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Nondeterministic multi-scale failure analysis in a woven composite fabric with a 
circular hole
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ABSTRACT: Uncertainties during the manufacturing process of composite parts cause the stress field 
to be uncertain, and there is a range of stress concentration coefficients instead of an exact number for the 
stress concentration. In this study, the stress field and failure of woven composite fabric with an open hole 
were investigated using multiscale statistical analysis. Using analytical relations and numerical methods, 
the mechanical properties of a woven composite fabric were homogenized by multiscale analysis. The 
results of the finite element analysis of the macroscale structure were localized at the mesoscale. The 
various failure criteria of the composite materials around the hole were investigated using finite element 
analysis. Thus, the stress concentration coefficient of the composite woven fabric was obtained using 
these two failure criteria. A comparison of the experimental tests and multi-scale simulation results 
shows that the multi-scale analysis method is reliable, and confirms that the geometric uncertainties of 
a hole in a woven composite plate lead to different stress values around the hole in different situations. 
The values of the stress coefficients in the fibers vary between 1.97 and 3.09. This parameter is between 
2.44 and 2.80 in the matrix. It has also been shown that from a nondeterministic point of view, the stress 
concentration coefficient can be estimated using a multi-scale method.
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1- Introduction
In almost all engineering applications, parts have various 

geometric discontinuities that affect their strength. These 
discontinuities include holes used to connect components or 
changes in dimensions. In addition, especially in the case of 
composite materials, during use or production, damages are 
inevitable, and these damages are the source of reducing the 
strength and life duration of the parts. Therefore, investigating 
the effect of a hole and the effect of its dimensions on the 
strength of parts is one of the issues raised in mechanical 
engineering, which is one of the basic challenges regarding 
composite materials.

The stress concentration in holes in composite plates 
depends on various parameters such as fiber arrangement, the 
type of fiber and matrix as well as the loading, and based on 
this, many studies have been done with different approaches 
[1]. Experimental tests have shown that the tensile strength 
of laminated composites with holes depends on the size and 
shape of the hole, and this fact cannot be evaluated using the 
classical stress concentration coefficient. One of the criteria 
for the strength of composite materials with holes is the 
equations provided by Whitney and Nuismer [2]. They have 
proposed two criteria for the fracture strength of laminated 
composites with cracks or holes, which are in good agreement 
with experimental results in the case of uniaxial tension and 

are widely used in design due to their simplicity.
In the studies conducted by Kim et al. [3] the effect of hole 

size and specimen width on the fracture behavior of woven 
composite plates has been investigated experimentally. Based 
on these experiments, a relation for the characteristic length 
of composite with a hole is proposed, which depends on the 
specimen width and the hole diameter. Experimental studies 
on the effect of holes have been followed up with different 
methods. One of the conventional methods is to use image 
processing of the specimen under tension to determine 
the strain. With the method mentioned in reference [4] in 
a composite with woven fabric, the strain concentration 
around the circular or oval hole and in reference [5] the stress 
concentration around the circular hole has been investigated.

Numerous criteria were adapted to fit the experimental 
results to predict the strength of brittle materials due to the 
presence of stress concentration in [6]. By conducting tests and 
studying different criteria, the authors in this reference have 
concluded that one and two-parameter criteria are not suitable 
for evaluating the strength and size effect of brittle materials 
such as composite materials. So they proposed a new fracture 
criterion with three material parameters based on the finite 
fracture mechanics. Camanho et al examined the use of a 
continuum damage model to predict strength and size effects 
in carbon-epoxy laminated composites [7]. In this article, the 
proposed method has been compared with three conventional 
methods of estimating the size effect, including point stress, 
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linear fracture mechanics, and inherent flaw model. The 
results indicate that the continuum damage model is the most 
accurate technique to predict size effects in composites. In the 
most of basic criteria, the fracture characteristics (strength and 
toughness) are evaluated separately. In the studies conducted 
by Martin et al. [8], a coupled measure of strength and energy 
is proposed for the prediction of the open hole tensile strength 
of a composite plate. According to this model, as the size of 
the hole increases, the strength of the specimen decreases. 
This model, which is an extension of the point stress criterion, 
relates the fracture characteristics and geometry (hole radius 
and part width).

An extensive experimental program has been performed 
to investigate the effect of scaling on the tensile strength of 
notched composites in the studies of Green et al [9]. In these 
studies, by keeping constant the ratio of the hole diameter 
to the length and width of the test sample and changing its 
size, the effect of scaling the specimen in the tensile test has 
been investigated. In most cases, as size increases, strength 
decreases. In addition, three distinct failure mechanisms have 
been observed. Despite the differences in failure stress and 
mechanism, similar sub-critical damage mechanisms were 
seen for all specimen sizes.

Proposing models based on the combination of toughness 
and stress criteria have been also done by other researchers. 
Camanho et al., based on finite fracture mechanics, proposed 
a model for predicting the open-hole tensile strength of 
composite laminates. In the proposed model, the ply elastic 
properties and the laminate unnotched strength and fracture 
toughness are used, and no empirical adjusting parameters 
are required [10]. Another example of energy-stress coupled 
models is also proposed in [11]. In the studies conducted 
by Arteiro et al to predict the tensile and compressive 
behavior of thin-ply non-crimp laminated composites, point 
stress analysis methods, average stress, and finite fracture 
mechanics have been evaluated, and the limited fracture 
mechanics method has been recognized as a better method 
for this purpose [12].

In the mentioned studies, the fiber direction of the 
composite material was not considered. Analysis of the effect 
of a stress raiser on the strength of a unidirectional composite 
in off-axis tension has been investigated in reference [13]. 
In this study, a coupled stress-strength model is used for this 
purpose. The evaluation of the effect of elliptical holes on the 
fracture strength of unidirectional composites has also been 
done in [14]. For composite materials including short glass 
fiber reinforced polyamide fibers, the fracture of notched 
specimen has been investigated in [15].

To investigate the effect of holes in composite materials, 
it is also important to study their microstructures. The 
microstructure of a composite material is effective in all 
behaviors and characteristics. The study of the effect of the 
behavior of microstructures and its relationship with the 
characteristic length parameter, which is used in the primary 
criteria, for three different types of cracks (circular holes, long 
cracks, and short cracks) has been done by Taylor [16]. In all 
cases, it was shown that the value of the characteristic length 

is simply related to the length parameter of the microstructure, 
and the constant value of the critical distance can be used to 
predict the effect of different features (holes, slots, and short 
cracks) that have very different stress concentration factors.

Although it has been a long time since Whitney and 
Nuismer’s [2] criterion was proposed to analyze the hole 
effect in composite materials, it is still used as a method 
for analysis. In [17], a design tool based on the Whitney-
Nuismer model is proposed to predict the failure strength of 
open-hole composite laminates subjected to in-plane tensile 
and compressive loads, and four different phenomenological 
equations were proposed to estimate the characteristic 
distances  as a function of the geometric ratio; an average 
value, a linear variation, a parabolic variation and a function 
of the square root.

In woven composites, the effect of warp, weft, and 
matrix, the interaction between these components, and even 
the effect of the fibers forming are effective in the overall 
properties of the material. Furthermore, several methods 
have been developed to predict the behavior of composite 
materials based on this [18]. One of the conventional 
methods to consider these parameters is multi-scale analysis, 
which simultaneously relates the properties of composites 
in the micro-scale (microstructure) and macro scale. Using 
the finite element method for multi-scale modeling of 
composites has become common in recent years to predict the 
mechanical properties of composites [19, 20]. An example of 
this homogenization is provided in [21]. In this reference, a 
simple model which considers the two-dimensional extent of 
a woven fabric is developed. A micromechanical composite 
material model for woven fabric with nonlinear stress-
strain relations is developed and implemented in ABAQUS 
for nonlinear finite element structural analysis. In [22], the 
stress of different components in a woven composite has 
been calculated on the micro and macro scale under in-plane 
loads by using the finite element method. The numerical 
methodology developed in this study can help aerospace 
designers optimize in-service loading conditions to prevent 
fracture in the tows and to increase the strength of aerospace 
structures utilizing such advanced composite systems.

Finite element simulation of various tests as an alternative 
to experimental tests to determine the properties of a woven 
composite has been done in [23] and it is found that a good 
agreement between material properties obtained from virtual 
characterization and experimental results. TexGen code is 
another tool used for homogenization. In [24], the fabric 
geometries are generated using TexGen and analyzed using 
Abaqus software to predict their mechanical properties. This 
method provides the possibility of creating a virtual laboratory 
for the analysis of various parameters of the structure.

Four different approaches are commonly used to 
create the matrix and the reinforcement parts [25] a) The 
reinforcement volume is subtracted from the part, then the 
reinforcement parts are combined to create the partitioned 
volume, (b) partitioning the spatial locations (surfaces/
volumes) of the reinforcement parts from the matrix without 
cutting the matrix, c) using embedded element method [26] 
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and d) meshing the part and assigning different properties to 
the elements. For fiber and matrix finite element analysis, 
there are some drawbacks in generating a suitable mesh for 
separate fiber and matrix modeling in a and b approaches 
[27]. In this article, all four methods are investigated for a 
two-dimensional example and it is shown that although the 
embedded element method is suitable for reinforcement 
with high Young’s modulus, this method is not suitable for 
reinforcement with low Young’s modulus. By this analysis 
the fourth method, meshing the part and assigning different 
properties to the elements, is recognized as the best method. 

Even though many studies have been done on the 
homogenization of the composite material’s properties, 
attention to the random nature of the influential parameters 
in this homogenization has been paid less attention. 
Statistical finite element analysis provides the possibility 
to investigate the effect of these random variables [28-30]. 
The random parameters in microstructures of composites 
are more important in samples containing holes. In addition 
to the mechanical and geometric variables of the composite 
material, the hole position and shape are also added to the 
random parameters. The effect of hole shape on the reliability 
of laminated composites has been investigated in [31].

In this article, by using a multi-scale analysis method and 
statistical comparison of its results, the effect of holes on 
stress and failure of woven composite fabrics is investigated. 
During the multi-scale analysis in homogenization from micro 
to meso scale, the characteristics of its constituent yarns are 
obtained by using theoretical relationships of fiber properties. 

In the next step, according to the obtained properties and 
the geometric characteristics of the warp and weft, the 
homogenized properties of the woven composite fabric are 
obtained using finite element simulation of a representative 
volume element (RVE) in Abaqus. 

The obtained homogenized properties are used to 
analyze the woven composite fabric at the macro scale. The 
displacement results of macro-scale simulation were used in 
localization as the boundary condition. In this localization, the 
stress field is analyzed statistically in the non-homogeneous 
material components in a small boundary of the whole 
material. The analysis of the various situations of the 
woven composite components around the hole can provide 
the designer with a suitable tool to check the uncertainties 
affecting of the stress concentration around the hole. Figure 1 
shows the process diagram and input data in each step.

The comparison of experimental tests and simulation 
confirms the reliability of this multi-scale analysis method. 
By examining the effect of the hole size in woven composite 
fabric on the stresses around the hole, it is concluded that 
with the increase in the dimensions of the hole, the change of 
the maximum stress occurs at a lower rate, and therefore, the 
size effect decreases in holes with a larger diameter. In woven 
composites, in case the dimensions of the hole are not large 
enough compared to the yarns, uncertainties arise due to the 
different positions of the warp and weft relative to the hole. 
Therefore, it is not possible to calculate the value of the stress 
concentration coefficient from a definitive point of view. So, 
for proper calculation of the stress concentration factor, it is 

 

Fig. 1-Process diagram and input and output data in each step 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Process diagram and input and output data in each step



A. Kamal and S. H. Dibajian, AUT J. Mech. Eng., 8(4) (2024) 351-372, DOI: 10.22060/ajme.2024.23232.6114

354

necessary to consider different conditions. The evaluation of 
the stress in different positions of the yarn relative to the hole 
shows that in each failure criterion of composite materials, 
there is a range of stress concentration coefficient values, and 
it is not possible to determine an explicit value for reliability.

2- Composite plate with an open hole under tension
As mentioned, the strength of composites with open-hole 

has been investigated in many studies. The stress distribution 
around a hole in an orthotropic infinite plate is estimated by 
Lekhnitskii as follows[32].
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In this equation, x is the distance from the center of the 
hole, R is the hole radius, and σ  is the applied stress. TK ∞  
Is the orthotropic stress concentration coefficient that is 
obtained for an infinite plate from Eq. (2).
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In this equation, 11E , 22E  and 12G  are orthotropic 
characteristics of materials. TK ∞ For an isotropic material is 
equal to 3, and for a woven composite, the values are between 
2.53 and 3.48 [33].

Whitney and Nuismer introduced two different criteria 
called the point stress criterion and the average stress 
criterion. The proposed criterion is defined based on the 
strength of the unnotched composite and a length parameter 
of the discontinuity. These two criteria are as follows [2].
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In these criteria, failure around a hole with a  radius of 
R, occurs when the stress ( yσ ) at the distance 0d  (damage 
characteristic dimension) from the edge of the hole or the 
average stress at the distance 0a  from the edge of the hole 
is equal to the strength of the samples without hole 0a . By 
putting these two criteria in Eq. (1), it can obtain the following 
equations [33].
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In these two criteria, there are two parameters 0d  and 0a
, which must be calculated or tested for different shapes and 
dimensions of the hole.

In the equations proposed by Whitney and Nuismer, the 
characteristic lengths 0d  and 0a  are assumed as material 
properties. However in the studies conducted by Kim et 
al., it was found that these parameters depend on the hole 
diameter [3]. In the improved criterion proposed for the point 
stress criterion, the characteristic length is obtained from the 
following equation.
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In this equation, k is the notch sensitivity factor 
concerning 2R the hole diameter, W the part width, and m is 
an exponential parameter. It is suggested to use the following 
equation for the relationship between the characteristic length 
and the final strength of the fabric, where A and B are two 
material constants and are obtained from experimental tests.
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Simultaneous consideration of the effects of strength and 
toughness was another development in the study of the hole 
size effect in the composite. The tensile strength proposed by 
Martin et al. [8], which was coupled considering the strength 
and toughness, is proposed as follows.
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In this equation, 
*σ  is the critical stress and 

Cσ  is 
the strength of the sample without cracks. 

CL  is the Irwin 
characteristic fracture length of the material and R is the 
radius of the hole and ( )*A a  is a dimensionless coefficient.

In evaluating the failure of composite materials, the 
criteria proposed by Chamis are used. Chamis criteria for 
composite material failure are as Eq. (8) [34].
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In these equations, Vf is the volume fraction of fiber, Em 
is the matrix modulus, E22m is transverse Young’s modulus of 
the fiber, Gm is the matrix shear modulus, G12f, and G23f are 
fiber shear moduli, SfC and SfT are the tensile and compression 
strength of fibers, respectively. Also, SmT, SmC, and SmS 
demonstrate the tensile, compression, and shear strength of 
the matrix, respectively.

3- Multi-scale analysis
There are two basic approaches to modeling composites: 

the macro mechanical approach and the micromechanical 
approach. The macro mechanical approach involves 
constructing models strictly at the macro scale wherein the 
composite is viewed as an anisotropic material, and the details 
of the underlying arrangement of the constituent materials 
are ignored. In contrast, the micromechanical approach to 
modeling composites explicitly considers the constituent 
materials and how they are arranged to form the composite. 
The goal of micromechanics is to predict the effective 
behavior of a heterogeneous material based on the behavior 
of the constituent materials and their geometric arrangement. 
By determining a composite’s effective behavior via 
micromechanics, it can then be treated as a material in higher-
scale analyses (similar to the macro mechanical approach). 
Multiscale modeling of composites refers to simulating their 
behavior through multiple time and/or length scales [35].

Traditionally, one traverses these scales via 
homogenization and localization techniques, respectively, 
a homogenization technique provides the properties or 
response of a ‘structure’  given the properties or response of 
the structure’s ‘constituents’ [35].

In this study, homogenization and localization were 
performed in a noncoupled manner. In the homogenization 
part, the elastic properties of the material were determined 
based on the microscale structure. Homogenization is 

performed in two steps: from micro to meso and from meso 
to macro.

In the localization part, boundary conditions were applied 
and analyzed in the mesoscale model after analyzing the 
macroscopic model. The stress concentration coefficients 
were then calculated based on mesoscale stresses.

3- 1- Homogenization
One of the methods in the homogenization of composite 

structures is to consider a small part of the material as a 
component representing the whole material. In this method, 
the material is considered in a representative volume element 
(RVE) with full details and according to the specifications 
defined for this part, its effective elastic properties are 
obtained. These effective properties are considered as 
the general properties of homogeneous material on the 
macroscopic scale. In an RVE, the stored strain energy density 
must be equal to the strain energy density of the equivalent 
homogenized element at the same strain. This concept was 
first used by Hill [36]. Hill determined two conditions for 
the RVE. This element should be structurally a sample of the 
entire composite material and include enough components of 
the material whose apparent moduli are independent of the 
surface tension and displacement. Therefore, the RVE should 
be chosen in such a way that by repeating it in different 
directions, the whole material is made. 

In this article, homogenization is done in two steps. 
Characterization of warp and weft yarns is done using 
analytical equations as homogenization from micro-scale to 
mesoscale. In these equations, the properties of the warp and 
weft are obtained by using the properties of their constituent 
fibers and matrix. In the homogenization from meso scale to 
macro scale in woven composite, there is no exact analytical 
equation and homogenization is done numerically in Abaqus 
software.

3- 1- 1- Warp and weft homogenization
The warp and weft yarns used in woven fabrics are 

composed of parallel thin fibers, which matrix penetrates 
between these fibers during the production process of 
composite fabric. Therefore, in composite fabrics, the 
warp and weft yarn should be considered as unidirectional 
composites, with the resin as the base material and the fibers 
as its reinforcement. For the homogenization of unidirectional 
composite materials, several methods have been proposed 
[35]. In woven composites, the curvature radius of the 
fibers is on the scale of the fiber diameter. Therefore, in the 
microstructure analysis of the warp and weft, the ratio of 
fiber curvature to fiber diameter is very large. Therefore, in 
the micro composite analysis, warp and weft unidirectional 
composites can be considered. The effective elastic stiffness 
and compliance matrices of a transversely isotropic material 
are defined by five independent engineering constants: 
longitudinal and transversal Young’s moduli.  and , 
longitudinal and transversal shear moduli  and , and major 
Poisson’s ratio  (Noting that direction 1 is along the fibers). 
The minor Poisson’s ratio  is related to  and . The effective 
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elastic properties are evaluated in terms of the mechanical 
properties of fibers and matrix. The relationship between 
strain and stress in a transversely isotropic material is given 
as follows [37]:
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Among the relationships proposed for the homogenized 
components of unidirectional composite materials, the 
equations introduced by Chamis [38] are in good agreement 
with the experimental results and can be considered as a 
complete model for accurate estimation of properties [37]. 
Chamis equations are as Eq. (10).
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In these equations, mV is the volume fraction of 
matrix, 11E  is the modulus in the longitudinal direction 
of fibers, 22E is the transverse modulus of fibers, 11fE is 
the longitudinal Young’s modulus of the fiber, 12fν is fiber 
Poisson’s ratio, mν s matrix Poisson’s ratio and 12ν  and 23ν
are fiber Poisson’s ratio.

3- 1- 2- Composite woven fabric
A woven composite fabric can be considered as an 

orthotropic material in the macro scale. The relationship 
between stress and strain of an orthotropic material is 
generally in the form of Eq. (11). In this equation, σ is the 
stress tensor, D is the stiffness tensor, and ε is the strain 
tensor. The extended form of this equation is in the form of 
Eq. (12) [39].
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The stiffness tensor in this equation includes 9 independent 
parameters and 9 equations are needed to specify them.

The elastic strain energy stored in this material can be 
obtained from Eq. (13).
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If an RVE is under the effect of simple strain in the 
direction 1, the only component of the strain tensor that has a 
non-zero value is 11ε and the stored strain energy is equal to
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Therefore, if the amount of energy stored in the RVE 
during applying simple strain in direction 1 is known, the 
value of the 1111D of the stiffness tensor could be calculated 
as Eq. (15).
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Similar to this method, to determine the other components 
of the stiffness tensor, other hypothetical strains can be 
applied according to Table 1, and 9 independent components 
of the stiffness tensor can be calculated.

 
3- 1- 3- Comparison of multi-scale finite element modeling 
methods

There are four common methods for the simulation of 
multi-scale finite elements of composites. In the first method, 
fibers and matrix are modeled separately and then they are tied 
to each other. In the second method, which is more common 
in two-dimensional analysis, the sample volume is partitioned 
into two parts: matrix and reinforcement (Figure 2-a). In the 
third method, which is studied in [26], the fibers are modeled 
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Table 1. Calculation of stiffness tensor components based on strain energy and strain values

Strain 
vector Stored elastic energy Stiffness tensor component 
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separately and the sample volume is completely modeled 
as a matrix, then they are connected via the embedded tool. 
(Figure 2-b). In the fourth method, first, the sample volume 
is meshed, and then matrix and reinforcing properties are 
assigned to the elements (Figure 2-c).

Considering that the first and second methods have 
similar results if the element is small, only the second, third, 
and fourth methods have been investigated. To compare, a 
two-dimensional sample of 10 x 10 mm with a reinforcement 
of 6 mm diameter is modeled in Abaqus. It is assumed that 
the matrix Young’s modulus is 3 GPa. The reinforcement 
of  Young’s modulus is considered 200 GPa and 6 GPa in 
two different analyses. Symmetry boundary conditions are 
assumed for the lower and left boundaries, and the right 
boundary is moved 1 mm. In Table 2, the results of strain 
energy are compared.

According to Table 2, the embedded element method 
mentioned in [26] is only suitable for certain conditions. In 
the analysis on the micro-scale, the difference between the 

properties of the reinforcement and the matrix is considerable, 
but in the mesoscale analysis, this difference is reduced, and 
therefore the embedded element method is not suitable for 
all cases. In three dimensions, there are some drawbacks in 
producing a suitable mesh in the first and second methods, 
and the third method has made some errors. Therefore, in this 
article, the fourth method is used for modeling.

3- 2- Localization, stress analysis, and failure assessment
Due to the multipart nature of composite materials, many 

failure and damage modes are caused in microstructures. 
Yarn failure, matrix failure, and warp and weft separation 
from the matrix are some of the failure modes that occur in 
the microstructure. That’s why, the analysis of stress field in 
the microstructure of composite material is a crucial issue.

Localization of the composite fabric macro model in 
Abaqus software is done by placing and analyzing the 
RVE in the desired location of the macrostructure and 
using macro model boundary conditions to evaluate the 

   

(a) (b) (c) 

Fig. 2- Three different method of finite element multi-scale modeling a: partitioning the part. b: embedded element. c: assigning 
material properties to element 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Three different method of finite element multi-scale modeling a: partitioning the part. b: embed-
ded element. c: assigning material properties to element

Table 2. comparison of calculated strain energy in different methodsTable 1-comparison of calculated strain energy in different methods 

 strain energy (mJ) 
(𝐸𝐸𝑚𝑚 = 3 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐸𝐸𝑓𝑓 = 6 𝐺𝐺𝐺𝐺𝐺𝐺) 

strain energy (mJ) 
(𝐸𝐸𝑚𝑚 = 3 𝐺𝐺𝐺𝐺𝐺𝐺, 𝐸𝐸𝑓𝑓 =

200 𝐺𝐺𝐺𝐺𝐺𝐺) 

first and second methods 1796 2458 

Third method 1959 2498 

Fourth method 1797 2470 
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microstructure stress field. For this purpose, first, a sub-
model of the RVE is built and the built sub-model is placed in 
the desired location of the macrostructure. With the help of a 
Python script, outside elements of the sub-model are removed 
and the displacement boundary condition of the macro 
model is applied to it. The maximum stress in warp and weft 
elements and matrix elements is a criterion for comparing 
different modes in localization.

Analysis of various uncertainties that are made during the 
production process of composite fabrics can be a tool for the 
analysis of woven fabrics. The exact position of the warp and 
weft relative to the hole is one such uncertainty. When the 
dimensions of the warp and weft are not negligible compared 
to the dimensions of the hole, the different positions of the 
warp and weft relative to the hole are effective in the stress 
field.

The position of the hole is not fixed in relation to the warp 
and weft of the woven composite fabric, and the hole could 
have different positions. Therefore, to accurately evaluate 
the effect of the hole, it is necessary to consider different 
positions and statistically analyze the stress field. In this case, 
statistical parameters, such as the average maximum stress 
values or stress histograms, are better tools for analysis.  To 
perform statistical analysis at different points, the micro 
model created in the localization step is placed in many 
different positions relative to the warp and weft. The more 
the number of repetitions of this operation, the more diverse 
conditions of stress are extracted in different situations.

Due to the different strengths of yarns and matrix, it is 
necessary to consider maximum stress in warp and weft 
elements and matrix elements separately. An average of 
5 maximum element stresses in every condition of yarn 
position relative to the hole are stored in a file by the script. 
By using the obtained stresses, a histogram of stress in matrix 
and yarns is drawn. By comparing the stress histogram in 
different hole diameters probability of failure in different 
conditions is obtained.

4- Experiments, simulations, and results
To investigate the multi-scale analysis method, a tensile 

test of a woven composite fabric is used.

4- 1- Producing test samples
4- 1- 1- Yarn fibers

The woven fabric used to make the samples is shown in 
Figure 3.

The glass yarns in this woven fabric are type E. The 
properties of the fibers used for the production of warp and 
weft yarns have been determined experimentally.

4- 1- 2- Matrix properties
The woven composite fabric matrix is made by the 

combination of resin epoxy EP 411 and H15 hardener. The 
physical, mechanical, and process characteristics of this 
resin based on manufacturer data are shown in Table 3. It is 
suggested that after the completion of the time necessary for 
the initial curing, the post-curing process should be applied 
for 3 hours under temperature conditions up to 80 ºC to 
improve the mechanical properties of the samples.

4- 1- 3- Specimen manufacturing
The experimental specimens were prepared by using the 

vacuum molding process under the defined curing parameters. 
Specimen dimensions are 30 x 90 millimeters and a hole is 
created in the middle of the specimens using a sharp tool. In 
this way, 6 specimens were used in the experiments, one of 
which is without holes and the other 5 specimens have holes 
with diameters of 2, 4, 6, 8, and 10 millimeters.

The specifications of the components used in the 
composite woven fabric are shown in Table 4. Data in Table 4 
is based on the manufacturer’s data or measurements.

To determine the woven composite fabric mechanical 
properties, tensile tests were performed on the specimens 
using the ASTM D3039 (Standard test method for tensile 
properties of polymer matrix composite materials), and the 

 

Fig. 3-Woven fabric used in experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Woven fabric used in experiments
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Table 3. EP 411 epoxy resin and H15 hardener specificationTable 2-EP 411 epoxy resin and H15 hardener specification 

Physical/mechanical/process characteristic Value Test method 

Viscosity at 25ºC (millipascals.seconds) 100-150 ISO 12058-1 

Density at 25ºC (grams per cubic centimeter) 1.17 ISO 1675 

Color Colorless — 

Tensile strength (MPa) 50-60 ASTM D638-14 

Flexural strength (MPa) 70-80 ASTM D5023-15 

compressive strength (MPa) 72-75 ASTM D695-15 

Heat Degradation Temperature (ºC) 90-95 — 

Maximum working time per 250 grams of resin at 23ºC (hours) 150 TECAM 
At 65% humidity 

Sufficient curing time (hours) 24 — 

weight ratio of resin and hardener  10:1 — 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Specifications of the components used in the fabricTable 3-Specifications of the components used in the fabric 

characteristic (unit) Value 
Warp/weft width (mm) 2 
Warp/weft height (mm) 0.6 

The distance between warps/wefts in fabric (mm) 0.8 

The number of layers 1 
The number of fibers in the warp/weft 575 

The diameter of the fibers in the warp/weft (mm) 0.0072 

Young's modulus of warp/weft fibers (Mpa) 79000 
Poisson's ratio of warp/weft fibers 0.26 
Young's modulus of resin (MPa) 2789-3500 
Poisson's ratio of resin 0.35 
tensile strength of fibers (MPa) 1150 
compression strength of fibers (MPa) 1150 
tensile strength of resin (MPa) 50 
compression strength of resin (MPa) 50 
shear strength of resin (MPa) 25 
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elastic modulus of woven composite fabric was measured. 
This method is suitable for determining the in-plane tensile 
properties of composite materials reinforced with continuous 
fibers with high elastic modulus. In Figure 4 test specimens 
are shown.

In Figure 5 the tensile test steps applied on woven 
composite fabric are shown. This test is also done on 
specimens with standard dimensions and both longitudinal 
and transverse arrangements too. To ensure reproducibility, 
each test was repeated twice.

In Figure 6 the fracture of specimens is shown. 
As shown in Table 5 although the specimens with 2, 4, 

and 6 millimeters diameter holes have fractured from the 
clamp area, the samples with 8 and 10 millimeters diameter 
holes have broken around the hole. 

4- 2- Simulation
4- 2- 1- Homogenization in Meso scale 

To simulate the 9 experiments planned in Table 1, the 
RVE was simulated in Abaqus, according to the geometry and 
the data in Table 4.

To make the RVE, first, a cube with the RVE dimensions 
was regularly meshed. Then, based on the position of every 
element, material properties, and material orientation were 
assigned. The position of warp and weft elements are specified 
by an Abaqus script based on race track model [40] and the 
properties of homogenized yarns are assigned to them. The 
rest of the elements contain matrix. In Figure 7 the RVE and 
different component of the RVE is shown.

In the Abaqus step module, 9 steps are defined according 
to the boundary conditions in Table 1. According to the stored 

 

 

 

Fig. 4- Composite fabrics and its standard dimensions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Composite fabrics and its standard dimensions

 

Fig. 5-Tensile test, a) before fracture, b) after fracture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Tensile test, a) before fracture, b) after fracture
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Fig. 6-Fracture of each specimen after tension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Fracture of each specimen after tension

Table 5. Broken area for each specimenTable 4-Broken area for each specimen 

Specimens Broken from the 
clamp area 

Broken around 
hole 

Specimen with 2 mm diameter hole   

Specimen with 4 mm diameter hole   

Specimen with 6 mm diameter hole   

Specimen with 8 mm diameter hole   

Specimen with 10mm diameter hole   
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energy density calculated at each step of the simulation and 
taking into account the relationships in Table 1, the components 
of the stiffness tensor are calculated. The equivalent stiffness 
tensor calculated in this method is shown in Eq. (16). The 
verification of this equation is in section 4-3-1.
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The calculated stiffness tensor, as a characteristic of a 
homogeneous material, can be used in the larger scale (macro) 
simulation. Therefore, by modeling the woven composite 
fabric as a homogenized part and using the stiffness tensor, 
the stress and strain fields of the fabric can be obtained. The 
boundary condition of the macro model was considered as 
displacement boundary condition similar to the tensile test. In 
Figure 8 stress field of simulated fabric with a 10 millimeters 
hole in the macro scale is shown.

4- 2- 2- Localization
To investigate the stress field in the micro-scale, or 

localization, the macro-scale model of the woven composite 
fabric is made and the analysis is performed according to 
the characteristics of the homogenized orthotropic material 
calculated in the homogenization and the applied forces and 
boundary conditions. Then, the center of the RVE is placed at 
the location of the desired point for macro-scale localization, 
and the elements that do not match the geometry of the macro 
model are removed from the RVE model by an Abaqus script. 

 
 

(a) (b) 
 

Fig. 7- (a) RVE used in simulation (b) Position of warp and weft elements in RVE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. (a) RVE used in simulation (b) Position of warp and weft elements in RVE.

 

Fig. 8-The stress field in the simulation of the macro model for the part with a 10 diameter hole (stress in MPa) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The stress field in the simulation of the macro model for the part with a 10 diameter hole (stress in MPa)
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The boundary conditions calculated in the macro model 
analysis are applied to the RVE. By implementing the new 
model, the stress field on the micro-scale in the defined 
position is determined. As mentioned, due to the uncertainties 
caused by the change in the position of the warp and weft 
to the hole, it is necessary to repeat these calculations in 
different situations. In this way, the stress field can be 
statistically obtained in different situations. Every position of 
warp and weft in relation to the hole has a similar chance to 
accrue. Therefore the statistical models have been produced 
uniformly.

In Figure 9, the stress field around the hole is shown for 
some different placement of the warp and weft around the 
hole. The location of the middle point of the RVE relative 
to the hole is chosen in such a way that it does not include 
repeated situations and can cover possible changes in the 
position of the warp and weft relative to the hole. As can be 
seen, the position of the maximum stress point and of course 
its value is different in different situations.

4- 3- Experiment and simulation results
4- 3- 1- Verification

In this article, for verification, the simulation results 
have been validated by performing experiments and also by 
comparing them with analytical equations. For this purpose, 
the model is simulated with the homogenized properties of 
an orthotropic plate, similar to the dimensions of the woven 
composite fabric specimens. Figure 10 shows the elastic strain 
stress diagram of the part with a 10 millimeters diameter hole 
in experimental and simulation tests. This graph shows the 
acceptable agreement of simulation results and experiments 
in the elastic region. The maximum error measured in this 
graph is about 7%.

In terms of the amount of stress increase due to the 
presence of a hole, comparing the stress simulation results of 
a homogeneous orthotropic plate under in-plane tensile force 
in an infinite plate with the stress value calculated from Eq. 
(1) can show the accuracy of the results. Figure 11 shows 
this comparison. The horizontal axis of this diagram is the 

 

Fig. 9- Some of the various localization around the hole in the fabric with a hole of 10 millimeter diameter (stress in MPa) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Some of the various localization around the hole in the fabric with a hole of 10 millimeter diameter 
(stress in MPa)
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Fig. 10-Result comparison of simulation and tensile test in the specimen with a 10 millimeter diameter hole 
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Fig. 10. Result comparison of simulation and tensile test in the specimen with a 10 millimeter diameter hole

 

Fig. 11-Comparison of the stress ratio in the direction of tension in a fabric with a 10 millimeter diameter hole 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Comparison of the stress ratio in the direction of tension in a fabric with a 10 millimeter diameter hole
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Fig. 12-The stress field in the matrix in different positions of the yarns relative to the hole, Stress in MPa (In this figure, only the 

elements of the matrix are shown and the elements of the yarns are not shown.) 

 

 

 

 

 

 

 

 

 

Fig. 12. The stress field in the matrix in different positions of the yarns relative to the hole, Stress in MPa (In 
this figure, only the elements of the matrix are shown and the elements of the yarns are not shown.)

dimensionless distance from the center of the hole in an 
infinite plate and the vertical axis is the ratio of stress in the 
tension direction to the average applied stress. This diagram 
confirms the method used for homogenization and simulation 
of woven composite fabric.

4- 3- 2- Analysis of stress in the microstructure
The uncertainties caused by the position of the yarns 

around the hole can create different stress fields. Therefore, 
the amount and location of the maximum stress in the matrix 
are different. In Figure 12, some stress fields are shown 
comparatively in different positions of the yarns to the hole.

To statistically compare the results obtained in the 
localization, the histogram diagram of the maximum matrix 

stress values in different situations of the yarns to the hole 
for the different hole diameters is drawn in Figure 13. This 
diagram shows the number and amount of maximum stress 
around the hole with different diameters at the same strain. It 
can be seen that with the increase in the diameter of the hole, 
the average value of the stress around the hole increases.

The diagram of Figure 13 shows some overlap of the 
maximum stresses in different situations. In other words, 
even though the average amount of stress increases with the 
increase in the diameter of the hole, there is a possibility 
that specimens with a smaller diameter hole fail earlier than 
specimens with a larger diameter hole at the same stress, 
and this issue is related to the position of the warp and weft 
to the hole. Therefore, it is not possible to make an explicit 
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prediction about the beginning of matrix fracture in woven 
composite fabrics with holes. Rather, one can only comment 
on its probability.

Another result obtained from this diagram is the reduction 
of the hole size effect at higher diameters. As the diameter 
of the hole increases, up to 8 millimeters, the value of the 
maximum stress increases. But as the diameter of the 
hole increases, the rate of increasing the maximum stress 
decreases. By increasing the diameter from 8 millimeters to 
10 millimeters, there is no significant change in the maximum 
stress values. Therefore the stress concentration factor has 
been studied only for 10 millimeter diameter hole.

4- 3- 3- Ultimate strength analysis in microstructure
Regarding fiber failure prediction, considering that the 

maximum stress occurs in different places based on the 
position of the yarns around the hole, statistical analysis like 
Figure 13 cannot be useful. Figure 14 shows the stress field 
of the warp and weft in different situations.

As can be seen in Fig. 14, similar to what happens in the 
matrix, the amount and location of the maximum stress in 
the fibers change with the change in the position of the warp 
and weft relative to the hole. Based on this, it is impossible 
to make an explicit assessment of the ultimate tension of the 
fibers, and there are uncertainties in this regard.

4- 3- 4- Investigating the stress concentration coefficients
By using multi-scale analysis, it is possible to investigate 

the stress concentration coefficient of woven composite fabric 

with the hole. For this purpose, the stress fields is studied 
separately in the matrix and yarns of woven composite fabric 
with a hole of 10 millimeters in diameter. 

Using Chamis criteria for failure of composite materials 
and considering the stress in regions far from the hole, stress 
concentration coefficient values can be calculated in different 
criteria. Due to the probability of different positions of 
yarns relative to the hole, different analyses were performed 
in different situations to calculate the values of the stress 
concentration coefficient range. The minimum and maximum 
values of stress concentration coefficients are presented 
in Table 6 for matrix and fiber longitudinal tension. These 
two criteria have been selected as the primary criteria for 
composite fiber failure.

It can be seen that these values have a wide range so it 
can be concluded that the failure stress value will be variable 
in different positions of yarns relative to the hole. It is also 
observed that these two criteria have an overlap and due 
to this uncertainty, it is impossible to predict the cause of 
composite failure accurately. The histogram diagram of stress 
concentration coefficients is shown in Figure 15

From Figure 15, two results can be inferred. The first 
concerns the initiation of failure, and the second concerns 
its continuation. It can be seen that despite the spread of 
the stress concentration coefficient, the highest probability 
of its occurrence in the fiber is between 2 and 3, and in the 
matrix between 2.6 and 2.9. The uncertainty in the stress 
concentration coefficient was less in the matrix than in the 

 
Fig. 13-Histogram of stress values in the matrix around holes with different diameters  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Histogram of stress values in the matrix around holes with different diameters 
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Fig. 14- The stress field of warp and weft in different situations (stress in MPa) 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The stress field of warp and weft in different situations (stress in MPa)

Table 6. Minimum and maximum value of coefficients of stress concentration in different criteriaTable 5-Minimum and maximum value of coefficients of stress concentration in different criteria 

Criteria Matrix failure in 
tension 

fiber failure in 
longitudinal tension 

Min 2.44 1.97 

Max 2.80 3.09 
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fiber. When the overall strength of the matrix is ​​lower, which is 
generally the case, failure initiates from the matrix, and when 
the matrix is ​​broken, the fibers provide the overall strength of 
the material. In this situation, even though no analysis has been 
performed, it seems that owing to the greater uncertainty in the 
fiber stress concentration factor, the continuation of the failure 
process will be completely different from one case to another.

5- Conclusion
Using a multi-scale analysis and evaluation of its 

results, the effect of a hole in a woven composite fabric was 
investigated. Homogenization of woven composite from 
micro to meso scale and from meso to macro scale was done 
using analytical relations and finite element simulation of 
the representative volume element, and the results of this 
homogenization are in good agreement with the experiments 
and analytical equations. Among the investigated methods 
for assigning material in finite element simulation in meso 
scale analysis, it was shown that the method of assigning 
element by element, which was used in this study, has less 
error than the embedded method. As a special case, in the 
example investigated, the energy stored in the embedded 
method was obtained with a 9% error. Using the displacement 
results of the simulated homogenized model, localization was 
performed with the help of a representative volume element 
around the hole. The study of the maximum stress around 
the hole shows that in the examined woven composite, the 
uncertainty caused by the position of the warp and weft to the 

hole can lead to different values of the maximum stress in the 
matrix and warp and weft. It was shown experimentally and 
numerically that the stress around the hole is highly dependent 
on its dimensions and the amount of stress concentration 
around the hole is not a certain value. The stress histogram 
remained stable from the 8 mm diameter hole onwards, 
and in the 10 mm diameter hole, the highest probability of 
stress concentration was 2.7. With the multi-scale method 
used based on the statistical point of view, it is possible to 
predict the stress concentration coefficient around the hole. In 
general, with the increase in the diameter of the hole, the value 
of the maximum average stress increases but the increase in 
maximum stress is not proportional to the increase in hole 
diameter. In this way, regarding the part simulated in this 
article, no significant difference was observed in the value of 
failure stress in samples with 8 and 10 millimeters diameter 
holes. Another result that the simulation at the local scale 
showed is that due to the existing geometric uncertainties, 
there is a probability that the specimens with a smaller 
diameter hole will fail at a lower force than the specimens 
with a hole with a larger diameter. 

Using the multi-scale method, it is possible to predict 
the stress concentration coefficient around the hole from 
a statistical point of view. The results show that the stress 
concentration coefficient values in different criteria for a 
woven composite fabric can be in a wide range. Consequently, 
it is not accurate to determine the explicit value of the stress 
concentration coefficient due to the geometrical uncertainties.

 

Fig. 15-Histogram diagram of stress concentration coefficient for fiber and matrix 

 

 

 

 

 

Fig. 15. Histogram diagram of stress concentration coefficient for fiber and matrix
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