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Abstract 

In this paper, the two-layer micro sensor is modeled as a two-layer clamped-clamped microbeam and it is 

optimized by using the genetic algorithm. Using the results of this research, clamped- clamped microbeams 

can be designed in such a way that the performance of microsensors whose structure includes these 

microbeams will be improved. The quality factor, the sensitivity, and the maximum stress are selected as 

objective functions. The sensitivity and the quality factor are the functions of the natural frequency. The 

natural frequency is calculated based on Rayleigh’s method. The quality factor is calculated by 

approximation established on the one layer’s quality factor formula. To calculate the maximum stress, the 

system is assumed as a mass-spring system that has a harmonic displacement and the maximum deflection 

is the static deflection. The thickness of each layer, the width of the microbeam, and the length of the 

microbeam are selected as design variables. The optimization is done based on classical and non-classical 

theory by the genetic algorithm. The results based on both theories are approximately equal. The length of 

the microbeam is the most important variable and very changes (approximately 190%). The thickness of 

the silicon layer has the least effect on the results and changes just lower than 2 m  (approximately 20%). 

The results show that when the maximum stress decreases and the sensitivity increases, the quality factor 

decreases which is undesirable. Maximum sensitivity obtains when the microbeam is very small.  
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1. Introduction: 

Micro Electromechanical Systems (MEMS) is one of the most important devices used in many fields. In 

the last two years, microsensors are noticed because of their ability to detect low-mass particles.  

Narita et.al  [1] reviewed piezoelectric and magnetostrictive biosensor materials for the detection of viruses. 

They reported sensitivity and quality factor are the most important functions that describe the accuracy and 
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quality of the sensing. Pachkawade et.al reviewed sensors for the detection and measurement of ultra-fine 

particles. They investigated micro resonant mass sensors including piezoelectric transducers, piezoelectric 

mass sensors, and thermally actuated resonant transducers. They also reported some parameters such as the 

size limit of particles and detection range of the microsensors. Lifshitz et.al [2]calculated thermoelastic 

damping in micro- and nanomechanical systems. They used Zener’s standard model of the linear anelastic 

solid. They derived governing equation of the isothermal micro or nanobeams while there is no 

thermoelastic coupling but there is the modified thermoelastic strain. They could calculate the quality factor 

for these models of beams. Dennis et.al [3] modeled and simulated the effect of air damping on the 

frequency and quality factor of Complementary Metal-Oxide Semiconductor (CMOS) MEMS devices and 

Pan et.al [4] calculated the quality factor of three-layer Kirchhoff–Love microplate considering three-

dimensional heat conduction.  

A common model of the MEMS especially microsensors is the microbeam. To calculate different 

parameters of micro beams, a suitable model is necessary. There are many studies about the modeling of 

microbeams. Approximately in all of these studies, non-classical theories are used to obtain governing 

equations. These theories consider the size effect on the strain energy [5-11]. The following is an overview 

of some of these researches: 

Kong et.al [12] calculated the size-dependent natural frequency of Bernoulli- Euler microbeam. The 

governing equations are obtained based on the modified couple stress theory and by using Hamilton's 

principle. Park et.al [13] and Gao et.al [14] investigated Bernoulli-Euler and Timoshenko micro beam based 

on the modified couple stress theory respectively. 

Rahi [15] analyzed the vibration of multi-layer micro beams based on the modified couple stress theory. 

The strain and kinetic energy of multi-layer microcantilever beam were obtained while size effect is 

considered. The first three frequencies are calculated, and results were validated in the special case that the 

ratio of material length scale parameter to thickness is zero. Loghman et.al [16] investigated nonlinear 

vibration of fractional viscoelastic microbeams. They used modified couple stress theory and Bernoulli-

Euler beam theory to model the microbeam and derived the equations. Also, they modeled viscoelastic 

material via the fractional Kelvin–Voigt model. Khabaz et.al [17] analyzed the dynamic and vibration of 

the sandwich microbeam based on the modified strain gradient theory. They modeled the microbeam as a 

multi-layer microbeam including a piezoelectric layer. Ding et.al [18] analyzed the size-dependent 

nonlinear dynamic of microbeams by using the modified couple stress theory. Akgoz et.al [19] analyzed 

microbeams for various boundary conditions based on the strain gradient theory. Littrel et.al [20] modeled 

cantilever-based piezoelectric microsensors and micro actuators. Farokhi et.al [21]  investigated dynamics 

of imperfect microbeams, Ansari et.al [22] obtained vibration characteristics of piezoelectric microbeams 
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based on the modified couple stress theory, Akgoz et.al [23] modeled shear deformation beam, and 

Talimian et.al [24] investigated dynamic stability of the size-dependent microbeam. 

In the recent years, Zhao et.al [25] presented a new Bernoulli–Euler beam model based on modified gradient 

elasticity, Yin et. al [26] did isogeometric analysis for non-classical Bernoulli-Euler beam model 

incorporating microstructure and surface energy effects, Esen [27] investigated size-dependent  

Timoshenko microbeams subjected to a moving load, and Chen [28] et.al reformulated microbeams  by 

incorporating the general strain gradient elasticity theory. Also, some studies modeled microbeams 

including functionally graded material [29-32].  

Kumar et.al [33] analyzed static charge induced pull-in of an electrostatic MEMS. They proposed the non-

linear model and derived closed-form expressions of pull-in voltage for different configurations. Sthuti et.al 

[34] simulated and analyzed suspension based single axis mems capacitive accelerometer. Analytical 

modeling of the suspensions was presented. Capacitive, displacement and stress analysis of the 

accelerometer was done. Based on the results, parallel beam suspension is preferred for higher sensitivity 

and accuracy whereas Folded beam suspension is preferred for greater structural stability. Pakhare et.al [35] 

investigated effects of shear deformation on the static pull-in Instability behavior of narrow rectangular 

Timoshenko microbeams. They first calculated results of the maximum beam transverse displacement, for 

a shear deformable propped-cantilever microbeam under the action of uniformly distributed transverse load, 

second the finalized six-nodded spectral finite element based on the Timoshenko beam theory was utilized 

to determine static pull-in instability parameters of narrow microbeams with various fixity conditions and 

beam thickness to-length ratios. Valizadeh et.al [36] investigated the effects of the material dielectricity on 

the performance of capacitive micro-devices. They demonstrated the ability of dielectric materials to reduce 

the required voltage of capacitive MEMS and also to intensify their softening behavior. Vu et.al [37] 

analyzed functionally graded microbeams with a moving mass based on Timoshenko beam theory. The 

beam material properties were considered to be graded in the thickness by a power-law function, and they 

were estimated by Mori-Tanaka scheme. Also, they used modified couple stress theory to captured the size 

effect. Le et.al [38] used finite element formulation to investigate Size dependent pull-in instability of 

functionally graded microbeams. Based on Von Kármán nonlinear relationship, a beam element was 

derived and employed to establish the discretized governing EQ for the microbeams. Results showed that 

the pull-in voltage was increased by the increase of the power-law exponent and the microscale parameter. 

One of the best ways for improving the performance of the MEMS is optimization. There are few studies 

in the literature. Abo-bakr et.al [39] did multi-objective shape optimization of axially functionally graded 

microbeams. Taati et.al [40] optimized functionally graded material, thickness, and aspect ratio in 

microbeams embedded in an elastic medium. Fu et.al [41] enlarges the quality factor in microbeams by 

topology optimization. Gan et.al [42] did a topology optimization design using modified couple stress 
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theory. Abo-bakr et.al [43] did weight optimization of axially functionally graded microbeams under 

buckling and vibration behaviors.  

As can be seen, microbeams with different models and boundary conditions are used for applications such 

as making sensors, so their optimal design can improve the performance of devices such as microsensors. 

The main goal of this research is to find the dimensions of the   clamped- clamped microbeam that important 

functions in the performance of microsensors have their maximum values. It is also worth mentioning that 

one of the special applications of sensors is to detect the presence of substances such as the corona virus, 

so the optimal design of such sensors, especially from a mechanical point of view, can increase their 

efficiency. In this study, multi-objective optimization of two-layer micro clamped- clamped microsensor, 

which is used to detect viruses, is done by using the genetic algorithm in Matlab. First, the microsensor is 

modeled as a microbeam that is clamped on both ends. Second, based on the previous studies, sensitivity, 

quality factor, and stress which are three important parameters of microsensors are selected as objective 

functions. Also, the dimensions of the microbeam are selected as design variables. In the end, results are 

shown based on classical and non-classical theories, and the best points are selected. 

2. Modeling: 

Microsensor is modeled as a clamped-clamped microbeam which has 2 layers. One layer is silicon and 

another one is quartz crystal. Quartz crystal is a piezoelectric material and has a high sensitivity. It is 

assumed that microbeam is fixed on both ends and don’t have any displacement or rotation on the boundary 

conditions. The modeled is shown in Fig. 1. Thickness of piezoelectric and silicon layer are 1h and 2h  

respectively. Also, length of the microbeam is L  and width of it is .b  

There is no external heat, and the temperature of the environment is 300  .K  Viruses are external mass and 

when they sit on the microbeam, the total mass and the natural frequency of the system are change. The 

mass of absorbers and electrode layer are very low so in this study they are ignored. 

 

Fig. 1. The model of the microsensor with 2 layer and clamped ends  
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There are 3 important functions: Sensitivity, Quality factor, and Maximum stress. Sensitivity and quality 

factor are the important functions of the microsensors [1]. In order to have high measurement quality and 

accuracy, the values of these functions must be high. On the other hand, for high safety and to prevent 

failure, maximum stress on the system must be low. 

2.1. Sensitivity: 

The sensitivity is calculated as [1]: 
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 (1)                                                                     (1) 

Where m is the mass, ,   are the density and the shear modulus of the piezoelectric. A  is the active 

surface of the piezoelectric layer. In this study all the surface of the quartz is assumed active. Also 0f  is: 

 0
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where 0  is the first circular natural frequency of the system. To calculate 0  Rayleigh’s method is used. 

Based on Rahi’s investigation [15] strain and kinetic energy of the 2 layers microbeam are calculated as: 
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where w  is the displacement.  ,   ,   , i i i iE A h  and il  are the Young’s modulus, density, area, thickness and 

material length scale parameter of each layer respectively. Also, i  is the Poisson's ratio of each layer and

iI  is the moment of inertia of each layer about its neutral surface and calculated as: 
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where ib  is the width of each layer.  

Also 
iI  is calculated as: 

 2

i i i niI I A z   (6) 
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where niz  is the distance between the neutral surface of each layer and the neutral surface of all the system 

and are calculated as: 

  1 1
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where h  is the total thickness of the microbeam and e  is the distance of the neutral surface of all the 

system from the coordinate system and calculate as: 
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It is assumed that the system has a harmonic vibration so w  is defined as: 

      ,w x t X x T t  (9) 

where  

   0i t
T t e


  (10) 

Because the microbeam is fixed on both ends, this function is proposed to satisfy the geometrical boundary 

conditions: 
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By substituting Eq. (5-10) into Eq. (3-4), the first circular natural frequency is obtained: 

 

 

1

4 2

3

0 2

8

2
1.5

N
L

M L G
L






  
  

  
  

   
  

 (12) 

where  
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It should be noted that the above equations are obtained based on the modified Couple stress theory. In this 

theory, the amount of strain energy is obtained differently than in the classical theory. The amount of strain 

energy in this theory is obtained from the following relationship: 
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where V  is the volume of the system. In addition, the components of the stress tensor 
ij , the strain tensor 

ij , the deviatoric part of the symmetric couple stress tensor 
ijm  and the symmetric curvature tensor 

s

ij  

calculated as follows: 
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where, ,i j  is the gradient of rotation, i  is infinitesimal rotation vector, ijk  is alternating tensor (or 

permutation symbol), and iu  is components of the displacement vector. The parameters  ,    and  l are 

called Lamé constants and the material length scale parameter, respectively. The Lamé constants can also 

be written regarding Young's modulus E  and Poisson's ratio   as follows: 
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The verification of this method is presented in Table 1. Results based on classical theory, non-classical 

theory, and COMSOL model are compared for single layer and two-layers micro beam. Also, the difference 

between COMSOL results and the other results are calculated. 

 

Table 1. Results verification based 

Number of layers First natural frequency 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



Classical 

theory 

Non-classical 

theory (Modified 

couple stress 

theory) 

COMSOL 

model 

Difference 

COMSOL 

result with 

classical result 

Difference 

COMSOL result 

with 

non-classical result 

Single layer 2.150e5 2.240e5 2.157e5 0.32% 3.84% 

Two-layers 5.34e5 5.52e5 5.39e5 0.74% 2.41% 

 

2.2. Quality factor: 

The quality factor of one-layer microbeam is calculated as [2]: 
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where E  is the Young’s modulus, 
pC is the heat capacity,   is the thermal expansion coefficient, oT  is 

the surrounding temperature, and 
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where  
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where H  is heat conductivity and   is density. 

In this study the microbeam is modeled as 2-layer microbeam so above values are substituted by 

approximated values which are the average of properties values of all layers. These values are defined as:  
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2.3. Maximum stress: 

Maximum stress is calculated as [40]: 
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where  

    i imax max
Ez E h  (28) 

According to the Eq. (8-10) for calculation of the maximum values of 
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 it is necessary that maximum 

value of the  X calculate. It is assumed that system is the simple mass-spring system then maximum value 

of the displacement is defined as: 
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Based on Eq. (11) k  is calculated as: 
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and F  is the weight of the viruses which is calculated as: 

  ΔF mg  (31) 
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where BA  and pA  are the area of microbeam and particles respectively. As a result, maximum stress is 

calculated as: 

 * max C   (33) 
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3. Optimization: 

Objective functions: 

Three important functions of the microsensor are calculated. In the next step the optimization of the 

microsensor is done by choosing these functions as objective functions. Objective functions are defined as: 

  1 1 2, , ,S f h h b L  (36) 

  2 1 2, , ,Q f h h b L   (37) 

  *

3 1 2, , ,f h h b L   (38) 

The genetic algorithm is selected for optimization. This algorithm obtains the minimum values of functions 

so the negative sign should be applied to the quality factor because the maximum value of the quality factor 

is the target of the design. Also, in Eq. (28), C  is a constant value, so 
* is selected as an objective function. 

Design variables: 

Dimensions of the microbeam are selected as design variables:  

  1 2 3 4 1 2, , , [ , , , ]
T Tx x x x h h b L  (39) 

There are some limits to make a microbeam, also equations of the microbeam are calculated based on the 

Euler-Bernoulli beam theory. Some constraints are set to satisfy these conditions: 

 1 2 0.1h h L   (40) 

 1 22( )  h h b   (41) 

 3L b  (42) 

There are lower and upper bounds for design variables that are shown in Table 1. These bounds are arbitrary. 

Table 2. Bounds of design variables 
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Variable Lower bound(10-6) Upper bound(10-6) 

x (1) 10 100 

x (2) 10 100 

x (3) 40 300 

x (4) 200 1000 

 

The optimization is done by Matlab software and numerical results are shown in the next section. 

4. The results and discussion 

Results of the optimization are presented in this section. Geometrical characteristics were defined in the 

previous sections. The Mechanical and thermal properties of layers are described in Table 2. Results are 

obtained based on classical and non-classical theories. To obtain results based on classical theory, ratio of 

material length scale parameters of each layer ( )il  to thickness in Eq. (3) are assumed zero. The best values 

of functions are shown in Figs. 2 and 3 based on classical and non-classical theories. 

 

Table 3. Properties of each layer [1, 15, 44-46] 

Property/material Unit SiO2(quartz) Si 

E Gpa 72.52 170 

ν - 0.166 0.22 

μ Gpa 30.97 69.67 

ρ kg/m3 2650 2233 

l   Μm 2.4 1 

C J/kg K 700 812.33 

H W/m K 1.3 156 

α 10-6/K 12.3 0.262 

Values are approximately equal in both Figs. In other words, the size effect doesn’t have a significant effect 

on the optimization results. It is necessary to mention that the material length scale parameters are assumed 

constant and if they change according to different sizes, results maybe change. The targets of the design are 

that the sensitivity and quality factor increase while maximum stress decreases. Results show that when the 

maximum stress decreases and sensitivity increases, the quality factor decreases which is undesirable. 

Optimum values are described in Tables 3 and 4 based on classical and non-classical theories. According 

to Eq. (13), there are some fractions that maybe are very high in special points so in some cases quality 

factor is inf which is due to the software approximation. 
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Fig. 2. The best values based on the non-classical theory 

 
Fig. 3. The best values based on the non-classical theory 

 

When the sensitivity is very high, dimensions are very small and approximately are equal to the lower 

bounds of design variables. Based on these results, to obtain high quality factor, dimensions, especially 

length, must increase. In the cases where maximum stress is small, length of the microbeam is between 

cases that have a high-quality factor or high sensitivity, but the thickness of piezoelectric layer is bigger 

than others. 
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Among the design variables, the thickness of the silicon layer has the least changes. It is lower than 2 m  

(approximately 20%). In other words, this variable has the least effect on the results.  

The thickness of the piezoelectric layer changes about 14 m  (approximately 140%). When the sensitivity 

is high, the piezoelectric’s thickness is small and when the maximum stress is low, this variable is bigger. 

About the quality factors, this value in the best cases is between the two previous cases. 

The width of the microbeam changes about 30 m  (approximately 75%). Same as the thickness of the 

piezoelectric layer, when the sensitivity is high, the width is small. On the other hand, in the cases that have 

low maximum stress, the width is big. Also, when the quality factor is very high, the thickness is between 

two above cases.  

The length of the microbeam is the variables which have the most changes and have the most significant 

effect on the results. These variables change more than 580  m (approximately 190%) in the classical 

results. As other variables, in the cases that have high sensitivity, the length is the smallest. As the length 

increasing, the quality factor increases and the sensitivity decreases. This parameter in the low maximum 

stress cases is between the above cases.  

To define the best answers, two methods are used. By using Eq. (38) results are normalized. For each 

function, points that have the biggest size are converted to 1, and points that have the smallest size are 

converted to 0: 

Table 3. Optimum values of design variables and objective functions based on non-classical theory 

Design variables Objective functions 

  1h μm   2h μm    b μm    L μm  S -Q  *
σ  

10.00001 10 40.00019 200.0001 -5.37E+18 -5736279 48.48958 

10.00001 10.00001 40.00007 207.7847 -4.61E+18 -6110387 52.33772 

10.51563 11.1831 43.4092 516.059 -1.26E+17 -inf 282.1554 

20.26477 10.03297 63.5008 304.1106 -6.93E+17 -1454709 32.51608 

21.5693 10.00099 66.30716 315.7112 -5.81E+17 -1278532 30.90272 

14.5928 10.00679 50.44574 246.6532 -1.87E+18 -2696743 39.81831 

18.76926 10.08681 59.59902 288.857 -8.92E+17 -1720985 34.11644 

10.13651 11.31398 43.23319 349.2757 -6.13E+17 -1.9E+07 135.0965 

10.63673 11.74268 45.98299 470.0119 -1.82E+17 -7.6E+07 223.6882 

12.24859 11.62389 48.90662 383.5296 -3.78E+17 -1.2E+07 122.0372 

10.27186 11.57975 44.37774 402.2959 -3.48E+17 -2.6E+07 173.4422 

10.09163 10.88153 45.09498 453.4306 -1.98E+17 -3.7E+07 234.6003 
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21.36367 10.11554 66.1933 316.4521 -5.79E+17 -1319306 31.66704 

15.4833 10.06335 52.56166 259.2738 -1.49E+18 -2502233 39.50558 

14.21698 10.04606 49.18312 245.2049 -1.96E+18 -3010588 41.17259 

17.71979 10.07649 56.95586 278.8345 -1.06E+18 -1930309 35.52213 

21.40262 10.15852 66.48856 315.8192 -5.83E+17 -1306174 31.42743 

10.66798 11.73194 46.00252 470.0119 -1.82E+17 -3.8E+07 222.9055 

 

Table 4. Optimum values of design variables and objective functions based on classical theory 

Design variables Objective functions 

  1h μm   2h μm    b μm    L μm  S -Q  *
σ  

10.00001 10.00001 40.00005 200.0002 -5.37E+18 -5511330 48.48959 

13.61824 10.84357 49.62435 580.2286 -6.65E+16 -inf 242.7347 

21.34046 10.34957 64.84655 316.9401 -5.97E+17 -1406962 31.84542 

23.64476 10.41862 69.87262 340.6774 -4.31E+17 -1177935 29.87044 

10.21659 11.45183 46.25083 555.908 -9.06E+16 -inf 335.9873 

12.57673 10.60218 46.8494 470.574 -1.59E+17 -2.1E+07 183.401 

22.67131 10.39453 68.02371 331.058 -4.88E+17 -1263060 30.74419 

17.61935 10.34868 56.1217 281.1208 -1.06E+18 -2077547 36.40081 

14.88545 10.15388 50.73379 250.3984 -1.78E+18 -2688111 39.48439 

11.8323 10.05772 44.0286 218.9021 -3.41E+18 -4076588 44.6944 

23.64328 10.41944 69.87345 340.6755 -4.31E+17 -1182053 29.8741 

18.80375 10.27264 59.27222 290.7652 -8.86E+17 -1775854 34.4085 

16.34789 10.25363 53.60937 266.7668 -1.34E+18 -2325974 37.74193 

10.51382 10.97162 45.58434 397.5345 -3.34E+17 -1.8E+07 169.3175 

13.18169 10.64089 47.96458 376.6941 -3.79E+17 -9993067 108.687 

10.12545 10.58645 44.44293 437.4834 -2.25E+17 -2.4E+07 220.8515 

21.33851 10.35104 64.84655 316.9401 -5.97E+17 -1407112 31.85131 

10.53269 11.38965 46.58349 487.8446 -1.50E+17 -7.5E+07 248.8711 

 

If points that have the minimum total size are considered the best answers, Eq. (37) must use: 

  *Γ Min S Q      (43) 

And if points that are approximately middle are considered the best answers, Eq. (38) must use: 
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  *Υ Max S Q      (44) 

Based on Eq. (39-40), the best answers are shown in Table 5. 

Table5. The best answers 

Selection 

function 
Theory 

 

1h  

 

 μm  

 

2h  

 

 μm  

 

b  

 

 μm

 

 

L  

 

 μm  

 S   Q   *
σ  

 

ΨΣ   

 Γ  

Non-classic 10.00 10.00 40.00 200.00 -5.37E+18 -5736279 48.48958 -0.973 

classic 10.00 10.00 40.00 200.00 -5.37E+18 -5511330 48.48959 -0.973 

 Υ  

Non-classic 10.09 10.88 45.09 453.43 -1.98E+17 -3.7E+07 234.6003 0.515 

classic 10.12 10.58 44.44 437.48 -2.25E+17 -2.4E+07 220.8515 0.544 

 

It is obvious that by using Γ  the best answers are obtained at the beginning of the results’ interval. When 

Υ  are used, lengths and widths have more changes than the thickness of layers. Also, based on classic 

theory, thickness of the piezoelectric is bigger, but other variables are smaller. 

5. Conclusion  

In this study the optimization of the clamped-clamped microsensor was done by using genetic algorithm. 

All of the three objective functions are the important functions that describe accuracy and safety of the 

system. Sensitivity was the relation between the changes of the mass and changes of the vibration frequency. 

The quality factor was a function that related to the quality of the measurement and maximum stress was 

the function that related to the maximum deflection and must be low to increase safety of the system.  

The microsensor was modeled as a two-layer microbeam which was fixed on both ends. One layer was 

silicon as a sublayer and another one was quartz as a piezoelectric layer. Rayleigh’s method was used to 

calculate the natural frequency and it was used to calculate the sensitivity and the quality factor. To calculate 

the maximum stress, the system was assumed as a mass-spring system and the maximum deflection was 

assumed equal to the static deflection.  
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Four geometrical dimensions, the thickness of each layer, the width of the beam, and the length of the beam, 

were selected as design variables. There were some constraints and bounds for these variables. The aims of 

this optimization were increasing the sensitivity and quality factor also decreasing the maximum stress. The 

optimization was done by Matlab software and has these results: 

 When the maximum stress decreases and the sensitivity increases, the quality factor decreases.  

 The maximum sensitivity obtains when dimensions are small. 

 Enlarging the sensor increase the quality factor. 

 To decrease the maximum stress, the thickness of the piezoelectric must increase. 

 The length of the microbeam has the most impact on the functions and has the most changes among 

the design variables (approximately 190%). 

 The least effects were for the thickness of the silicon layer and has the least changes among the 

design variables (approximately 20%). 

 Based on the Γ  function, the best answers are at the beginning of the results’ interval. 

 Compared to results that are obtained based on the Γ , the best points based on the Υ  have the 

bigger dimensions. 

As mentioned above, the purpose of this research was to find the dimensions of the microbeam so that all 

three objective functions can have their best values as much as possible. According to the obtained results, 

reaching this goal causes the objective functions to be far from their maximum value, but all three functions 

are close to the initial demand. Considering that the main focus of the problem is to reach all three objective 

functions to their maximum values simultaneously, the optimal dimensions are obtained according to Eq. 

(40) and Table 5. 

In the future, by considering new functions or applying piezoelectric effects in the equations, new optimal 

points can be found for the design of a two-layer or multi-layer microbeam. 

6. Nomenclature 

m        mass, kg 

E        Young’s modulus, GPa 

A        Area, m2 

h        thickness, m 

b        width, m 

z         distance between the neutral surface of each layer and the neutral surface of all the system, m 

e         is the distance of the neutral surface of all the system from the coordinate system 

l         material length scale parameter, μm 

H        thermal conductivity, W/m K 
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C        heat capacity, J/kg K 

Greek symbols 

ρ         density, kg/m3 

μ         shear modulus, GPa 

ω        natural frequency, radian/second 

ν        Poaisson’s ratio 

α        the thermal expansion coefficient, 10-6/K 

ij     stress tensor 

ijm     symmetric couple stress tensor 

ij      strain tensor 

s

ij     symmetric curvature tensor 

i       infinitesimal rotation vector 

,i j    gradient of rotation 

ijk     alternating tensor 

iu      components of the displacement vector 

 ,    Lamé constants    

Subscript  

i          number of layers 
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