longitudinal and lateral control during the 
tracking process [5]. For a simultaneous longitudinal–lateral 
control strategy, an appropriate tracking algorithm should 
be used. Modern control methods in EVs with four IWMs, 
generally use one lateral controller for direct yaw moment 
control and four longitudinal controllers in each IWM using 
different tracking algorithms. Some of these methods are:

Pure tracking control: The structure and concept of 
pure tracking control are straightforward and cost-effective. 
However, it is effective primarily for achieving optimal 
tracking results on roads with low to medium speeds and high 
friction coefficients [6].

PID: PID control offers the benefits of a simple structure, 
straightforward parameter adjustment, and robustness. 
Nevertheless, it is best suited for single-input-single-output 
linear time-varying systems rather than multi-input-multi-
output time-varying DYC systems [7].

LQR: This approach requires developing an objective 
function using a precise model, with the control effectiveness 
strongly linked to the model’s accuracy. Clearly, employing a 
controller with weak robustness of this kind is unsuitable for 
uncertain conditions in the problem being studied [8]. Some 
references have also used this approach in the design of an 
electric vehicle with IWMs[9].
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MPC: The model predictive control (MPC) approach has 
been utilized for EVs with IWMs. However, its limitations 
include the high computational demand of iterative matrix 
calculations and the complexity of managing multiple 
variables [10-12].

Fuzzy Control: Although a fuzzy controller has the 
advantage of solving nonlinear problems, its control rules are 
complex and the membership function is obtained according 
to mature experience, so it cannot be the best choice for 
vehicle stability [13].

SMC: In recent years, the sliding mode control method 
and its different types have been widely used as a tracking 
algorithm and it has appropriate results by considering 
the conditions of the problem [14]. Using this method 
by combining it with other methods including, neural 
network[15, 16], nonlinear disturbance observer[17], fuzzy 
controller[18, 19], and some other methods has led to the 
creation of different algorithms for various applications using 
it.

In this work, five super twisting SMC algorithms are 
used for lateral and longitudinal stability control of EV, in 
the hierarchical two-layer format [20]. In the upper layer, one 
SMC algorithm is designed for DYC and calculation of the 
control yaw moment. In the lower layer, four SMCs are used 
for each wheel’s longitudinal stability considering the torque 
vectoring strategy which is required for applying the control 
yaw moment calculated in the upper layer[21].

Due to the complex and variable driving conditions, 
accurate road and vehicle parameters should be known or 
estimated. In this regard, the tire-road friction coefficient 
(TRFC), is one of the most important parameters has to be 
estimated. The two main methods are cause-based and effect-
based methods [22]. Cause-based methods are performed 
using some expensive, sensitive, and unusual acoustic and 
optical sensors, which are unreasonable and difficult to use 
for commercial vehicles in the market. Therefore, the use of 
effect-based methods are considered in TRFC estimation. 
In this approach, TRFC is identified based on the vehicle 
dynamic response on varying road conditions [23].

By applying various types of observers or filters on the data 
obtained from the sensors, the effect of noise and uncertainties 
in these data can be minimized and the real states of the car can 
be estimated. In this paper, the Extended Kalman filter (EKF) 
is used for state estimation. As mentioned, various papers and 
references have been published both in the field of stability 
control of electric vehicles and in the field of using different 
filters. What has received less attention is the estimation of 
the states and TRFC online and simultaneously with the work 
of the stability controller and the use of direct feedback of 
friction coefficients in the calculation of control inputs. By 
applying some changes in the filter equations, using joint-
EKF, the method can be used to estimate simultaneously 
TRFCs and vehicle state. Since the method is effect-based 
and TRFCs are estimated online. By applying these accurate 
and modified parameters to the equations and controllers 
of the upper and lower layers, the modeling becomes more 
accurate, and maintaining the stability of the vehicle despite 

measurable uncertainties and noises can be achieved.
In the following section, mathematical and dynamic 

models are described. In this section, the 7-degree-of-
freedom vehicle model, controller structure, and filter 
type are discussed. In section 3, the simulation results are 
presented and the efficiency of the  proposed method in 
different situations is discussed. Finally, conclusions are 
given in section 4.

2- Modeling and Formulation
In this section, the vehicle dynamic model, controller 

structure, and joint filter structure are discussed. For the 
vehicle model, a 7-degree of freedom model has been 
employed, which is presented in sections 2-1. Then, the two-
layer controller structure and its algorithm are presented in 
section 2-2, and subsequently, in section 2-3, explanations 
related to the joint-EKF filter-estimator structure are provided.

2- 1- Seven degree of freedom (7DOF) vehicle model
For the dynamic model of the car, the following 

assumptions are considered. The road is considered to be 
flat, without longitudinal or lateral slope, the roll and pitch 
dynamics have been ignored, and the vertical movement with 
the suspension system of the car is not taken into account.

To model the vehicle dynamics, a four-wheel car model 
with three degrees of freedom in the x-y plane, Fig.1, is 
considered [24]. According to this, the dynamic equations of 
motion are expressed as follows [25] .

   cos sinx xfl xfr yfl yfr

xrl xrr loss y

mV F F F F

F F F mV r

    

   
       (1) 

   cos siny yfl yfr xfl xfr

yrl yrr x

mV F F F F

F F mV r

    

  
         (2) 

   
   
   

sin cos

sin cos

z yfl yfr xfr xfl s

xrr xrl s yrl yrr r

xfr xfl yfr yfl f

I r F F F F l

F F l F F l

F F F F l

 

 

     
   

     

            (3) 

 
1

i
xi l

i

F C f D





 (4) 

   tan
1

i
yi

i

F C f D







 (5) 

   2 ; 1
1                  ;    D 1

D D D
f D

  
 


 (6) 

 

    
1

22 2

1

2 tan

z i

l i i

F
D

C C

 

 




    (7) 

 max ,
i xwi

i
i xwi

R V
R V





                                                (8) 

 

. , , , ,i i xiJ T R F i fr fl rr rl     (9) 

  2
x

d
f r us x

Vr
l l k V


 

                                              (10) 

(1)
   cos sinx xfl xfr yfl yfr

xrl xrr loss y

mV F F F F

F F F mV r

    

   
       (1) 

   cos siny yfl yfr xfl xfr

yrl yrr x

mV F F F F

F F mV r

    

  
         (2) 

   
   
   

sin cos

sin cos

z yfl yfr xfr xfl s

xrr xrl s yrl yrr r

xfr xfl yfr yfl f

I r F F F F l

F F l F F l

F F F F l

 

 

     
   

     

            (3) 

 
1

i
xi l

i

F C f D





 (4) 

   tan
1

i
yi

i

F C f D







 (5) 

   2 ; 1
1                  ;    D 1

D D D
f D

  
 


 (6) 

 

    
1

22 2

1

2 tan

z i

l i i

F
D

C C

 

 




    (7) 

 max ,
i xwi

i
i xwi

R V
R V





                                                (8) 

 

. , , , ,i i xiJ T R F i fr fl rr rl     (9) 

  2
x

d
f r us x

Vr
l l k V


 

                                              (10) 

(2)

 

Fig. 1. Four-wheel vehicle model [22] 
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Where the xyz coordinate system is the body-fixed 

coordinate system attached to the vehicle, in which x is the 
longitudinal axis of the vehicle, y is the lateral axis, and z 
is the vertical axis of the vehicle. xV  and yV , represent the 
linear speed of the car in the x and y directions, respectively. 
The vehicle yaw rate is defined by r, and δ is the front wheels 
angle. Also, the mass and the moment of inertia of the car 
around the z axis are given by m and zI , rl  and fl  denote 
the distance between the rear and front wheels from the center 
of gravity of the car. xF and yF  represent the forces acting on 
the wheels in the wheel’s body coordinate system.

According to Eqs. (1-3) for the dynamic modeling of the 
car, the forces acting on the wheels in both longitudinal and 
lateral directions must be calculated and determined. For 
this purpose, the Dugoff tire model [26, 27] has been used 
in this paper. Dugoff’s model is used to calculate the forces 
generated by tires when both lateral and longitudinal forces 
are present. It assumes a uniform pressure distribution across 
the tire contact patch, simplifying the parabolic distribution 
used in the Pacejka model [28]. Despite this simplification, 
the model offers a key advantage by allowing independent 
tire stiffness values in both lateral and longitudinal directions. 
This is important because the stiffness of a tire can vary greatly 
between lateral and longitudinal forces. In comparison to the 
magic formula tire model, Dugoff’s model is advantageous 
as it is derived analytically from force balance calculations. 
Additionally, the equations in Dugoff’s model directly relate 
the lateral and longitudinal forces to the tire-road friction 
coefficient. Eqs. (4-5) show in detail how to calculate the 
longitudinal and lateral forces using the Dugoff tire model.
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In this equation, iλ  represents the longitudinal slip 

coefficient, iα  is the slip angle, and lC  and Cα  denote 
the longitudinal and lateral stiffness coefficients of the tire, 
respectively. Also, f(D) is defined by:
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Where, zF  is the tire normal force, and μ is the coefficient 

of static friction between the tire and the road. The longitudinal 
slip coefficient for each wheel is defined by;
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Where, iω  is the angular speed of each wheel and,  xwiV

is the wheel speed in the longitudinal direction of the tire 
body coordinate according to Fig. 2.

By applying Newton’s second law in Fig. 3, Eq. (9) is 
obtained.

 

Fig. 2. Tire body coordinate system [29] 
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Where, r is wheel radius, iT  is torque applied to the 

wheels xiF  and iω  are denote frictional force and angular 
velocity of the wheel.

Due to the presence of independent electric motors in 
each wheel, the above equation can be directly applied in 
model. Eqs. (1-3), and Eq. (9) describe the 7-DOF model of 
the vehicle.

2- 2- Two layer controller
The Sliding Mode Control (SMC) method is recognized 

as one of the most robust control methods [30] . Its ease 
of operation and high robustness against uncertainties and 
noises make it a suitable choice for this paper. However, in 
practical scenarios, the phenomenon of chattering can be 
problematic in sliding mode control systems. This occurs due 
to delayed actuator operation and the inability to completely 
and perfectly follow control signals. To address the chattering 
issue, higher-order sliding mode control methods have been 
introduced. Higher-order sliding mode controllers allow the 
control system to zero not only the sliding variable but also 
the higher-order derivative of the sliding surface up to one 
order below the sliding mode controller’s order. For instance, 
in second-order controllers, the first derivative of the sliding 
surface tends to zero as well. These controllers result in 
smoother control signals as the high-frequency oscillating 
controller is in a higher order of system derivatives. One of 
the commonly used higher-order sliding mode methods is the 
Super Twisting Sliding Mode Controller (STSMC)[31].

In this paper, the STSMC algorithm is employed to design 
longitudinal and lateral controllers. Among these controllers, 
one is referred to as the upper layer or lateral controller, 
responsible for determining the control torque. The remaining 
four-wheel torque controllers are known as the lower layer 

or longitudinal controllers, assigned to determining the 
rotational torque for each wheel. Collectively, this set is 
referred to as a two-layer controller. The effectiveness of 
each wheel in providing control torque is calculated using the 
Torque Vectoring (TV) algorithm.

The goal of the lateral controller is to converge the yaw 
rate error of the vehicle to zero. This error is equivalent to the 
difference between the actual yaw rate, r, and the desired one, 
and to determine the desired yaw rate, Eq. (10) is used.
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In Eq. (10), usk  represents the stability index, which is 

calculated according to the geometric characteristics of the 
vehicle.[21]

In this controller, the sliding surface and its derivative are 
defined as Eqs. (11-14).
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According to the STSMC algorithm, the lateral controller 

is defined by Eq. (15).

l dS r r   (11) 

l d a zs r r h M     (12) 

   

   
   

1 sin cos

sin sin

yfl yfr xfr xfl s
z

xrr xrl s yrl yrr r

xfr xfl yfr yfl f d

F F F F l
I

F F l F F l

F F F F l r

  

 

     

   

       

 (13) 

1
a

z

h
I

   (14) 

  
 

1
2. .

                                   

z z a n

a

M I S sign S U

U wsign S

    


 (15) 

 

n d

n d

z z n z d

m m m
I I I

   
 
 

 (16) 

   z xfl xrl xfr xrr sM F F F F l                          (17) 

 

4
z i

xi
M lF   (18) 

,               ,i=fr,fl,rr,rli i f is     (19) 

 
,

,max ,
i x i

i
i x i

R V
R V






  (20) 

  1
2

i i i i i i
i

JT S sign S U
P

      (21) 

(15)

	
Where nρ  and dρ  are respectively the nominal value 

and the value caused by the uncertainty of the parameter ρ , it 
means that n dρ ρ ρ= + . So the non-deterministic parameters 
in the equations can be introduced as a two-part parameter 
including the nominal value and the tolerance value due to 
uncertainty in the form of Eq. (16).

 

Fig. 3. Wheel Forces diagram [3] 
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Considering that the torque zM  cannot be directly 

applied to the vehicle, the share of each wheel in providing 
this torque is calculated using the TV process [32]. According 
to the Fig. 4 
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Therefore, the longitudinal forces of the wheels are 

adjusted in such a way as to provide zM . This is done with 
different distribution strategies. In this paper, considering 
the limited capacity of each tire in bearing extra forces, 
it is assumed that each wheel will apply an equal share in 
providing the control torque zM , which can be calculated 
according to the following equations.
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This equation presents the required increase/decrease 

in longitudinal force for right/left (front and rear) wheels. 
Considering the slip rate has a direct relationship with the 
longitudinal forces according to Eqs. (4,6-7), using the first-
order Taylor series as an inverse algorithm, the corresponding 
slip rate can be calculated for the new adjusted longitudinal 
force. Now, by placing the slip rate obtained as the desired 
slip rate of each wheel, the longitudinal controller for each 
wheel is designed. To this end, the sliding surface is defined 
in the form of Eqs. (19-20).
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Where ,x iV  represents the velocity component in the 

longitudinal direction of the wheel coordinate frame.
Again, according to STSMC algorithm, the longitudinal 

controller is defined by the following equations.
If 

,i x iR Vω ≥

l dS r r   (11) 

l d a zs r r h M     (12) 

   

   
   

1 sin cos

sin sin

yfl yfr xfr xfl s
z

xrr xrl s yrl yrr r

xfr xfl yfr yfl f d

F F F F l
I

F F l F F l

F F F F l r

  

 

     

   

       

 (13) 

1
a

z

h
I

   (14) 

  
 

1
2. .

                                   

z z a n

a

M I S sign S U

U wsign S

    


 (15) 

 

n d

n d

z z n z d

m m m
I I I

   
 
 

 (16) 

   z xfl xrl xfr xrr sM F F F F l                          (17) 

 

4
z i

xi
M lF   (18) 

,               ,i=fr,fl,rr,rli i f is     (19) 

 
,

,max ,
i x i

i
i x i

R V
R V






  (20) 

  1
2

i i i i i i
i

JT S sign S U
P

      (21) (21)

	
Where 

 

, ,
2

,2
1

i x i x i i
i

i

i
i i x i

i i i

P RF V
J R

P R V
R









  

 
     

  

 (22) 

 

  
2

1, 2

,

x i
i i i i i i

x i

JV
T S sign S U

rr V
      (23) 

 

2
, ,

2
,

x i x i
i i

x i

R F V
Q

JV


 
     

 (24) 

 

, , , ,
2
, , , ,

x i x i x i i x i
i

x i x i x i x i

V V V R V
Q

V V V V


    (25) 

 

 i i iU w sign S                                                   (26) 

 

 1 ,k k k kx f x u w    (27) 

 ,k k k ky g x u v   (28) 

 
1

ˆ

       ; 

,
k

k

k k k k

k k k
k T

x x

x A x u w

f x u
A

u





 



  






 (29) 

(22)
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In Eq. (23) iϕ  is defined as
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Where

 

Fig. 4. Longitudinal forces acting on the wheels[10] 
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In both conditions  ,i x iR Vω ≥  and ,. i x irr Vω ≤  , 

iU  is defined as
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The torque calculated in Eqs. (21, 23) is applied as input 
torque to each wheel by IWM motors and the performance of 
the two-layer control system is completed.

2- 3- Extended Kalman Filter (EKF)
The previously proposed two-layer algorithm, as 

discussed in the previous section, offers the capability of 
controlling vehicle stability by receiving and processing 
sensor data. However, achieving increased effectiveness and 
higher productivity in designing different controllers for cars 
relies on accurate knowledge of the dynamic behavior of the 
real vehicle including state variables and vehicle physical 
parameters, and the mutual effects between the wheels and 
the road. To achieve this, various sensors are installed on the 
vehicle to record longitudinal and lateral accelerations, yaw 
rates, rotational torque of each wheel, etc.

To minimize the effects of noise and uncertainties on the 
sensor data and estimate the true conditions of the car, different 
types of observers or filters are applied to the sensor data. By 
making modifications to the filter equations, these filters can 
also be utilized to estimate various system parameters, such 
as the friction coefficient between the wheel and the road. 
This estimation process can be conducted online.

Various methods have been proposed to design state 
estimators. However, when assuming that the system 
information is contaminated with noise, the design of an 
optimal estimator based on Kalman filters is considered to 
remove the noise effects. Algorithms have been proposed to 
adapt the Kalman filter algorithm for nonlinear systems, one 
of which is the Extended Kalman Filter (EKF) algorithm. The 
EKF algorithm allows for the filtering process to be performed 
with simplicity and the momentary linearization of the system.

2- 3- 1- State estimation using EKF [33]
Assume that the measurement of the parameters is done 

at time kt and this information is used to update the random 
system state vector kx  at time kt . The state space equations 
for the nonlinear system in discrete time are defined in the 
form of Eqs. (27, 28).
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In this equation, ( ) ( )11 1.,. : , ux xnn nf R R R×× ×→  is a 
nonlinear state equation and  1xn

kw R ×∈   is process noise, 
also ( ) ( ) 111.,. : , yux nnng R R R ××× →  denotes nonlinear 
measurement function and 1yn

kv R ×∈   is measurement noise. 
In this method, the nonlinear state space model is linearized 
using the first-order Taylor series in the form of Eqs. (29- 30) 
[34] .
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It should be noted that proof of equations has been avoided 

for the sake of brevity. References [33, 34] should be used to 
check the proofs. It can be proved that.
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For posterior and prior estimation of covariance, 

respectively;
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And by repeating the above algorithm at any moment, 

the estimation of the system state at that moment will be 
available.

2- 3- 2- State-parameter estimation using EKF
In addition to estimating the state of the system, the 

presented Kalman filter algorithms are also able to estimate 
the unknown parameters of the system. For this purpose, the 
augmented state vector is rewritten in the form of Eq. (35).
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In this regard, the vector x is the state vector of the system 
and the vector p is the vector of the unknown parameters to be 
estimated. By placing x ′   instead of x in the EKF algorithm, 
a very good estimate of the unknown parameters p can be 
obtained using the measured data. This process is performed 
simultaneously with the estimation of the state of the system, 
x, and at the end, the estimation of the state and the unknown 
parameters of the system will be available at the same time  
[35].

According to Eq. (27), each of the states has an f(x, u) 
relationship with other states and system inputs, and therefore 
such equations must be defined for the unknown parameters 
of p. In this article, wheel and road friction coefficients are 
estimated using the following model.
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Where iz  is a random first-order process with time 

constant τ which is defined as Eq. (37).

 
1

1 1 1 1 1

1 1 1
1

ˆ

        ; 
,

k

k k k k k

k k k
k T

x x

y C x z v
g x u

C
x 



    

  




  





 (30) 

1 1 1 1 1 1ˆ ˆ ˆk k k k k kx x K y C x  
           (31) 

1T T
k k k k k k kK P C C P C R

      (32) 

 k k k kP I K C P    (33) 

1 1 1 1
T

k k k k kP A P A Q 
      (34) 

x
x

p
    
 

 (35) 

iz
i e   (36) 

 

0i i iz z                                                            (37) 

 

T
x y fr fl rr rly a a r         (38) 

 Tfr fl rr rlu T T T T  (39) 

T
x y fr fl rr rl fr fl rr rlx V V r z z z z        (40) 

 

(37)

Therefore, the measurement, input, and state vectors are 
defined as follows.
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3- Simulations and Results

Simulations are conducted using the Matlab/Simulink 
software to validate the effectiveness of the proposed control 
strategy. A 7DOF vehicle model is utilized for the simulation, 
and the equations describing the model are given by Eqs. (1-
9). The model parameters used in the simulation are presented 
in Table 1. The parameters of this table are defined and 
determined with a slight changes compared to the reference 
[36] . Uncertainty has been used in the definition of these 
parameters so that parameters such as mass and moment of 
inertia, which are subject to change due to the change in the 
number of passengers, are defined by combining a nominal 
value and an uncertain value in order to the simulation is more 
realistic, as mentioned in Eq. (16). The model and method 

Table 1. Physical parameters of the modelTable 1. Physical parameters of the model  

Parameter Parameter Name Value-Unit 
m The total mass of vehicle 1350 kg 

zI  Moment of inertia of vehicle 950 kg/m2 

sl  Lateral distance between center of wheel from CG 0.75 m 

rl  Distance between rear wheels from CG 1 m 

fl  Distance between front wheels from CG 1.5 m 

lC  Longitudinal stiffness coefficient of the tire 30000 

C  Lateral stiffness coefficient of the tire 40000 

R Wheel radius 0.32  m 

J Tire moment of inertia 1.07 kg/m2 
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used can be applied to different vehicles with different 
parameters, provided that it is four-wheeled and the power 
transmission system is similar to the definitions of this paper.

In the simulation process, the output vector of a 7-DOF 
vehicle model given by Eq. (38) as sensor outputs with 
nominal vehicle parameters including total mass are used 
for state estimation using EKF. In this algorithm, the friction 
coefficients are estimated by EKF using augmented states. The 
simulation is successful when the estimated friction coefficients 
are equal to the friction coefficients used in the real model and 
the vehicle tracks the desired yaw rate and path.

3- 1- Model validation
In order to verify the validity of the presented 

7-DOF model, first, the dynamic response of the system 
to steering angle input is compared with one of the 
benchmark references [25]. Vehicle parameters and input 
steering angle are selected according to this reference. Fig. 
5 shows the comparative results for the yaw rate (5b), and 
the vehicle path (5c). Fig. 5a shows the applied steering 
angle. It can be seen that the results are in full agreement 
with the reference model.

  
a. input steering angle b. yaw rate 

 
c. path 

 
Fig. 5. Model validation results compared to Smith and Starkey [25] 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Model validation results compared to Smith and Starkey [25]
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3- 2- Model and lateral controller
Now, we consider that only one lateral sliding mode 

controller is used, whose outputs, control torque, is directly 
applied to the system virtually. 

By defining all system inputs, the desired maneuver 
is defined. Here it is assumed that 60 N.mfr flT T= = , 

0 N.mrr rlT T= = and =0.3µ . Also, δ is defined in the form 
of Fig. 6a. The initial longitudinal speed of the system is  

0V 20 m/sx = and finally the desired movement path of the 
system is drawn as Fig. 6b.

By implementing this algorithm, the response of the 
system to the maneuver defined above by applying the lateral 
controller is shown in Fig. 7. In this figure, comparisons have 
been conducted between open loop and close loop system 
parameters with desired values. Only the lateral controller is 
considered to be active. In Fig. 7a, the longitudinal velocity 
of the car is depicted. It is evident that the lateral controller 
has effectively maintained the longitudinal speed within 
a specific range. Fig. 7b illustrates the lateral speed of the 
car, which is significantly lower in the controlled mode. In 
Fig. 7c, the desired, controlled, and uncontrolled values of 
yaw rate are showcased. As anticipated, the controlled value 
closely aligns with the desired value, demonstrating the 
capability of the sliding mode control system to track the 
desired trajectory. Finally, Fig.7d presents the diagram of 
the desired, controlled, and uncontrolled states of the car’s 
movement path. As expected, the system equipped with the 
controller successfully navigates in the desired direction, 
whereas the system without the controller deviates from the 
intended path.

3- 3- Torque vectoring process and longitudinal controllers
As mentioned, it is practically impossible to directly apply 

the calculated zM in the lateral controller to the vehicle. 
Therefore, by using the TV process, the forces that be applied 
to each wheel is calculated and the torque applied to each 
engine is computed by the longitudinal controller and the 
system is controlled. In part 2, this process is fully described. 
The algorithm used in the previous section completed and the 
algorithm of Fig. 8 is obtained.

Fig. 9 illustrates the outcomes of the algorithm in Fig. 8 
compared to the results obtained in the earlier section, which 

zM was directly and unrealistically applied to the system.
Fig. 9a is the longitudinal speed diagram of the vehicle, 

which can be seen that by applying the iT  , its range of 
changes is less than before. Fig. 9b also shows the lateral 
speed changes. In Fig. 9c,  the yaw rate changes are shown 
and it can be seen that by applying iT  , the convergence 
to the desired value is done much more accurately. Finally, 
Fig. 9d shows the path of the car in desired conditions, with 
the longitudinal controller, and without the longitudinal 
controller. It can be seen that the convergence to the desired 
path is improved by adding the longitudinal controller. 
In order to be able to make a numerical comparison of the 
proximity of the movement path to the desired path in two 
cases, with only lateral controller (case 1) and with lateral 
and longitudinal controller (case 2), the root mean square 
(RMS) coefficient of the tracking error is calculated for both 
cases. The results are shown in Table 2. As can be seen, the 
RMS coefficient is smaller for case 2, which indicates that 
it is closer to the desired path. That is, after the application 

  
a. applied delta b. desired path 

Fig. 6. Desired maneuver applied on vehicle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Desired maneuver applied on vehicle
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a. longitudinal speed b. lateral speed 

  
c. yaw rate d. moving path 

Fig. 7. Comparison of longitudinal and lateral speed and yaw rate and system movement path in modes with lateral controller 
and without controller 

 
 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparison of longitudinal and lateral speed and yaw rate and system movement path in modes with lateral 
controller and without controller

 

Fig. 8. Modified algorithm with TV and longitudinal controllers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Modified algorithm with TV and longitudinal controllers
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of longitudinal controllers, not only the system has become 
more realistic and the virtual actions become real actions, 
but the convergence of the system has also increased to the 
desired value, as can be seen.

To check how to apply iT  on the system, in Fig. 10, a 
comparative diagram of the changes in the rotation speed of 
the wheels for all four wheels is shown. It can be seen that 
at the moment of applying δ , two of the wheels register a 
positive change and the other two wheels register a negative 
change, and by applying these values, which are caused by 
applying the iT , the is created in real and not virtual form.

3- 4- State and parameter estimation with joint-EKF	
As mentioned in section 2.3, the use of controllers can be 

really useful when noise and uncertainties can be minimized 
from the data obtained from the sensors. Also, some unknown 
parameters, including the friction coefficient between the tire 
and the road, should be estimated online. In this article, joint-
EKF is used to estimate the state and friction coefficient (each 
wheel separately) at the same time. Therefore, Fig. 11 shows 
the final algorithm is used.

Unlike the previous step, where the friction coefficients 
were assumed to be definite and equal to a constant number, 

  
a. longitudinal speed b. lateral speed 

  
c. yaw rate d. moving path 

Fig. 9. Comparison of longitudinal and lateral speed and yaw rate and system movement path in modes with only lateral 
controller and with longitudinal and lateral controllers 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Comparison of longitudinal and lateral speed and yaw rate and system movement path in modes with only lat-
eral controller and with longitudinal and lateral controllers
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a. fr  b. fl  

  
c. rr  d. rl  

Fig. 10. Comparison of rotational speed of all four wheels in modes with only lateral controller and with longitudinal and 
lateral controllers 

 
 

 

 

 

 

 

 

 

 

Fig. 10. Comparison of rotational speed of all four wheels in modes with only lateral controller and with longitudinal 
and lateral controllers

 

Fig. 11. Modified algorithm with joint-EKF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Modified algorithm with joint-EKF
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in this step, these parameters are assumed to have uncertainty 
and are estimated. Therefore, in this step, the uncertainty 
has been calculated. Fig. 12 shows the parameters of the 
longitudinal and lateral velocities, the yaw rate and the 
movement path of the system in the states with Kalman filter 
and without it. It is clear that state graphs without filters are 
more appropriate answers, but we must not forget that by 
adding a filter, the system becomes one step more practical 
and can be used in more real examples. In other words, in 
order to make the used algorithm more practical, a cost is 
paid, which is a small distance from the ideal answer. RMS 

coefficient of the tracking error is calculated in two cases, 
without filter (case 3) and with EKF (case 4). The results 
are shown in Table 2. As can be seen, the RMS coefficient 
is smaller for case 3, which indicates that it is closer to the 
desired path.

Fig. 13 shows the estimated and desired friction 
coefficients of the wheels separately for each wheel. It can 
be seen that the convergence process starts from the moment 
of applying the steering angle. It is carefully observed in the 
equations of the system that if the steering angle is zero, the 
change in the friction coefficient does not create a noticeable 

  
a. longitudinal speed b. lateral speed 

  
c. yaw rate d. moving path 

Fig. 12. Comparison of longitudinal and lateral speed and yaw rate and system movement path in modes with EKF and 
without it 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Comparison of longitudinal and lateral speed and yaw rate and system movement path in modes with EKF 
and without it
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change in the parameters of the system state, and therefore 
these parameters are inestimable by filter in this state. It can 
also be seen that the estimation process is more accurate in 
the front wheels, this is because the steering angle is applied 
to the front wheels and the change in the friction coefficients 
of the front wheels causes a greater change in the parameters 
of the system state. And therefore, the filter is more sensitive 
in their estimation.

In the second case, a situation is considered where the 
friction coefficient between the tire and the road changes, 

and the filter must estimate these coefficients for the second 
time. As it was said, the parameter estimation process is 
performed correctly when the steering angle is non-zero, so 
in this example, the time period of applying the steering angle 
increases from 5- 25 seconds to 5- 45 seconds. The desired 
friction coefficient from 0- 15 seconds is equal to 0.3 and then 
0.6. Fig. 14 shows the state parameters of longitudinal and 
lateral velocities, yaw rate and movement path of the vehicle, 
as well as the estimated friction coefficients. It can be seen that 
the process of estimating the friction coefficients of the front 

  
a. fr  b. fl  

  
c. rr  d. rl  

Fig. 13. The process of estimating the friction coefficient of wheels with EKF 
 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The process of estimating the friction coefficient of wheels with EKF
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a. longitudinal speed b. lateral speed 

  
c. yaw rate d. path 

  
e. fr  f. fl  

Fig. 14. The process of estimating the friction coefficient of wheels with EKF where the desired friction coefficient was 
changed(Continued)
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wheels is acceptable. By checking the system’s compliance 
with the desired yaw rate and the desired movement path, it 
can be seen that the estimation is generally effective. RMS 
coefficient of the tracking error is calculated in two cases, 
without filter (case 5) and with EKF (case 6). The results are 
shown in Table 2.

It should be noted that despite the difference between the 
estimated and desired friction coefficients, the system has 
been successful in controlling the vehicle. This is because 
some parameters such as m and  also contain uncertainty, 
but since they are not estimated in the used algorithm, the 
burden of correcting the effect of these uncertainties is also 
applied to the estimated friction coefficients, and the system 
by changing the friction coefficients can also compensate the 
uncertainty of other parameters.

3- 5- Vehicle with different loads
In this section, the second example from the previous 

section is simulated for different vehicle loads. As mentioned 
earlier, the nominal weight of the vehicle is considered to be 
1366 kg. To examine the effects of vehicle mass variation, 
which may result from changes in fuel levels or the number of 
passengers, the problem is also analyzed for masses of 1300 
kg and 1500 kg. Fig. 15 illustrates the simulation results for 
different vehicle masses. Figs. a-d pertain to the vehicle’s 
dynamic states, while Figs. e-h corresponds to the estimated 
friction coefficients. Other conditions remain the same as in 
the previous section, with filters and controllers activated. 
The results of Fig. 15 demonstrate the robustness of the 
algorithm against uncertainties in the system. This simulation 
was conducted using mass variations, which are among the 

  
g. rr  h. rl  

Fig. 14. The process of estimating the friction coefficient of wheels with EKF where the desired friction coefficient was 
changed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The process of estimating the friction coefficient of wheels with EKF where the desired friction coefficient was 
changed

Table 2. RMS coefficient of different modes Table 2. RMS coefficient of different modes  

Case name Corresponding figure RMS 
case1 

9d 
0.3682 

case 2 0.1907 

case 3 
12d 

0.1552 

case 4 0.2775 

case 5 
14d 

0.2403 

case 6 0.4750 
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a. longitudinal speed b. lateral speed 

  
c. yaw rate d. path 

  
e. fr  f. fl  

Fig. 15. Simulation results for vehicles with different loads. (Continued)
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most significant factors contributing to vehicle dynamics 
uncertainty. The use of a Kalman filter, capable of reducing 
the effects of noise and uncertainties, combined with the 
application of sliding mode control, a highly robust control 
method, has resulted in an integrated robust algorithm.

4- Conclusion
A two-layer stability control method based on output 

feedback is employed for electric vehicle control with four 
in-wheel motors. The controller structure is based on Super-
twisting sliding mode control and extended Kalman filtering 
(EKF). Joint-EKF simultaneously estimates vehicle state 
and TRFCs online. The upper layer controller calculates 
the control torque for lateral stability, while the lower 
layer controller determines individual wheel traction 
forces through torque vectoring. This approach ensures the 
upper layer’s control torque is effectively implemented, 
maintaining vehicle stability and performance. The 
simulations show the vehicle command following in 
tracking the desired path by applying the control torque 
which is calculated in the upper layer controller. By 
using the TV algorithm and applying the control torques, 
calculated in the lower layer controller for each wheel 
separately, to the wheels, the vehicle tracks the desired path 
successfully. The EKF filter reduces the effects of noise 
and uncertainty on the measured data and at the same time 
estimates the vehicle state vector and TRFCs  correctly. 
The results show that the presented algorithm has some 
errors in estimating friction coefficients in complex paths 
and conditions, although it was successful in following the 
desired path to a large extent.

5- Nomenclature
xa 	 vehicle longitudinal acceleration, m/s2

ya 	 vehicle lateral acceleration, m/s2

lC 	 tire longitudinal stiffness, N/unit slip
Cα 	 tire lateral stiffness, N/rad

,x iF 	i-th tire longitudinal force, N
,y iF 	i-th tire lateral force, N
,z iF 	 i-th tire vertical force, N

zI 	 moment of inertia about z axis, kg/m2

fl 	 distance of the CG to the front axle, m
rl 	 distance of the CG to the rear axle, m
sl 	 lateral distance between the center of the wheel from 

CG, m
J	 tire inertia, kg/m2

K 	 Kalman matrix 
usk 	 stability index 

zM 	 external yaw moment, N.m
m	 vehicle total mass, kg
P	 covariance matrix
R	 tire radius, m
r	 vehicle yaw rate, rad/s
s	 sliding surface
T	 vehicle applied torque, N.m

xV 	 vehicle longitudinal velocity, m/s
yV 	 vehicle lateral velocity, m/s

x	 state vector of the system
y	 output vector of the system

Greek symbols
δ 	 front tire steering angle, rad
λ 	 longitudinal tire slip 

  
g. rr  h. rl  

Fig. 15. Simulation results for vehicles with different loads. 
 

 

 

 

Fig. 15. Simulation results for vehicles with different loads. 
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µ 	 tire–road friction coefficient
ω 	 tire angular velocity, rad/s

Subscript
d	 desired
fl	 front left
fr	 front right
rl	 rear left
rr	 rear right[1]
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