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Optimization of multilayer perceptron neural network structure for simulating the 
effect of input variables on the spring-back phenomenon in the ultrasonic vibration 
assisted single point incremental forming
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ABSTRACT: Applying the ultrasonic vibration to the forming tool in single point incremental forming 
reduces the forming force, increases the sheet formability, and reduces the spring-back. In the present 
research, with the aim of minimizing the sheet spring-back, the optimal structure of the multilayer 
perceptron neural network was extracted using three algorithms which are genetic algorithm, imperialistic 
competition algorithm, and equilibrium optimizer. Analyzing the optimal network with an R-value of 
0.99973 and a root mean squared error of 0.0084 shows that the optimized network performs excellently 
in simulating the considered system. Then, the best network was used to optimize the variables affecting 
the objective functions. These objective functions include the average of measured depth (Have) and the 
spring-back coefficient (K). The input variables are: vertical step size, sheet thickness, tool diameter, 
wall inclination angle, and tool feed rate. The results showed that the optimized multilayer perceptron 
network can simulate the process with very good precision. Also, the extraction of optimal values shows 
that the maximum of Have and the minimum of K can be achieved with very good accuracy. Finally, the 
comparison of the three algorithms showed that the performance of the equilibrium optimizer was better 
in optimizing the neural network structure. On the other hand, in the optimizing process of the input 
variables, the imperialistic competition algorithm has been more efficient.
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1- Introduction
Incremental forming has been introduced as one of the 

rapid prototyping methods [1]. In this process, the specimen 
geometry is divided into a set of 2D layers, and a local and 
continuous plastic deformation is applied to the sheet by a 
hemispherical-head tool. After finishing the forming of 
each layer, the tool is moved by a small step and repeats the 
process for the next layer [2]. In the SPIF process, the sheet 
is simply clamped in the fixture and can be freely bent during 
the process. Therefore, when the tool force is removed, the 
effect of spring-back will appear [3]. Hence, spring-back is 
one of the most significant factors affecting the accuracy of 
products, and necessary measures should be taken to control 
and reduce it.

Deokar et al. [4] studied the behavior of force and 
spring-back in incremental forming using FEA. The results 
showed that in order to reduce the spring-back, the clamping 
of the part should be close to the border of the tool path. 
Ashokkumar et al. [5] studied the effect of spindle speed, 
tool feed rate, tool diameter, and step size in the incremental 
forming of conical geometry. They considered thinning rate, 
surface roughness, spring-back, and sheet formability as the 

response parameters. The results of the Taguchi and TOPSIS 
method showed that the spindle speed of 2000 rpm, the feed 
rate of 300 mm/min, the tool diameter of 10 mm, and the 
step size of 0.4 mm reduce the surface roughness and spring-
back. In a review paper, Patel and Gandhi [6] investigated 
the effect of incremental forming parameters on the forming 
forces, formability, spring-back, and surface roughness. They 
provided a comprehensive assessment of the current state 
of this process along with technical advantages and existing 
limitations. On the other hand, the positive effects of ultrasonic 
vibration include reducing the yield strength of the material 
[7], reducing the forming force [8], reducing the spring-back 
[9], reducing the surface roughness [10] and increasing the 
material formability [11] has been confirmed in the various 
forming processes. Hence, Vahdati et al. [12] developed the 
ultrasonic vibration-assisted SPIF (UVaSPIF). The results 
showed that the applying of ultrasonic vibration to the 
hemispherical-head tool decreases the forming force, spring-
back, and surface roughness. In this direction and in order to 
understand the effect of ultrasonic vibration in incremental 
forming, extensive investigation was done by the researchers 
[13-15]. In another study, Vahdati et al. [16] statistically and 
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experimentally studied the parameters affecting the spring-
back in the UVaSPIF. For this purpose, the factors: vertical 
step size, sheet thickness, tool diameter, wall inclination 
angle, and tool feed rate were selected as the input factors. A 
number of 46 tests were designed and implemented using the 
response surface methodology (RSM). Then, the average of 
measured depth (Have) and the spring-back coefficient (K) of 
the specimens were considered as the response parameters. 
The results showed that the fitted models and the regression 
equations have the essential ability and accuracy to describe 
and predict the changes of the response parameters.

On the other hand, the ability of evolutionary algorithms 
based on AI to optimize the objective functions in engineering 
problems has been confirmed [17-19]. In addition, the 
optimization of the neural network structure in order to 
reduce network error and improve its performance has 
been considered [19-21]. Therefore, in this research, using 
the reported values of Have and K in reference [16], the best 
structure of the MLP neural network is extracted to simulate 
the existing data. Then, this improved network is used to 
optimize the variables affecting the spring-back phenomenon. 
It should be noted that the optimization processes will be 
performed using GA, ICA, and EO algorithms and their 
efficiency will be evaluated and compared.

2- Design and implementation of experimental tests
Table 1 shows the input variables of the experimental 

tests. Each of these variables was considered at three levels.
The vibration amplitude and rotational speed of the tools 

were set at 7.5 microns and 125 rpm, respectively. To apply 
the ultrasonic vibration, a generator with a power of 1000 
watts and a frequency of 20 kHz was used. Hemispherical-
head tools were fabricated in diameters of 10, 15, and 20 mm 
(Fig. 1).

The experimental tests were designed based on the RSM 
[22] and using the Minitab software [23]. Details of the 
design of experiments (DOE) are available in reference [16]. 
The specimens are made of Al 1050-O, which will be formed 
as an incomplete pyramid with a depth of 30 mm (Figs. 2 and 
3). Experimental tests were performed according to the 46 
runs and specimens were produced according to the desired 
geometry and strategy (Fig. 4).

To evaluate the spring-back, a parameter called spring-
back coefficient (K) is used, which is obtained from the 
following equation [24]:
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In this equation, H is the applied depth by the forming 
tool (30 mm), t is the sheet thickness, and Have is the average 
of measured depth after removing the tool pressure (Fig. 5). 
Therefore, as the value of the K parameter approaches to one, 
the spring-back reduces.

The depth of specimens was measured using the contour-

Table 1. Introduction of UVaSPIF input variables [16]Table 1. Introduction of UVaSPIF input variables [16] 

Variable Symbol Unit -1 0 +1 
Vertical step size v mm 0.25 0.5 0.75 
Sheet thickness t mm 0.4 0.7 1 
Tool diameter d mm 10 15 20 

Wall inclination angle φ degree 40 50 60 
Feed rate f mm/min 1500 2000 2500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Hemispherical-head tools 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.Hemispherical-head tools
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Fig. 2. Dimensional characteristics of the specimen [16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Dimensional characteristics of the specimen [16]

 
Fig. 3. Execution of the UVaSPIF process [16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Execution of the UVaSPIF process [16]

  
(b) Test no. = 22 (a) Test no. = 9 

Fig. 4. Two formed specimens [16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Two formed specimens [16]

 
Fig. 5. The imposed depth (H) and the measured depth (Have) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The imposed depth (H) and the measured depth (Have)
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graph device, and its average was registered as the Have. Then, 
using Eq. 1, the spring-back coefficient (K) was calculated 
and the values of the response parameters were recorded [16].

3- Optimizing the structure of the neural network
3- 1- Optimization Algorithms

Metaheuristic techniques are methods that use real-life 
events to make a computer program that helps find the best 
solutions for problems. These methods are grouped into four 
main categories: methods based on evolution, methods based 
on physics, methods based on swarms, and methods based on 
humans [25]. In evolution-based algorithms, the guidelines 
of natural evolution are followed, while in physics-based 
algorithms, the laws of nature are replicated. The swarm-
based methods include algorithms that imitate how animals 
work together in a group. Finally, human-based algorithms, 
are influenced by how people behave socially.

In this research, the optimization problem is addressed 
through the employment of three distinct methodologies: 
the genetic algorithm (GA), the imperialistic competition 
algorithm (ICA), and the equilibrium optimizer (EO) 
technique. Should note that these algorithms fall into 
different categories, as shown in Table 2. An overview of 
these optimization algorithms is in Refs. [26-28].

3- 2- Network’s structure
For simulating the system defined in the previous section 

using machine learning algorithms, a multi-layer perceptron 
(MLP) network based on the different hidden layers is 
utilized. The considered training algorithm is the back 
Propagation (BP) algorithm [29]. The neurons’ number in the 
input and output layers of the network are defined regarding 
the number of inputs and outputs of the system. But hidden 
layers’ characteristics can be chosen arbitrarily: their number, 
their neurons’ number, and their transfer functions type. 
Thus, one can optimize the network’s structure to generate an 
optimal network and get the best performance. 

In the present research, an optimization problem is defined 
for designing the MLP network with an optimal structure. 
This problem is established based on the following basis:
• The problem’s design variables include the number of 

neurons and the type of transfer function for each hidden 

layer.
• The margin of variation for neurons’ number is selected 

between 1 to 30.
• The transfer functions are limited to three types: logsig, 

tansig, and elliotsig.
• The cost function is defined based on the Root Mean 

Squared Error (RMSE) of the network.
• The optimization process is performed for networks with 

two, three, four, and five hidden layers networks.
There is no need to make any improvements or 

adjustments for the network consisting of just one hidden 
layer; its possible cases are equal to 90, and one can select 
the optimal solution by checking all cases. Except for the 
network with one hidden layer, the optimization problem for 
other networks has 2*HL design variables, if HL is defined as 
the number of hidden layers.

Three choices are available for the selection of the transfer 
function, based on Table 3. Moreover, the neural network’s 
error, defined as RMSE, has the following equation:
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In this equation, n is the number of samples, while pY  and 
dY  are the predicted and desired outputs, respectively. Also, 

there is another criterion (R) that shows the performance of 
the network, which is defined as follows: 
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Where dY  is the mean value of dY . Should note that the 
minimum value of RMSE (RMSE=0) is equivalent to the 
maximum value of R (R=1).

Based on the above explanations, now the summary of the 
defined optimization problem can be represented as follows:

Table 2. Used optimization algorithms in this researchTable 2. Used optimization algorithms in this research 

No. Algorithm Category Proposed Year Main Ref. 

1 GA Evolution-based algorithm 1970 [26] 

2 ICA human-based algorithm 2007 [27] 

3 EO physics-based algorithm 2020 [28] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



M. Vahdati and S. M. Varedi-Koulaei, AUT J. Mech. Eng., 8(4) (2024) 337-350, DOI: 10.22060/ajme.2024.23314.6122

341

(1) 2
+

2

+
=

ave
tH

tH
K  

 

 21
  d pRMSE Y Y

n
 (2) 

 

 
 

2

21
 

 
 

d p

d d

Y Y
R

Y Y
 (3) 

 

 
 

 

     , 

: , 
. :   1 30       

, , 
*   2 :  2,      1,2      
*   3:  3,      1,2,3      
*   4 :  4,      1, ,4     
*   5 :  5,      1,

 



  
  
   
   

j

j i i

i

i

Min RMSE X

X N F
S t N

F logsig tansig elliotsig
HL j i
HL j i
HL j i
HL j i ,5

 (4) 

 

 

 

2
1

1Min

: v,  t,  d,  φ,  f
S.t :   1 5

 

   

obj

i

F X f
f

X
Lb x Ub i

 (5) 

 

 

(4)

Where Ni indicates the number of neurons in the ith 
hidden layer, and Fi shows the type of transfer function for 
the ith hidden layer’s neurons. In addition, Xj is the vector of 
design variables to optimize the network whose number of 
hidden layers is equal to j.

Based on the information gathered, it was determined 
that there are a total of 46 samples, and this system has five 
inputs (v, t, d, φ, f) and two outputs (Have, K). For entering the 
data into the neural network’s training process, the extracted 
experimental data is divided into three parts, in a random 
way: 70% is allocated for the training set, 15% is selected 
for the validation set, and the remaining 15% are used for 
the test set. Moreover, all data is normalized between 0 to 1, 
and the network was trained using the Levenberg-Marquardt 
(LM) approach.

Before optimizing the MLP network by adding more 
hidden layers (2, 3, 4, and 5), the results for the network with 
only one hidden layer are described. When HL=1, N1, and 
F1 are two design parameters of the problem. Given that the 
design parameters are discrete variables, and knowing N1 and 
F1 have 30 and 3 discrete levels, respectively, there are only 
90 different vectors in the design space of this problem. Thus, 
one can test all the design vectors, and select the optimal one 
with the lowest level of RMSE, without any optimization 

process. The findings indicate that the optimal network has 
N1=8 neurons in its hidden layer, and elliotsig is its transfer 
function. Based on this structure, the values of RMSE and  are 
equal to 0.0221 and 0.99798, respectively.

4- Results
4- 1- Network optimization

In this section, we studied and improved the MLP neural 
network. We tried different numbers of hidden layers: two, 
three, four, and five. We used optimization algorithms to 
make the network more accurate by reducing its RMSE. For 
the optimization process, the population size is considered 
twice the number of design variables, while the maximum 
number of iterations for all metaheuristic algorithms is equal 
to 100.

The plots of Fig. 6 represent the convergence curve of 
the three metaheuristic algorithms, for optimizing the MLP 
network with different numbers of hidden layers. These 
figures signify that in the networks with 2, 3, and 4 hidden 
layers, the EO algorithm attains superior outcomes compared 
to others, while for the network with 5 hidden layers, the ICA 
algorithm demonstrates a more favorable performance.

Table 4 shows the detailed results, including the optimal 
structures of networks, in addition to their RMSE and R’s 
value for all cases. Moreover, these results are compared 
with the best solution for the network with one hidden 
layer. Furthermore, Fig. 7 compares the RMSE and R values 
of various algorithms with different hidden layer networks.

Considering the reported results, the three hidden layers 
network shows superior performance compared to the other 
types, while the EO was the best among the optimization 
techniques. Also, one can see that the network with three 
hidden layers, found using the EO algorithm, is the best 
among all the different networks. This optimal network, with 
three hidden layers, has a 61.99% error reduction compared 
to the one-hidden-layer network.

• The summarized optimization outcomes considering 

Table 3. Different transfer function types considered for the optimization processTable 3: Different transfer function types considered for the optimization process 

Name of transfer function Equation 

Log-sigmoid (Logsig)   1
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(a) HL=2 (b) HL=3 

  

(c) HL=4 (d) HL=5 

Fig. 6. Performance evolution for different networks 
 

 

 

 

 

 

 

 

 

 

Fig. 6. Performance evolution for different networks

  

(a) RMSE (b) R 

Fig. 7. Comparison of the obtained results ( ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparison of the obtained results ( )
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different network types and different optimization 
methods are:

• The EO algorithm is the most accurate method for networks 
with 2, 3, and 4 hidden layers, while the ICA algorithm is 
better for five hidden layers.

• Comparing three optimization methods, the EO, a novel 
algorithm developed in 2020, has the best results.

• Networks that have three hidden layers show superior 
performance compared to those with fewer or more 
hidden layers.

• The three hidden layers MLP network, acquired by the EO 
algorithm, has the smallest amount of RMSE compared to 
all other improved networks (RMSE=0.0084).

4- 2- Optimal network error analysis
According to the results, represented in the previous 

section, the best network designed from the optimization 
process was a three-hidden layers network acquired by the 
EO algorithm. The organization of this network can be seen 
in Fig. 8. It is now possible to evaluate the performance of 
this network by an error analysis.

Fig. 9 shows the location of the optimal network’s output 
with respect to the problem’s target. Figs. 9(a) and 9(b) show 
this diagram for the first and second outputs, Have and K, while 

in Fig. 9(c), the regression diagram is plotted for both outputs 
in the normalized format. The R’s value greater than 0.999 
shows that the optimized network has excellent performance 
for simulating the considered system.

Moreover, Figs. 10 and 11 represent the absolute error and 
the error histogram for two different outputs. Based on Fig. 
10, the maximum absolute error for two errors, Have and K, 
are equal to 411 10−×  and 44 10−× , respectively. 

According to these findings, it can be concluded that 
the obtained network can simulate the desired problem with 
minimal error. Also, the two outputs’ errors are at the same 
level, which means that there is not a large difference between 
the outputs’ accuracy.

5- Design process: optimizing input parameters for a 
targeted output

This section aims to extract some optimal values for 
input parameters of the system, based on the desired values 
for their outputs. This design process can be converted to 
an optimization problem, in which its objective function is 
maximizing the first output (Have) and minimizing the second 
one (K). Because these two outputs are dependent on each 
other, one can sum these objective functions.

Table 4. Detailed results of optimizing MLP networks in different casesTable 4. Detailed results of optimizing MLP networks in different cases 

Network Algorithms Ni Fi RMSE R 

HL=1 --- 8 elliotsig 0.0221 0.99798 

HL=2 

GA [8 1] [tansig logsig] 0.0145 0.99911 

ICA [30 4] [tansig logsig] 0.0283 0.99659 

EO [6; 6] [logsig; tansig] 0.0095 0.99963 

HL=3 

GA [3; 12; 9] [tansig; tansig; logsig] 0.0103 0.99956 

ICA [10; 25; 4] [logsig; logsig; elliotsig] 0.0206 0.99823 

EO [5; 2; 2] [tansig; elliotsig; elliotsig] 0.0084 0.99973 

HL=4 

GA [5; 10; 8; 19] [tansig; tansig; logsig; elliotsig] 0.0266 0.99703 

ICA [15; 12; 20; 4] [tansig; tansig; logsig; tansig] 0.0195 0.99432 

EO [3; 6; 13; 7] [tansig; tansig; logsig; logsig] 0.0085 0.99971 

HL=5 

GA [11; 24; 14; 6; 16] [logsig; logsig; logsig; logsig; tansig] 0.0311 0.99592 

ICA [2; 10; 13; 26; 18] [tansig; logsig; tansig; tansig; logsig] 0.0091 0.99965 

EO [5; 1; 3; 1; 1] [tansig; logsig; elliotsig; tansig; tansig] 0.0157 0.99903 
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This new optimization problem is totally different from 
the optimization problem of the previous section but uses 
its optimal network. In the other word, for calculating the 
system’s outputs in this section, the optimal MLP network 
gained in the previous section is utilized. Here, the design 
parameters are the five inputs of the considered system, 
including v, t, d, φ, and f. Therefore, the second optimization 
problem of this research, defined as a process design, is as 
follows:
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Where 1 = avef H  and 2 =f K , and Lb and Ub are the 
lowest and highest values taken from the data samples. For 
minimizing the defined objective function in this section, all 
three algorithms, including GA, ICA, and EO, are utilized. 
This optimization problem has been solved several times 
by means of each optimization algorithm, and the five best 
results for each one are represented in Table 5. These results 
show that the values of Have and K in different methods and 
different runs are near to each other and there is not a sensible 

difference between them, while their optimal input variables 
are different. Thus, this optimization problem has many 
solutions. In Fig. 12, the optimized inputs are shown based 
on the 15 different runs. Note that this figure has been plotted 
in the format of the normalized data.

6- Conclusion
In this research, the structure of the MLP neural network 

was extracted and optimized in order to predict the spring-back 
in the UVaSPIF. Neural network training was done based on 
the reported data in reference [16]. Next, the neural network 
was used to optimize the input variables and to maximize the 
average of measured depth (Have), and minimize the spring-
back coefficient (K). Optimization processes were performed 
using three powerful and well-known algorithms, namely 
GA, ICA, and EO. The findings of this study are summarized 
in the following way:
• The values of RMSE=0.0084 and R=0.9997 obtained from 

the optimized neural network showed that this network 
has succeeded in predicting the response parameters with 
high accuracy.

• In the optimization process of the neural network structure, 
the EO algorithm has better performance.

• The optimization results of the neural network structure 
showed that the network error increases with the increase 
in the number of hidden layers. Therefore, the best results 
were obtained with the number of 3 and 4 hidden layers.

 
Fig. 8. The optimal structure of the MLP network 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The optimal structure of the MLP network
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(a)  (b)  

 
(c)  

Fig. 9. The location of the predicted output against its target for the best network. (a) First 
output, Have, (b) Second output, K, (c) Both outputs, in the normalized format 

 

 

 

 

 

Fig. 9. The location of the predicted output against its target for the best network. (a) First output, Have, (b) 
Second output, K, (c) Both outputs, in the normalized format
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(a)  

 
(b)  

Fig. 10. The absolute error of the predicted outputs using best network. (a) First output, Have (b) 
Second output, K 

 

 

 

 

Fig. 10. The absolute error of the predicted outputs using best network. (a) First output, Have (b) Second 
output, K
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(a)  

 

(b)  

Fig. 11. The error histogram of the predicted outputs using the best network. (a) First output, 
Have , (b) Second output, K 

 

 

 

Fig. 11. The error histogram of the predicted outputs using the best network. (a) First output, Have, (b) Second 
output, K
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Fig. 12. Optimal values of the input variables in different 15 runs 
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Fig. 12. Optimal values of the input variables in different 15 runs

Table 5. Optimization results of the design processTable 5. Optimization results of the design process 

Algorithm v t d   f  1  avef H  2 f K  

GA 

0.25 0.610365 10.42029 45.96913 1846.395 29.87284 1.00E+00 
2.66E-01 0.580647 10 40.2103 2083.953 29.87283 1.00E+00 
0.436514 0.894978 10 53.46541 1753.091 29.87282 1.00E+00 
0.250026 0.910462 12.66883 52.65976 1927.858 29.87282 1.00E+00 
0.465487 0.893506 10.05626 53.67196 1558.011 29.87281 1.0042 

ICA 

0.315779 0.683831 10.13686 51.02141 1728.328 29.87284 1.00E+00 
0.284198 0.714057 10.48811 41.12143 2311.118 29.87283 1.00E+00 
0.288474 0.702546 10 47.55525 2038.146 29.87283 1.00E+00 

0.25 0.70303 10 40 2500 29.87283 1.00E+00 
0.250857 0.72024 10 40.84809 2500 29.87283 1.00E+00 

EO 

0.250449 0.53103 10.07309 47.67064 1500 29.87284 1.00E+00 
0.487087 0.997683 1.11E+01 47.52018 1500 29.87282 1.00E+00 
0.503708 1 10 44.38489 1938.6 29.87281 1.0042 

0.25 0.655042 10.79317 54.22639 1501.049 29.87282 1.004201 
0.50461 0.999966 10.15266 40 2189.621 29.87281 1.0042 
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• During the optimization process, the parameters of Have 
and K have been maximized and minimized, respectively, 
with high precision.

• In the optimizing process of the input variables, the 
efficiency of the ICA algorithm has been better.
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