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Design of two layer clamped-clamped microsensor based on classical and non-classical 
theories
Mohammadreza Davoodi Yekta, Abbas Rahi  *

Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran

ABSTRACT: In this paper, the two-layer micro sensor is modeled as a two-layer clamped-clamped 
microbeam and it is optimized by using the genetic algorithm. Using the results of this research, 
clamped-clamped microbeams can be designed in such a way that the performance of microsensors 
whose structure includes these microbeams will be improved. The quality factor, the sensitivity, and 
the maximum stress are selected as objective functions. The sensitivity and the quality factor are the 
functions of the natural frequency. The natural frequency is calculated based on Rayleigh’s method. 
The quality factor is calculated by approximation established on the one layer’s quality factor formula. 
To calculate the maximum stress, the system is assumed as a mass-spring system that has a harmonic 
displacement and the maximum deflection is the static deflection. The thickness of each layer, the width 
of the microbeam, and the length of the microbeam are selected as design variables. The optimization 
is done based on classical and non-classical theory by the genetic algorithm. The results based on both 
theories are approximately equal. The length of the microbeam is the most important variable and very 
changes (approximately 190%). The thickness of the silicon layer has the least effect on the results 
and changes just lower than   (approximately 20%). The results show that when the maximum stress 
decreases and the sensitivity increases, the quality factor decreases which is undesirable. Maximum 
sensitivity is obtained when the microbeam is very small. 
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1- Introduction
Micro Electromechanical Systems (MEMS) is one of the 

most important devices used in many fields. In the last two 
years, microsensors are noticed because of their ability to 
detect low-mass particles. 

Narita et.al  [1] reviewed piezoelectric and magnetostrictive 
biosensor materials for the detection of viruses. They reported 
sensitivity and quality factor are the most important functions 
that describe the accuracy and quality of the sensing. 
Pachkawade et.al reviewed sensors for the detection and 
measurement of ultra-fine particles. They investigated micro 
resonant mass sensors including piezoelectric transducers, 
piezoelectric mass sensors, and thermally actuated resonant 
transducers. They also reported some parameters such 
as the size limit of particles and detection range of the 
microsensors. Lifshitz et.al [2]calculated thermoelastic 
damping in micro- and nanomechanical systems. They used 
Zener’s standard model of the linear anelastic solid. They 
derived the governing equation of the isothermal micro or 
nanobeams while there is no thermoelastic coupling but there 
is the modified thermoelastic strain. They could calculate 
the quality factor for these models of beams. Dennis et.al 

[3] modeled and simulated the effect of air damping on the 
frequency and quality factor of Complementary Metal-Oxide 
Semiconductor (CMOS) MEMS devices and Pan et.al [4] 
calculated the quality factor of a three-layer Kirchhoff–Love 
microplate considering three-dimensional heat conduction. 

A common model of the MEMS especially microsensors 
is the microbeam. To calculate different parameters of micro 
beams, a suitable model is necessary. There are many studies 
about the modeling of microbeams. Approximately in all 
of these studies, non-classical theories are used to obtain 
governing equations. These theories consider the size effect 
on the strain energy [5-11]. The following is an overview of 
some of these researches:

Kong et.al [12] calculated the size-dependent natural 
frequency of the Bernoulli- Euler microbeam. The governing 
equations are obtained based on the modified couple stress 
theory and by using Hamilton’s principle. Park et.al [13] and 
Gao et.al [14] investigated Bernoulli-Euler and Timoshenko’s 
microbeam based on the modified couple stress theory 
respectively.

Rahi [15] analyzed the vibration of multi-layer micro 
beams based on the modified couple stress theory. The strain 
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and kinetic energy of multi-layer microcantilever beams were 
obtained while the size effect is considered. The first three 
frequencies are calculated, and results were validated in the 
special case that the ratio of material length scale parameter to 
thickness is zero. Loghman et.al [16] investigated the nonlinear 
vibration of fractional viscoelastic microbeams. They used 
the modified couple stress theory and Bernoulli-Euler beam 
theory to model the microbeam and derive the equations. Also, 
they modeled viscoelastic material via the fractional Kelvin–
Voigt model. Khabaz et.al [17] analyzed the dynamic and 
vibration of the sandwich microbeam based on the modified 
strain gradient theory. They modeled the microbeam as a 
multi-layer microbeam including a piezoelectric layer. Ding 
et.al [18] analyzed the size-dependent nonlinear dynamic 
of microbeams by using the modified couple stress theory. 
Akgoz et.al [19] analyzed microbeams for various boundary 
conditions based on the strain gradient theory. Littrel et.al 
[20] modeled cantilever-based piezoelectric microsensors and 
microactuators. Farokhi et.al [21]  investigated the dynamics 
of imperfect microbeams, Ansari et.al [22] obtained vibration 
characteristics of piezoelectric microbeams based on the 
modified couple stress theory, Akgoz et.al [23] modeled 
shear deformation beam, and Talimian et.al [24] investigated 
dynamic stability of the size-dependent microbeam.

In recent years, Zhao et.al [25] presented a new Bernoulli–
Euler beam model based on modified gradient elasticity, 
Yin et. al [26] did isogeometric analysis for non-classical 
Bernoulli-Euler beam model incorporating microstructure and 
surface energy effects, Esen [27] investigated size-dependent  
Timoshenko microbeams subjected to a moving load, and 
Chen [28] et.al reformulated microbeams by incorporating 
the general strain gradient elasticity theory. Also, some 
studies modeled microbeams including functionally graded 
material [29-32]. 

Kumar et.al [33] analyzed static charge-induced pull-
in of an electrostatic MEMS. They proposed the non-linear 
model and derived closed-form expressions of pull-in voltage 
for different configurations. Sthuti et.al [34] simulated and 
analyzed suspension-based single-axis mems capacitive 
accelerometer. Analytical modeling of the suspensions was 
presented. Capacitive, displacement, and stress analysis of the 
accelerometer was done. Based on the results, parallel beam 
suspension is preferred for higher sensitivity and accuracy 
whereas Folded beam suspension is preferred for greater 
structural stability. Pakhare et.al [35] investigated the effects 
of shear deformation on the static pull-in Instability behavior 
of narrow rectangular Timoshenko microbeams. They first 
calculated the results of the maximum beam transverse 
displacement, for a shear deformable propped-cantilever 
microbeam under the action of uniformly distributed 
transverse load, second the finalized six-nodded spectral 
finite element based on the Timoshenko beam theory was 
utilized to determine static pull-in instability parameters of 
narrow microbeams with various fixity conditions and beam 
thickness to-length ratios. Valizadeh et.al [36] investigated 
the effects of the material dielectricity on the performance 
of capacitive microdevices. They demonstrated the ability of 

dielectric materials to reduce the required voltage of capacitive 
MEMS and also to intensify their softening behavior. Vu 
et.al [37] analyzed functionally graded microbeams with a 
moving mass based on the Timoshenko beam theory. The 
beam material properties were considered to be graded in 
thickness by a power-law function, and they were estimated 
by the Mori-Tanaka scheme. Also, they used modified couple 
stress theory to capture the size effect. Le et.al [38] used 
finite element formulation to investigate Size-dependent pull-
in instability of functionally graded microbeams. Based on 
the Von Kármán nonlinear relationship, a beam element was 
derived and employed to establish the discretized governing 
EQ for the microbeams. Results showed that the pull-in 
voltage was increased by the increase of the power-law 
exponent and the microscale parameter.

One of the best ways to improve the performance of the 
MEMS is optimization. There are few studies in the literature. 
Abo-bakr et.al [39] did multi-objective shape optimization 
of axially functionally graded microbeams. Taati et.al [40] 
optimized functionally graded material, thickness, and aspect 
ratio in microbeams embedded in an elastic medium. Fu et.al 
[41] enlarge the quality factor in microbeams by topology 
optimization. Gan et.al [42] did a topology optimization 
design using the modified couple stress theory. Abo-bakr et.al 
[43] did weight optimization of axially functionally graded 
microbeams under buckling and vibration behaviors. 

As can be seen, microbeams with different models and 
boundary conditions are used for applications such as making 
sensors, so their optimal design can improve the performance 
of devices such as microsensors. The main goal of this 
research is to find the dimensions of the clamped microbeam 
that important functions in the performance of microsensors 
have their maximum values. It is also worth mentioning 
that one of the special applications of sensors is to detect 
the presence of substances such as the coronavirus, so the 
optimal design of such sensors, especially from a mechanical 
point of view, can increase their efficiency.  In this study, 
multi-objective optimization of two-layer micro clamped- 
clamped microsensor, which is used to detect viruses, is 
done by using the genetic algorithm in Matlab. First, the 
microsensor is modeled as a microbeam that is clamped on 
both ends. Second, based on the previous studies, sensitivity, 
quality factor, and stress which are three important parameters 
of microsensors are selected as objective functions. Also, 
the dimensions of the microbeam are selected as design 
variables. In the end, results are shown based on classical and 
non-classical theories, and the best points are selected.

2- Modeling:
The microsensor is modeled as a clamped-clamped 

microbeam that has 2 layers. One layer is silicon and another 
one is quartz crystal. Quartz crystal is a piezoelectric material 
and has a high sensitivity. It is assumed that the microbeam 
is fixed on both ends and doesn’t have any displacement or 
rotation on the boundary conditions. The model is shown in 
Fig. 1. The Thickness of the piezoelectric and silicon layers 
are 1h and 2h  respectively. Also, the length of the microbeam 
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L  and width of it is .b
There is no external heat, and the temperature of the 

environment is 300 .K  Viruses are external mass and when 
they sit on the microbeam, the total mass and the natural 
frequency of the system change. The mass of absorbers and 
electrode layer are very low so in this study, they are ignored.

There are 3 important functions: Sensitivity, Quality 
factor, and Maximum stress. Sensitivity and quality factors 
are the important functions of the microsensors [1]. In order 
to have high measurement quality and accuracy, the values 
of these functions must be high. On the other hand, for high 
safety and to prevent failure, maximum stress on the system 
must be low.

2- 1- Sensitivity:
The sensitivity is calculated as [1]:
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Where m is the mass, ,ρ µ  are the density and the shear 
modulus of the piezoelectric. A  is the active surface of the 
piezoelectric layer. In this study, all the surface of the quartz 
is assumed active. Also 0f  is:
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Where 0ω  is the first circular natural frequency of the 
system. To calculate 0ω  Rayleigh’s method is used. Based 

on Rahi’s investigation [15] strain and kinetic energy of the 2 
layers microbeam is calculated as:
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Where w  is the displacement.  ,  ,  , i i i iE A hρ  and il  are 
the Young’s modulus, density, area, thickness, and material 
length scale parameters of each layer respectively. Also, iν  is 
the Poisson’s ratio of each layer and iI  is the moment of inertia 
of each layer about its neutral surface and calculated as:
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where ib  is the width of each layer. 
Also iI  is calculated as:

2
02 ffS

m A 


  


 (1)                                                                     (1) 

 

0
0 2

f 


  (2) 

 

 

2 222

20
1

61
2 1

n Li i i
s i i

i i i

E I l wE I dx
h x








                      
   

 

(3) 

22 2
2

0
1 1

1
2

n nL

i i i i
i i

wK A w I
x

 
 

 

                  
   (4) 

 

3

12
i i

i
b hI   (5) 

 

2
i i i niI I A z   (6) 

 

 

 1 1
1 2   
2nz h e h    

 2 2 1
1 2
2nz h e h h     

(7) 

 

(7) 

 

  
 

2
2 1 2 2

1 2 1 2

1
2

E E h hh
e

E h E E h
 


 

 (8) 

 

     ,w x t X x T t  (9) 

 

(6)

where niz  is the distance between the neutral surface of 
each layer and the neutral surface of all the system and are 
calculated as:

 
Fig. 1. The model of the microsensor with 2 layer and clamped ends  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The model of the microsensor with 2 layer and clamped ends 
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where h  is the total thickness of the microbeam and e  is 
the distance of the neutral surface of all the system from the 
coordinate system and calculate as:
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It is assumed that the system has a harmonic vibration so 
w  is defined as:
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Because the microbeam is fixed on both ends, this function 
is proposed to satisfy the geometrical boundary conditions:

  0i tT t e   (10) 

 

21 cosmax
xX X

L
        

 (11) 

 

 

1
4 2

3

0 2

8

21.5

N
L

M L G
L






  
  

     
     

 (12) 

 

 

22

1

6
1

n
i i i

i i
i i i

E I lN E I
h





          
  

 
2

1

n

i i
i

M A




 
  
 
  

2

1

n

i i
i

G I




 
  
 
  

(13) 

 

  1          ;   
2
, ,      , ,  

s
s ij ij ij ijV

m dV

i x y z and j x y z

    

 

  (14) 

 

2 2      ;      2 s
ij ij kk ij ij ijm l               (15) 

   , , , ,
1 1       ;     
2 2

s
ij i j j i ij i j j iu u        (16) 

,
1  
2i ijk k ju   (17) 

 

(11)

By substituting Eq. (5-10) into Eq. (3-4), the first circular 
natural frequency is obtained:
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It should be noted that the above equations are obtained 
based on the modified Couple stress theory. In this theory, 
the amount of strain energy is obtained differently than in the 
classical theory. The amount of strain energy in this theory is 
obtained from the following relationship:
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where V  is the volume of the system. In addition, the 
components of the stress tensor ijσ , the strain tensor ijε , the 
deviatoric part of the symmetric couple stress tensor ijm  and 
the symmetric curvature tensor s

ijχ  calculated as follows:
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where, ,i jθ  is the gradient of rotation, iθ  is infinitesimal 
rotation vector, ijk∈  is alternating tensor (or permutation 
symbol), and iu  is components of the displacement vector. 
The parameters ( ), λ µ  and  l are called Lamé constants and 
the material length scale parameter, respectively. The Lamé 
constants can also be written regarding Young’s modulus E  
and Poisson’s ratio ϑ  as follows:
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The verification of this method is presented in Table 1. 
Results based on classical theory, non-classical theory, and 
COMSOL model are compared for single-layer and two-layer 
microbeam. Also, the difference between COMSOL results 
and the other results is calculated.

2- 2- Quality factor:
The quality factor of one-layer microbeam is calculated 

as [2]:
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where E  is the Young’s modulus, pC is the heat capacity, 
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α  is the thermal expansion coefficient, oT  is the surrounding 
temperature, and
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where H  is heat conductivity and ρ  is density.
In this study the microbeam is modeled as 2-layer 

microbeam so above values are substituted by approximated 
values which are the average of properties values of all layers. 
These values are defined as: 
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2- 3- Maximum stress:
Maximum stress is calculated as [40]:
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According to the Eq. (8-10) for the calculation of the 

maximum values of 
2

2 w
x

∂
∂

 it is necessary that the maximum 

value of the  X calculated. It is assumed that the system is 
a simple mass-spring system then the maximum value of the 
displacement is defined as:
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Based on Eq. (11) k  is calculated as:
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and F  is the weight of the viruses which is calculated as:

Table 1. Results verification basedTable 1. Results verification based 

Number of layers 

First natural frequency 

Classical 

theory 

Non-classical 

theory (Modified 

couple stress 

theory) 

COMSOL 

model 

Difference 

COMSOL result 

with classical 

result 

Difference COMSOL 

result 

with 

non-classical result 

Single layer 2.150e5 2.240e5 2.157e5 0.32% 3.84% 

Two-layers 5.34e5 5.52e5 5.39e5 0.74% 2.41% 
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where BA  and pA  are the area of microbeam and particles 
respectively. As a result, maximum stress is calculated as:
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3- Optimization:
Objective functions:
Three important functions of the microsensor are 

calculated. In the next step the optimization of the microsensor 
is done by choosing these functions as objective functions. 
Objective functions are defined as:
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The genetic algorithm is selected for optimization. This 
algorithm obtains the minimum values of functions so the 
negative sign should be applied to the quality factor because 
the maximum value of the quality factor is the target of the 
design. Also, in Eq. (28), C  is a constant value, so *σ is 
selected as an objective function.

Design variables:
Dimensions of the microbeam are selected as design 

variables: 
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There are some limits to make a microbeam, also 
equations of the microbeam are calculated based on the 
Euler-Bernoulli beam theory. Some constraints are set to 
satisfy these conditions:
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There are lower and upper bounds for design variables 
that are shown in Table 2. These bounds are arbitrary.

The optimization is done by Matlab software and 
numerical results are shown in the next section.

4- The results and discussion
The results of the optimization are presented in this 

section. Geometrical characteristics were defined in the 
previous sections. The Mechanical and thermal properties of 
layers are described in Table 3. Results are obtained based on 
classical and non-classical theories. To obtain results based on 
classical theory, the ratio of material length scale parameters 
of each layer ( )il  to thickness in Eq. (3) is assumed zero. The 
best values of functions are shown in Figs. 2 and 3 based on 
classical and non-classical theories.

Values are approximately equal in both Figs. In other 
words, the size effect doesn’t have a significant effect on 
the optimization results. It is necessary to mention that the 
material length scale parameters are assumed constant and if 
they change according to different sizes, results may change. 
The targets of the design are that the sensitivity and quality 
factor increase while maximum stress decreases. Results 
show that when the maximum stress decreases and sensitivity 
increases, the quality factor decreases which is undesirable. 
Optimum values are described in Tables 4 and 5 based on 

Table 2. Bounds of design variables
 

Table 2. Bounds of design variables 

Variable Lower bound(10-6) Upper bound(10-6) 

x (1) 10 100 

x (2) 10 100 

x (3) 40 300 

x (4) 200 1000 
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Table 3. Properties of each layer [1, 15, 44-46]Table 3. Properties of each layer [1, 15, 44-46] 

72.52 170 

νν 0.166 0.22 

μμ 30.97 69.67 

ρρ 2650 2233 

l Μ 2.4 1 

700 812.33 

1.3 156 

αα 12.3 0.262 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. The best values based on the non-classical theory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The best values based on the non-classical theory
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Fig. 3. The best values based on the non-classical theory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The best values based on the non-classical theory

Table 4. Optimum values of design variables and objective functions based on non-classical theory
Table 3. Optimum values of design variables and objective functions based on non-classical theory 

Design variables Objective functions 

  1h μm   2h μm    b μm    L μm  S -Q  *σ  

10.00001 10 40.00019 200.0001 -5.37E+18 -5736279 48.48958 

10.00001 10.00001 40.00007 207.7847 -4.61E+18 -6110387 52.33772 

10.51563 11.1831 43.4092 516.059 -1.26E+17 -inf 282.1554 

20.26477 10.03297 63.5008 304.1106 -6.93E+17 -1454709 32.51608 

21.5693 10.00099 66.30716 315.7112 -5.81E+17 -1278532 30.90272 

14.5928 10.00679 50.44574 246.6532 -1.87E+18 -2696743 39.81831 

18.76926 10.08681 59.59902 288.857 -8.92E+17 -1720985 34.11644 

10.13651 11.31398 43.23319 349.2757 -6.13E+17 -1.9E+07 135.0965 

10.63673 11.74268 45.98299 470.0119 -1.82E+17 -7.6E+07 223.6882 

12.24859 11.62389 48.90662 383.5296 -3.78E+17 -1.2E+07 122.0372 

10.27186 11.57975 44.37774 402.2959 -3.48E+17 -2.6E+07 173.4422 

10.09163 10.88153 45.09498 453.4306 -1.98E+17 -3.7E+07 234.6003 

21.36367 10.11554 66.1933 316.4521 -5.79E+17 -1319306 31.66704 

15.4833 10.06335 52.56166 259.2738 -1.49E+18 -2502233 39.50558 

14.21698 10.04606 49.18312 245.2049 -1.96E+18 -3010588 41.17259 

17.71979 10.07649 56.95586 278.8345 -1.06E+18 -1930309 35.52213 

21.40262 10.15852 66.48856 315.8192 -5.83E+17 -1306174 31.42743 

10.66798 11.73194 46.00252 470.0119 -1.82E+17 -3.8E+07 222.9055 
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classical and non-classical theories. According to Eq. (13), 
there are some fractions that maybe are very high in special 
points so in some cases quality factor is inf which is due to the 
software approximation.

When the sensitivity is very high, dimensions are very 
small and approximately are equal to the lower bounds of 
design variables. Based on these results, to obtain high-quality 
factors, dimensions, especially length, must increase. In the 
cases where the maximum stress is small, the length of the 
microbeam is between cases that have a high-quality factor 
or high sensitivity, but the thickness of the piezoelectric layer 
is bigger than others.

Among the design variables, the thickness of the 
silicon layer has the least changes. It is lower than 2 mµ  
(approximately 20%). In other words, this variable has the 
least effect on the results. 

The thickness of the piezoelectric layer changes about 
14 mµ  (approximately 140%). When the sensitivity is high, 
the piezoelectric’s thickness is small and when the maximum 
stress is low, this variable is bigger. About the quality factors, 

this value in the best cases is between the two previous cases.
The width of the microbeam changes about 30 mµ  

(approximately 75%). Same as the thickness of the 
piezoelectric layer, when the sensitivity is high, the width is 
small. On the other hand, in the cases that have low maximum 
stress, the width is big. Also, when the quality factor is very 
high, the thickness is between the two above cases. 

The length of the microbeam is the variables which 
have the most changes and have the most significant effect 
on the results. These variables change more than 580  mµ
(approximately 190%) in the classical results. As other 
variables, in the cases that have high sensitivity, the length 
is the smallest. As the length increases, the quality factor 
increases and the sensitivity decreases. This parameter in the 
low maximum stress cases is between the above cases. 

To define the best answers, two methods are used. By 
using Eq. (38) results are normalized. For each function, 
points that have the biggest size are converted to 1, and points 
that have the smallest size are converted to 0:

If points that have the minimum total size are considered 

Table 5. Optimum values of design variables and objective functions based on classical theoryTable 4. Optimum values of design variables and objective functions based on classical theory 

Design variables Objective functions 

  1h μm   2h μm    b μm    L μm  S -Q  *σ  

10.00001 10.00001 40.00005 200.0002 -5.37E+18 -5511330 48.48959 

13.61824 10.84357 49.62435 580.2286 -6.65E+16 -inf 242.7347 

21.34046 10.34957 64.84655 316.9401 -5.97E+17 -1406962 31.84542 

23.64476 10.41862 69.87262 340.6774 -4.31E+17 -1177935 29.87044 

10.21659 11.45183 46.25083 555.908 -9.06E+16 -inf 335.9873 

12.57673 10.60218 46.8494 470.574 -1.59E+17 -2.1E+07 183.401 

22.67131 10.39453 68.02371 331.058 -4.88E+17 -1263060 30.74419 

17.61935 10.34868 56.1217 281.1208 -1.06E+18 -2077547 36.40081 

14.88545 10.15388 50.73379 250.3984 -1.78E+18 -2688111 39.48439 

11.8323 10.05772 44.0286 218.9021 -3.41E+18 -4076588 44.6944 

23.64328 10.41944 69.87345 340.6755 -4.31E+17 -1182053 29.8741 

18.80375 10.27264 59.27222 290.7652 -8.86E+17 -1775854 34.4085 

16.34789 10.25363 53.60937 266.7668 -1.34E+18 -2325974 37.74193 

10.51382 10.97162 45.58434 397.5345 -3.34E+17 -1.8E+07 169.3175 

13.18169 10.64089 47.96458 376.6941 -3.79E+17 -9993067 108.687 

10.12545 10.58645 44.44293 437.4834 -2.25E+17 -2.4E+07 220.8515 

21.33851 10.35104 64.84655 316.9401 -5.97E+17 -1407112 31.85131 

10.53269 11.38965 46.58349 487.8446 -1.50E+17 -7.5E+07 248.8711 
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the best answers, Eq. (37) must use:

 1 2 3 4 1 2, , , [ , , , ]T Tx x x x h h b L  (39) 

 

1 2 0.1h h L   (40) 

1 22( )  h h b   (41) 

3L b  (42) 

 

 *Γ Min S Q      (43) 

 

 *Υ Max S Q      (44) 

 

 

(43)

And if points that are approximately middle are considered 
the best answers, Eq. (38) must use:

 1 2 3 4 1 2, , , [ , , , ]T Tx x x x h h b L  (39) 

 

1 2 0.1h h L   (40) 

1 22( )  h h b   (41) 

3L b  (42) 

 

 *Γ Min S Q      (43) 

 

 *Υ Max S Q      (44) 

 

 

(44)

Based on Eq. (39-40), the best answers are shown in Table 6.
It is obvious that by using Ã the best answers are obtained 

at the beginning of the results’ interval. When Õ  are used, 
lengths and widths have more changes than the thickness 
of layers. Also, based on classic theory, the thickness of the 
piezoelectric is bigger, but other variables are smaller.

5- Conclusion 
In this study, the optimization of the clamped-clamped 

microsensor was done by using a genetic algorithm. All of 
the three objective functions are the important functions that 
describe the accuracy and safety of the system. Sensitivity 
was the relation between the changes of the mass and changes 
of the vibration frequency. The quality factor was a function 
that related to the quality of the measurement and maximum 
stress was the function that related to the maximum deflection 
and must be low to increase the safety of the system. 

The microsensor was modeled as a two-layer microbeam 
which was fixed on both ends. One layer was silicon as a 
sublayer and another one was quartz as a piezoelectric 

layer. Rayleigh’s method was used to calculate the natural 
frequency and it was used to calculate the sensitivity and the 
quality factor. To calculate the maximum stress, the system 
was assumed as a mass-spring system, and the maximum 
deflection was assumed equal to the static deflection. 

Four geometrical dimensions, the thickness of each layer, 
the width of the beam, and the length of the beam, were 
selected as design variables. There were some constraints 
and bounds for these variables. The aims of this optimization 
were increasing the sensitivity and quality factor and also 
decreasing the maximum stress. The optimization was done 
by Matlab software and has these results:
•	 When the maximum stress decreases and the sensitivity 

increases, the quality factor  decreases. 
•	 The maximum sensitivity is obtained when the dimensions 

are small.
•	 Enlarging the sensor increases the quality factor.
•	 To decrease the maximum stress, the thickness of the 

piezoelectric must increase.
•	 The length of the microbeam has the most impact on the 

functions and has the most changes among the design 
variables (approximately 190%).

•	 The least effects were for the thickness of the silicon layer 
and has the least changes among the design variables 
(approximately 20%).

•	 Based on the Ã function, the best answers are at the 
beginning of the results’ interval.

•	 Compared to results that are obtained based on the Ã, the 
best points based on the Õ  have the bigger dimensions.
As mentioned above, the purpose of this research was 

to find the dimensions of the microbeam so that all three 
objective functions can have their best values as much as 

Table 6. The best answers
Table5. The best answers 

Selection 
function Theory 

 

1h  
 

 μm  

 

2h  
 

 μm
 

 
b  

 

 μm
 

 
L  

 

 μm  

 S  Q   *σ  
 
ΨΣ   

 Γ  
Non-classic 10.00 10.00 40.00 200.00 -5.37E+18 -5736279 48.48958 -0.973 

classic 10.00 10.00 40.00 200.00 -5.37E+18 -5511330 48.48959 -0.973 

 Υ  
Non-classic 10.09 10.88 45.09 453.43 -1.98E+17 -3.7E+07 234.6003 0.515 

classic 10.12 10.58 44.44 437.48 -2.25E+17 -2.4E+07 220.8515 0.544 
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possible. According to the obtained results, reaching this 
goal causes the objective functions to be far from their 
maximum value, but all three functions are close to the initial 
demand. Considering that the main focus of the problem 
is to reach all three objective functions to their maximum 
values simultaneously, the optimal dimensions are obtained 
according to Eq. (40) and Table 5.

In the future, by considering new functions or applying 
piezoelectric effects in the equations, new optimal points 
can be found for the design of a two-layer or multi-layer 
microbeam.

6- Nomenclature
m        mass, kg
E        Young’s modulus, GPa
A        Area, m2

h        thickness, m
b        width, m
z       distance between the neutral surface of each layer 

and the neutral surface of all the system, m
e        is the distance of the neutral surface of all the 

systems from the coordinate system
l         material length scale parameter, μm
H        thermal conductivity, W/m K
C        heat capacity, J/kg K

Greek symbols
ρ         density, kg/m3

μ         shear modulus, GPa
ω        natural frequency, radian/second
ν        Poaisson’s ratio
α        the thermal expansion coefficient, 10-6/K

ijσ     stress tensor
ijm     symmetric couple stress tensor

ijε      strain tensor
s
ijχ     symmetric curvature tensor

iθ       infinitesimal rotation vector
,i jθ    gradient of rotation

ijk∈     alternating tensor
iu      components of the displacement vector

( ), λ µ  Lamé constants   

Subscript 
i          number of layers
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