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Abstract 

Applying the ultrasonic vibration to the forming tool in single point incremental forming reduces 

the forming force, increases the sheet formability, and reduces the spring-back. In the present 

research, with the aim of minimizing the sheet spring-back, the optimal structure of the multilayer 

perceptron neural network was extracted using three algorithms which are genetic algorithm, 

imperialistic competition algorithm and equilibrium optimizer. Analyzing the optimal network 

with an R-value of 0.99973 and a root mean squared error of 0.0084 shows that the optimized 

network performs excellently in simulating the considered system. Then, the best network was 

used to optimize the variables affecting the objective functions. These objective functions include 

the average of measured depth (Have) and the spring-back coefficient (K). The input variables are: 

vertical step size, sheet thickness, tool diameter, wall inclination angle, and tool feed rate. The 

results showed that the optimized multilayer perceptron network can simulate the process with 

very good precision. Also, the extraction of optimal values shows that the maximum of Have and 

the minimum of K can be achieved with very good accuracy. Finally, the comparison of three 

algorithms showed that the performance of the equilibrium optimizer was better in optimizing the 

neural network structure. On the other hand, in the optimizing process of the input variables, the 

imperialistic competition algorithm has been more efficient. 

Keywords: Incremental forming, Ultrasonic vibration, Spring-back phenomenon, Artificial 

intelligence, Evolutionary algorithms. 

 

1. Introduction 

Incremental forming has been introduced as one of the rapid prototyping methods [1]. In this 

process, the specimen geometry is divided into a set of 2D layers, and a local and continuous 

plastic deformation is applied to the sheet by a hemispherical-head tool. After finishing the forming 

of each layer, the tool is moved by a small step and repeats the process for the next layer [2]. In 
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SPIF process, the sheet is simply clamped in the fixture and can be freely bent during the process. 

Therefore, when the tool force is removed, the effect of spring-back will appear [3]. Hence, the 

spring-back is one of the most significant factors affecting the accuracy of products, and necessary 

measures should be taken to control and reduce it. 

Deokar et al. [4] studied the behavior of force and spring-back in the incremental forming using 

FEA. The results showed that in order to reduce the spring-back, the clamping of the part should 

be close to the border of the tool path. Ashokkumar et al. [5] studied the effect of spindle speed, 

tool feed rate, tool diameter and step size in the incremental forming of conical geometry. They 

considered thinning rate, surface roughness, spring-back and sheet formability as the response 

parameters. The results of the Taguchi and TOPSIS method showed that the spindle speed of 2000 

rpm, the feed rate of 300 mm/min, the tool diameter of 10 mm and the step size of 0.4 mm reduce 

the surface roughness and spring-back. In a review paper, Patel and Gandhi [6] investigated the 

effect of incremental forming parameters on the forming forces, formability, spring-back and 

surface roughness. They provided a comprehensive assessment of the current state of this process 

along with technical advantages and existing limitations. On the other hand, the positive effects of 

ultrasonic vibration include reducing the yield strength of the material [7], reducing the forming 

force [8], reducing the spring-back [9], reducing the surface roughness [10] and increasing the 

material formability [11] has been confirmed in the various forming processes. Hence, Vahdati et 

al. [12] developed the ultrasonic vibration assisted SPIF (UVaSPIF). The results showed that the 

applying of ultrasonic vibration to the hemispherical-head tool decreases the forming force, spring-

back and surface roughness. In this direction and in order to understand the effect of ultrasonic 

vibration in the incremental forming, extensive investigation was done by the researchers [13-15]. 

In another study, Vahdati et al. [16] statistically and experimentally studied the parameters 

affecting the spring-back in the UVaSPIF. For this purpose, the factors: vertical step size, sheet 

thickness, tool diameter, wall inclination angle, and tool feed rate were selected as the input factors. 

A number of 46 tests were designed and implemented using the response surface methodology 

(RSM). Then, the average of measured depth (Have) and the spring-back coefficient (K) of the 

specimens were considered as the response parameters. The results showed that the fitted models 

and the regression equations have the essential ability and accuracy to describe and predict the 

changes of the response parameters. 

On the other hand, the ability of evolutionary algorithms based on AI to optimize the objective 

functions in engineering problems, has been confirmed [17-19]. In addition, the optimization of 

the neural network structure in order to reduce network error and improve its performance has 

been considered [19-21]. Therefore, in this research, using the reported values of Have and K in 

reference [16], the best structure of the MLP neural network is extracted to simulate the existing 

data. Then, this improved network is used to optimize the variables affecting the spring-back 

phenomenon. It should be noted that the optimization processes will be performed using GA, ICA 

and EO algorithms and their efficiency will be evaluated and compared. 
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2. Design and implementation of experimental tests 

Table 1 shows the input variables of the experimental tests. Each of these variables was considered 

at three levels. 

Table 1. Introduction of UVaSPIF input variables [16] 

Variable Symbol Unit -1 0 +1 

Vertical step size v mm 0.25 0.5 0.75 

Sheet thickness t mm 0.4 0.7 1 

Tool diameter d mm 10 15 20 

Wall inclination angle φ degree 40 50 60 

Feed rate f mm/min 1500 2000 2500 

 

The vibration amplitude and rotational speed of the tools were set at 7.5 microns and 125 rpm, 

respectively. To apply the ultrasonic vibration, a generator with a power of 1000 watts and a 

frequency of 20 kHz was used. Hemispherical-head tools were fabricated in diameters of 10, 15 

and 20 mm (Fig. 1). 

 

 
Fig. 1. Hemispherical-head tools 

 

The experimental tests were designed based on the RSM [22] and using the Minitab software [23]. 

Details of the design of experiments (DOE) are available in reference [16]. The specimens are 

made of Al 1050-O, which will be formed as an incomplete pyramid with a depth of 30 mm (Figs. 

2 and 3). Experimental tests were performed according to the 46 runs and specimens were 

produced according to the desired geometry and strategy (Fig. 4). 
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Fig. 3. Execution of the UVaSPIF process 

[16] 

Fig. 2. Dimensional characteristics of the specimen 

[16] 

 

  
(b) Test no. = 22 (a) Test no. = 9 

Fig. 4. Two formed specimens [16] 

 

To evaluate the spring-back, a parameter called spring-back coefficient (K) is used, which is 

obtained from the following equation [24]: 

 

(1) 
2

+
2

+

=

ave

t
H

t
H

K  

In this equation, H is the applied depth by the forming tool (30 mm), t is the sheet thickness and 

Have is the average of measured depth after removing the tool pressure (Fig. 5). Therefore, as the 

value of the K parameter approaches to one, the spring-back reduces. 
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Fig. 5. The imposed depth (H) and the measured depth (Have) 

 

The depth of specimens was measured using the contour-graph device, and its average was 

registered as the Have. Then, using Eq. 1, the spring-back coefficient (K) was calculated and the 

values of the response parameters were recorded [16]. 

 

3. Optimizing the structure of the neural network 

3.1. Optimization Algorithms 

Metaheuristic techniques are methods that use real-life events to make a computer program that 

helps find the best solutions for problems. These methods are grouped into four main categories: 

methods based on evolution, methods based on physics, methods based on swarms, and methods 

based on humans [25]. In evolution-based algorithms, the guidelines of natural evolution are 

followed, while in physics-based algorithms, the laws of nature are replicated. The swarm-based 

methods include algorithms that imitate how animals work together in a group. Finally, human-

based algorithms, are influenced by how people behave socially. 

In this research, the optimization problem is addressed through the employment of three distinct 

methodologies: the genetic algorithm (GA), the imperialistic competition algorithm (ICA), and the 

equilibrium optimizer (EO) technique. Should note that these algorithms fall into different 

categories, as shown in Table 2. An overview of these optimization algorithms are in Refs. [26-

28]. 

Table 2. Used optimization algorithms in this research 

No. Algorithm Category Proposed Year Main Ref. 

1 GA Evolution-based algorithm 1970 [26] 

2 ICA human-based algorithm 2007 [27] 

3 EO physics-based algorithm 2020 [28] 
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3.2. Network's structure 

For simulating the system defined in the previous section using machine learning algorithms, a 

multi-layer perceptron (MLP) network based on the different hidden layers is utilized. The 

considered training algorithm is the Back-Propagation (BP) algorithm [29]. The neurons' number 

in the input and output layers of the network are defined regarding the number of inputs and outputs 

of the system. But hidden layers’ characteristics can be chosen arbitrarily: their number, their 

neurons' number, and their transfer functions type. Thus, one can optimize the network’s structure 

to generate an optimal network and get the best performance.  

In the present research, an optimization problem is defined for designing the MLP network with 

an optimal structure. This problem is established based on the following basis: 

 The problem's design variables include the number of neurons and the type of transfer 

function for each hidden layer. 

 The margin of variation for neurons' number is selected between 1 to 30. 

 The transfer functions are limited to three types: logsig, tansig, and elliotsig. 

 The cost function is define based on the Root Mean Squared Error (RMSE) of the network. 

 The optimization process is performed for networks with two, three, four and five hidden 

layers networks. 

There is no need to make any improvements or adjustments for the network consisting of just one 

hidden layer; its possible cases are equal to 90, and one can select the optimal solution by checking 

all cases. Except for the network with one hidden layer, the optimization problem for other 

networks has 2*HL design variables, if HL is defined as the number of hidden layers. 

Three choices are available for the selection of the transfer function, based on Table 3. Moreover, 

the neural network’s error, defined as RMSE, has the following equation: 

 
21

  d pRMSE Y Y
n

 (2) 

In this equation, n is the number of samples, while 
pY  and dY  are the predicted and desired outputs, 

respectively. Also, there is another criterion (R) that shows the performance of the network, which 

is defined as follows:  

 

 

2

2
1

 
 

 

d p

d d

Y Y
R

Y Y
 (3) 

Where dY  is the mean value of dY . Should note that the minimum value of RMSE (RMSE=0) is 

equivalent to the maximum value of R (R=1). 
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Table 3: Different transfer function types considered for the optimization process 

Name of transfer function Equation 

Log-sigmoid (Logsig)  
1 1

1 1 
 

 
logsig x x

F x
e e

 

Hyperbolic tangent sigmoid (Tansig) 
( )

tan ( )
( ) ( )






 



x x

sig x x

e e
F x tanh x

e e
 

Elliot symmetric sigmoid (Elliotsig_)  
1




elliotsig

x
F x

x
 

 

Based on the above explanations, now the summary of the defined optimization problem can be 

represented as follows: 

 
 

 

       , 

: , 

. :   1  30       

,  , 

*    2 :   2,       1, 2      

*    3 :   3,       1, 2,3      

*    4 :   4,       1, , 4     

*    5 :   5,       1,

 



  

  

   

   

j

j i i

i

i

Min RMSE X

X N F

S t N

F logsig tansig elliotsig

HL j i

HL j i

HL j i

HL j i ,5

 (4) 

Where Ni indicates the number of neurons in the ith hidden layer, and Fi shows the type of transfer 

function for the ith hidden layer’s neurons. In addition, Xj is the vector of design variables to 

optimize the network whose number of hidden layers is equal to j. 

Based on the information gathered, it was determined that there are a total of 46 samples, and this 

system has five inputs (v, t, d, φ, f) and two outputs (Have, K). For entering the data into the neural 

network's training process, the extracted experimental data is divided into three parts, in a random 

way: 70% are allocated for the training set, 15% are selected for the validation set, and the 

remaining 15% are used for the test set. Moreover, all data is normalized between 0 to 1, and the 

network was trained using the Levenberg-Marquardt (LM) approach. 

Before optimizing the MLP network by adding more hidden layers (2, 3, 4, and 5), the results for 

the network with only one hidden layer are described. When HL=1, N1 and F1 are two design 

parameters of the problem. Given that the design parameters are discrete variables, and knowing 

N1 and F1 have 30 and 3 discrete levels, respectively, there are only 90 different vectors in the 
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design space of this problem. Thus, one can test all the design vectors, and select the optimal one 

with the lowest level of RMSE, without any optimization process. The findings indicate that the 

optimal network has N1=8 neurons in its hidden layer, and elliotsig is its transfer function. Based 

on this structure, the values of RMSE and 𝑅 are equal to 0.0221 and 0.99798, respectively. 

 

4. Results 

4.1. Network's optimization 

In this section, we studied and improved the MLP neural network. We tried different numbers of 

hidden layers: two, three, four, and five. We used optimization algorithms to make the network 

more accurate by reducing its RMSE. For the optimization process, the population size is 

considered twice the number of design variables, while the maximum number of iterations for all 

metaheuristic algorithms is equal to 100. 

The plots of Fig. 6 have represented the convergence curve of the three metaheuristic algorithms, 

for optimizing the MLP network with different numbers of hidden layers. These figures signify 

that in the networks with 2, 3, and 4 hidden layers, the EO algorithm attains superior outcomes 

compared to others, while for the network with 5 hidden layers, the ICA algorithm demonstrates a 

more favorable performance. 

 

  
(a) HL=2 (b) HL=3 

  
(c) HL=4 (d) HL=5 
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Fig. 6. Performance evolution for different networks 

 

Table 4 shows the detailed results, including the optimal structures of networks, in addition to their 

RMSE and R's value for all cases. Moreover, these results are compared with the best solution for 

the network with one hidden layer. Furthermore, Fig. 7 compares the RMSE and R values of 

various algorithms with different hidden layer networks. 

Considering the reported results, the three hidden layers network shows superior performance 

compared to the other types, while the EO was the best among the optimization techniques. Also, 

one can see that the network with three hidden layers, found using the EO algorithm, is the best 

among all the different networks. This optimal network, with three hidden layers, has a 61.99% 

error reduction compared to the one hidden layer network. 

Table 4. Detailed results of optimizing MLP networks in different cases 

Network Algorithms Ni Fi RMSE R 

HL=1 --- 8 elliotsig 0.0221 0.99798 

HL=2 

GA [8 1] [tansig logsig] 0.0145 0.99911 

ICA [30 4] [tansig logsig] 0.0283 0.99659 

EO [6; 6] [logsig; tansig] 0.0095 0.99963 

HL=3 

GA [3; 12; 9] [tansig; tansig; logsig] 0.0103 0.99956 

ICA [10; 25; 4] [logsig; logsig; elliotsig] 0.0206 0.99823 

EO [5; 2; 2] [tansig; elliotsig; elliotsig] 0.0084 0.99973 

HL=4 

GA [5; 10; 8; 19] [tansig; tansig; logsig; elliotsig] 0.0266 0.99703 

ICA [15; 12; 20; 4] [tansig; tansig; logsig; tansig] 0.0195 0.99432 

EO [3; 6; 13; 7] [tansig; tansig; logsig; logsig] 0.0085 0.99971 

HL=5 

GA [11; 24; 14; 6; 16] [logsig; logsig; logsig; logsig; tansig] 0.0311 0.99592 

ICA [2; 10; 13; 26; 18] [tansig; logsig; tansig; tansig; logsig] 0.0091 0.99965 

EO [5; 1; 3; 1; 1] [tansig; logsig; elliotsig; tansig; tansig] 0.0157 0.99903 
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(a) RMSE (b) R 

Fig. 7. Comparison of the obtained results ( ) 

 

The summarized optimization outcomes considering different network types and different 

optimization methods are: 

 The EO algorithm is the most accurate method for networks with 2, 3, and 4 hidden layers, 

while the ICA algorithm was better for five hidden layers. 

 Comparing three optimization methods, the EO, a novel algorithm developed in 2020, has 

the best results. 

 Networks that have three hidden layers show superior performance compared to those with 

fewer or more hidden layers. 

 The three hidden layers MLP network, acquired by the EO algorithm, has the smallest 

amount of RMSE compared to all other improved networks (RMSE=0.0084). 

 

4.2. Optimal network’s error analysis 

According to the results, represented in the previous section, the best network designed from the 

optimization process was a three hidden layers network acquired by the EO algorithm. The 

organization of this network can be seen in Fig. 8. It is now possible to evaluate the performance 

of this network by an error analysis. 
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Fig. 8. The optimal structure of the MLP network 

 

Fig. 9 shows the location of the optimal network’s output with respect to the problem’s target. 

Figs. 9(a) and 9(b) show this diagram for the first and second outputs, Have and K, while in Fig. 

9(c), the regression diagram is plotted for both outputs in the normalized format. The R's value 

greater than 0.999 shows that the optimized network has excellent performance for simulating the 

considered system. 
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(a) First output, Have (b) Second output, K 

 

(c) Both outputs, in the normalized format 

Fig. 9. The location of the predicted output against its target for the best network 

 

Moreover, Figs. 10 and 11 represent the absolute error and the error histogram for two different 

outputs. Based on Fig. 10, the maximum absolute error for two errors, Have and K, are equal to 
411 10  and 

44 10 , respectively.  
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According to these findings, it can be concluded that the obtained network can simulate the desired 

problem with minimal error. Also, the two outputs' errors are at the same level, which means that 

there is not a large difference between the outputs' accuracy. 

 
(a) First output, Have 

 
(b) Second output, K 

Fig. 10. The absolute error of the predicted outputs using best network 
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(a) First output, Have 

 
(b) Second output, K 

Fig. 11. The error histogram of the predicted outputs using best network 

 

5. Design process: optimizing input parameters for a targeted output 

This section aims to extract some optimal values for input parameters of the system, based on the 

desired values for their outputs. This design process can be converted to an optimization problem, 

in which its objective function is maximizing the first output (Have) and minimizing the second one 

(K). Because these two outputs are dependent on each other, one can sum these objective functions. 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



Page 15 of 19 
 

This new optimization problem is totally different from the optimization problem of the previous 

section, but uses its optimal network. On the other word, for calculating the system’s outputs in 

this section, the optimal MLP network gained in the previous section is utilized. Here, the design 

parameters are the five inputs of the considered system, including v, t, d, φ, and f. Therefore, the 

second optimization problem of this research, defined as a process design, is as follows: 

 

 

2

1

1
Min

: v,  t,  d,  φ,  f

S.t :     1 5

 

   

obj

i

F X f
f

X

Lb x Ub i

 (5) 

Where 1  avef H  and 2 f K , and Lb and Ub are the lowest and highest values taken from the data 

samples. For minimizing the defined objective function in this section, all three algorithms, 

including GA, ICA, and EO, are utilized. This optimization problem has been solved several times 

by means of each optimization algorithm, and the five best results for each one are represented in 

Table 5. These results show that the values of Have and K in different methods and different runs 

are near to each other and there is not a sensible difference between them, while their optimal input 

variables are different. Thus, this optimization problem has many solutions. In Fig. 12, the 

optimized inputs are shown based on the 15 different runs. Note that this figure has plotted in the 

format of the normalized data. 

 

Table 5. Optimization results of the design process 

Algorithm v t d   f  1  avef H  2 f K  

GA 

0.25 0.610365 10.42029 45.96913 1846.395 29.87284 1.00E+00 

2.66E-01 0.580647 10 40.2103 2083.953 29.87283 1.00E+00 

0.436514 0.894978 10 53.46541 1753.091 29.87282 1.00E+00 

0.250026 0.910462 12.66883 52.65976 1927.858 29.87282 1.00E+00 

0.465487 0.893506 10.05626 53.67196 1558.011 29.87281 1.0042 

ICA 

0.315779 0.683831 10.13686 51.02141 1728.328 29.87284 1.00E+00 

0.284198 0.714057 10.48811 41.12143 2311.118 29.87283 1.00E+00 

0.288474 0.702546 10 47.55525 2038.146 29.87283 1.00E+00 

0.25 0.70303 10 40 2500 29.87283 1.00E+00 

0.250857 0.72024 10 40.84809 2500 29.87283 1.00E+00 

EO 

0.250449 0.53103 10.07309 47.67064 1500 29.87284 1.00E+00 

0.487087 0.997683 1.11E+01 47.52018 1500 29.87282 1.00E+00 

0.503708 1 10 44.38489 1938.6 29.87281 1.0042 

0.25 0.655042 10.79317 54.22639 1501.049 29.87282 1.004201 

0.50461 0.999966 10.15266 40 2189.621 29.87281 1.0042 
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Fig. 12. Optimal values of the input variables in different 15 runs 

 

6. Conclusion 

In this research, the structure of the MLP neural network was extracted and optimized in order to 

predict the spring-back in the UVaSPIF. Neural network training was done based on the reported 

data in reference [16]. Next, the neural network was used to optimize the input variables and to 

maximize the average of measured depth (Have) and minimize the spring-back coefficient (K). 

Optimization processes were performed using three powerful and well-known algorithms, namely 

GA, ICA and EO. The findings of this study are summarized in the following way: 

 The values of RMSE=0.0084 and R=0.9997 obtained from the optimized neural network 

showed that this network has succeeded in predicting the response parameters with high 

accuracy. 

 In the optimization process of the neural network structure, the EO algorithm has better 

performance. 

 The optimization results of the neural network structure showed that the network error 

increases with the increase of the number of hidden layers. Therefore, the best results were 

obtained with the number of 3 and 4 hidden layers. 

 During the optimization process, the parameters of Have and K have been maximized and 

minimized, respectively, with high precision. 

 In the optimizing process of the input variables, the efficiency of the ICA algorithm has 

been better. 
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