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Abstract 

The electrical activity produced by muscles is recorded by the electromyography signal, a dynamic 

biosignal. This dynamic nature represents the complex muscular behavior patterns. Electromyography -

based recognition systems have far-reaching effects, revolutionizing human-computer interactions, 

enabling sign language detection, and giving amputees greater control over their devices. 

This study aims to predict specific hand movements by analyzing electromyography signals from a minimal 

number of channels. The computational cost efficiency of this approach makes it suitable for real-time 

applications. Electromyography signals were collected from the forearm muscles of 15 healthy subjects (5 

women and 10 men) aged between 19 and 24. Preprocessing tasks were applied to the raw signals, including 

high-pass filtering, Butterworth filtering, notch filtering, and signal rectification.  

The dataset consists of recordings from four channels, of which two channels were selected for predicting 

hand movements. Two 500 ms time windows from both channels were used as inputs for a weighted K-

Nearest Neighbors algorithm. The task involved predicting and classifying the intentions of three hand 

movements: pinching, finger abduction, and grasping.  

The procedure's overall results demonstrate 83.1% detection accuracy for the weighted K-Nearest 

Neighbors indicating high precision and a relatively short response time for predicting these hand 

movements in healthy subjects. 

 

Keywords: Electromechanical delay, Electromyography signal, Weighted K-Nearest Neighbors, Hand 

movements   

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T

mailto:b_beigzadeh@iust.ac.ir


2 

1. Introduction 

The dynamic interaction between people and computer systems, such as robots, has attracted substantial 

interest and has been the focus of numerous modern research studies over the past decade [1]. According 

to the World Health Organization (WHO), more than 15 million individuals suffer from stroke annually. 

Presently, stroke is the most common illness, characterized by a disruption in blood flow within a specific 

area of the brain [1]. Typically, stroke patients experience a loss of control and mobility in their upper limb 

muscles [3]. While there has been notable research in the field of motion recognition, there remains ample 

room for progress, especially in the area of motion prediction. By concentrating on the advancement of 

motion prediction technologies, we can enhance the capabilities of Robotic Orthoses and open up new 

avenues for assisting individuals with disabilities and ultimately improving their quality of life. Moreover, 

these predictions can be employed to alleviate the issue of time delay in the systems containing human 

operator in the loop [4] [5]. The majority of the time, predicting muscle activations using optimization 

techniques requires computationally intensive methods [6]-[7]. Short-term rehabilitation programs have 

shown promise in addressing muscle activity issues. These programs rely on surface electromyography 

(sEMG) signals, which are generated during various muscle contractions [8]-[9]. Recently, sEMG signals 

have been employed to identify intricate patterns of skeletal movements. For instance, they have been 

utilized in rehabilitating hand movements for stroke patients and in controlling robotic hand motion [10]. 

Although there have been many research studies to establish passive systems [11]-[12] as a basis for 

controlled walking [13]-[14] and rehabilitating systems [15], analyzing muscle signals (EMG) from various 

regions creates opportunities for enhancing upper and lower body prostheses and rehabilitation systems. 

Such rehabilitation systems include passivity-based prosthetics [16], and minimally actuated gait 

rehabilitating systems [17]-[18]. Industry adoption of collaborative robots is rising as they offer flexibility 

and higher output for difficult tasks. However, because of their poor sensory input and inability to 

understand humans and adapt to their behavior, robots are still not interactive enough. One technique to 

enhance these robots would be to predict human movement intentions [19]. Also, the use of exoskeletons 

and prostheses has been increasing in the last decade, and among them, those incorporating EMG signals 

are of particular interest to scientists in the field. Hand functions such as gripping and grasping are basic 

needs of an amputee which can improve their social performance and thus their self-esteem [20].  

EMG can be used to calculate and determine the force and the trajectory of the movements. It can be used 

to detect EMG signals continuously to help the exoskeleton move more accurately and measure muscle 

effort. By using this method, subjects can control the exoskeleton much easier and adapt faster and better 

to it [21]. For instance, there are many different methods to control a bionic hand, and among them, using 

sEMG can bring high accuracy and more comfort for users. In this method, users can do different tasks 

with good performance [22]-[23]. Furthermore, extracting features from EMG signals needs a significant 

amount of time; as a result, new techniques should be applied to get the same outcome in a shorter 

time [24]-[26]. Moreover, for controlling the wrist exoskeleton, surface EMG can be used to classify 

movement patterns. In some studies, four EMG channels were used to determine the torque generated by 

two different subjects [27]. EMG-based prediction of hand gestures can also be used as a complementary 

method for predicting future human motions within systems encompassing network delays [28][29]. Many 

previous studies have focused on recognizing the movements of the hand and finger by getting and 

analyzing EMG signals [31]-[33]. For example, in [34] they captured motions using cheap and reliable 

accelerometers placed around the forearm. The potential for a reliable hand gesture detection system based 

on accelerometer signals is assessed in this work since accelerometers can be simply integrated into mobile 

devices. For this, two different types of recurrent neural network (RNN) cells are proposed in a neural 

network architecture. Studies on three datasets show that this relatively modest network performs 

significantly better than cutting-edge methods for hand gesture detection that rely on multi-modal data. A 

strong hand gesture classification system was created by combining accelerometer data with an RNN; as a 
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result, network performance was consistent across participants and excels for amputees. Additionally, the 

suggested network classifies the hand motions using only 5 ms-long small windows. As a result, this method 

enables a possibly delay-free and rapid hand motion detection. However, few works have worked on 

movement prediction, delay time, and other affecting conditions such as the effect of the aging process on 

the electromechanical delay [35]. Different approaches have been proposed to discriminate the delay 

between the onset time of electrical activity and muscle movement. For different muscles, different 

electromechanical delay times are observed. There are some research works studying the dependency of 

this delay on different initial conditions, the difference in delays for different muscles, and the dependency 

of the time delay on the contraction type (whether the movement is eccentric, concentric, or isometric) or 

its independency from movement complexity and movement duration [36]-[38]. Electromechanical delay 

can be separated into two parts; the first and shorter part is the transport time which is about 10ms, and the 

second part is the time that muscle generates a force that can be detected [39]. Muscle reaction time can be 

increased by fatigue or sprint training, and therefore electromechanical delay can be increased after these 

training trials compared to the situation before the training [40]. In some works, they studied the effect of 

a six-week training period on the electromechanical delay and reaction time. Reaction time was shown to 

be reduced by training individual muscles, while the electromechanical delay of some of these muscles 

increased after this training program [41]. Some other studies showed that reaction time depended on the 

type of movement (voluntary, reflex, and electrical stimulation) [42]. In [43], they look into the possibility 

of anticipating hand motions using sEMG signals to solve the time delay issue with traditional classification 

techniques. Early prediction, compared to classification, seeks to foresee a future hand movement based on 

available data. A hand prosthesis control system may be able to make up for the time delay thanks to its 

early prediction capability, which will enhance usability. It has been demonstrated that using historical data 

from before the current time window is crucial for enhancing performance on tasks requiring categorization 

as well as prediction. Researchers presented a method for anticipating hand movements using recurrent 

neural networks (RNNs) and a novel weight-based loss function [44], to make predictions of hand motions 

easier. This new loss function, dependent on the particular time step, assigns different weights to the outputs 

of an RNN at various time points to calculate the final loss. To overcome the low sample availability during 

instances of hand movement changes, they also included a sample weighting scheme as part of this loss 

function. They used the Ninapro database to show how their suggested strategy improves early movement 

prediction performance and produces cutting-edge classification results for hand movements. Even some 

research [19] offers a system that predicts the intended direction of a human arm movement simply from 

eye gaze, using a recurrent neural network. The system leverages the concept of uncertainty to decide 

whether or not to accept a prediction. The deep learning approach that is being presented produces 

predictions on continuously arriving data achieves an accuracy of 70.7% for highly definite predictions and 

accurately categorizes 67.89% of the motions at least once. Before the hand reaches the target and more 

than 24% earlier than expected in 75% of the situations, the movements are accurately predicted 99% of 

the time the first time. This implies that a robot might get alerts on the direction an operator is expected to 

walk, and it might then modify its behavior accordingly. Moreover, in [45] they focused solely on predicting 

gripping force during a pinch-type grasp from surface electromyography (sEMG) data. 

This study represents a significant advancement in the field of Electromyography (EMG) applications by 

addressing essential aspects of response times, which are crucial for practical applications. Our main goal 

is to accelerate movement prediction, ultimately reducing the electromechanical delay period, the amount 

of time it takes for an intended action to be executed. By simplifying EMG-based processes, our research 

aims to pave the way for faster and more efficient applications, particularly in fields such as rehabilitation 

and assistive technology. We employed a systematic approach, ensuring the precise placement of single 

surface electrodes on individuals' forearms to maintain non-invasiveness and accuracy in data collecting. 

We just used two channels to simplify the prediction process, which increases the accessibility and usability 

of our methodology. This simplification improves the usefulness and simplicity of implementation. To 
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ensure the reliability and robustness of our findings, we evaluated our predictions using four distinct 

methods. Our results are assured to be accurate and resilient by this multifaceted evaluation approach, which 

lays a strong basis for future applications. This work represents a significant step forward in improving the 

usability and efficacy of EMG-based in predicting hand movements. By focusing on only two channels, 

our methodology simplifies the prediction process, making it more accessible and easier to implement while 

maintaining high accuracy. The advancements presented in our study have the potential to improve people's 

lives. Our goal is to improve the quality of life for users by lowering the electromechanical delay period 

and optimizing the EMG process to aid in the development of more responsive and efficient solutions in 

assistive technologies and rehabilitation. 

2. Materials and Methods  

2.1. Method 

 The tests were taken from fifteen healthy volunteers (five females and ten men, ages 19-24) from the local 

population of Tehran Iran. The medical history of all subjects was clear of any neural and muscular 

disorders. The procedure was explained to the subjects, and each participant verbally expressed his/her 

consent before the test.  

2.2. Task Definition  

Subjects were asked to sit comfortably in front of a monitor in a dark room covered by acoustic foams. 

Subjects were asked to put their right forearm on the table with a 90-degree elbow angle and their right 

hand’s palm perpendicular to the table. Five hand gestures were shown to subjects (Fig. 1), and three of 

them were selected for classification:  

1. Pinching: grasp with thumb and index finger 

2. Grasping: clenching the fingers and thumb into the palm 

3. Finger abduction: to draw away the thumb and fingers from each other. 

 

Fig. 1: Five movements conducted in the test: 1) finger abduction, 2) grasping, 3) grasping without thumb 

involvement; that is, four fingers in flexion and thumb in extension 4) pinching, 5) scissor; that is, abduction of the 

index and middle finger toward each other while other fingers are in flexion. 
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Each subject performed a four-sectioned task within a 15-minute rest in between and each section contained 

40 trials (every section included eight trials resulting in 32 trials for each movement). For every 10 seconds, 

the monitor showed one of the hand gestures with a counter on it, counting down from 3 to 1 was done first, 

and we asked the subject to perform the motion after finishing this count. The time of the onset was 

extracted by a photodiode attached to the corner of the monitor and triggered by the change of pictures. 

2.3. EMG Recordings  

EMG signals were recorded by a 16-channel system (eWave, ScienceBeam Inc). The signals were recorded 

by 1024Hz sample frequency. Eight self-adhesive bipolar electrodes were attached in a circular shape with 

equal distances around the forearm. Electrodes were connected to the proximal part of the forearm, 2.5cm 

below the inside of the elbow while the distal set of electrodes were attached 5cm below them (see Figs. 2, 

3, and 4). The ground electrode was attached to the opposite hand, on the wrist, on the head of the ulna. 

During the casual approach, electrodes are placed on the target muscle, but in the mentioned configuration, 

electrodes will record a variety of muscles.  

 

Fig. 2: Electrodes placement on the right forearm in a circular shape 

 

 

Fig. 3: Electrodes are attached to the forearm, 2.5cm under the elbow in a circular pattern. Electrode #1 is placed in 

the middle of the anterior of the forearm while the position of other electrodes is toward the medial view. 
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Fig. 4: The subject is sitting relaxed on the chair while his forearm is parallel to his thigh and the ankle is in the right 

angle. The electrodes are arranged in a circular pattern. 

2.4. Electrodes Arrangement  

Each electrode obtains a signal from more than one muscle which will have its benefits and drawbacks. 

Firstly, by this method, more muscles can be covered by fewer electrodes which will reduce the time costs. 

secondly, in each movement, more than one muscle will activate which needs to cover all the related 

muscles. For example, for pinching, in these arrangements for each movement, all the muscles engaged in 

the activity will be covered.  

2.5. Signal Preparation and Feature Extraction  

Trigger signals generated by the photodiode occurred 500ms before the onset times. This timing precision 

allowed us to meticulously isolate and extract data for individual trials from the extensive recorded signal.  

MATLAB software was used to process the EMG signals. Afterward in the first step, the raw signal was 

filtered by high pass Butterworth (5th order filter, with a cut-off frequency of 10Hz), then rectified and 

finally taken root mean square (RMS) with 200ms time window. To extract features more effectively, 

smoothing of the signals is recommended. Smoothing can be done with either a low pass filter or RMS; 

here, we applied RMS. After this, the signal preparation is almost accomplished and it is prepared for feature 

extraction. After signal preparation, the relevant features must be extracted to distinguish the three desired 

movements mentioned above. Two of four channels were used to reduce the computation cost and time. In 

this work, channels #2 and #4 were selected to distinguish the three above-mentioned movements, and four 

features were extracted from the signals recorded by these two channels. Signals should be normalized so 

that different subjects can be compared to each other according to their corresponding (normalized) signals. 

Each signal (taken from the individual subject) was normalized concerning the maximum value of that 

signal; as a result, we obtained normalized signals with values from 0 to 1.  

Our main goal was to develop a predictive model that could recognize different kinds of movements. To 

achieve this, we paid close attention to the signals that precede the onset of each movement. Here, "onset" 

refers to the initial onset of a physical muscle movement. We delved into analyzing these signals to gain 

insights into the patterns preceding movement initiation. Hence, we carefully selected a segment of the 

signal spanning approximately 500 milliseconds, starting from the moment the photodiode triggered to 

when the onset of the movement occurred. This timeframe was selected to capture the critical period leading 

up to the initiation of the movement, providing us with valuable insights into the pre-movement dynamics. 

This section, which represents the signal from the moment the subject saw the motion on the monitor until 

the moment the subject was requested to do the motion, was referred to as the "pre-onset signal".  For 

channels #2 and #4, the mean values of this part of signals (pre-onset signals) could potentially be two 

features. However, using solely these two features to distinguish different movements might lead to 
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inaccurate results, thus, we should look for additional features to gain better results. We noticed that in some 

movements, the mean values of pre-onset signals were close to each other, but the maximum value 

corresponding to a certain movement was higher than that of others (Fig. 5), it is clear that when doing 

finger abduction and pinching motions, the maximum value for channel #4 exceeds that of channel #2 by 

approximately 0.4 and 0.2, respectively. Conversely, during grasping gestures, channel #2 exhibits a 

maximum value of approximately 0.3 higher than that of channel #4. Therefore, the maximum values of 

pre-onset signals were considered as additional features. In conclusion, there were four unique features in 

our final feature set. The mean values of the pre-onset signals for channels #2 and #4 were used to generate 

two of these features, while the maximum values from the same channels were used to generate the other 

two. Moreover, we have shown the steps of processing in Fig.6. 

 

 

 

Fig. 5: The average signal of all subjects in two channels #2 and #4 for three movements: A) grasping B) abduction 

of fingers C) pinching; The blue curve represents channel #2, and the red curve is channel #4 
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Fig. 6: The Block Diagram of our Finger Movement Prediction Study 

3. Results and Discussion  

In terms of predicting motion, the second version of the database from the Ninapro project was used in 

various studies, including [43] for testing the early prediction approach [46], there are sEMG signals for 50 

different hand movements (including rest) in the database. Twelve electrodes were positioned around the 

subjects' forearms for the purpose of signal capture. Train data alone was used to calculate the requisite 

statistics. The signals were then divided into overlapping windows with a 95% overlap and they were able 

to anticipate events up to 300 ms in the future with an accuracy of less than 83% of the early predictions 

were accurate on average across all subjects. 

In this study, three different algorithms were used for clustering purposes. The fuzzy classification approach 

was the first prediction method; instead of using strict binary assignments, this method classifies objects 

according to their degrees of membership to distinct classes. It makes it possible to describe uncertainty in 

a more flexible way, where objects can belong to multiple classes to varying degrees, the second approach 

was the optimized fuzzy classification where the fuzzy conditions had been optimized by Genetic Algorithm 

(GA); GA is an optimization technique based on natural selection, which iteratively improves the 

parameters of the fuzzy system to increase its accuracy in classifying data points, and finally, the third 

approach was the Weighted K Nearest Neighbors (W-KNN) regression method. In W-KNN, the influence 

of each neighbor is weighted according to how far away it is from the data point being classified, providing 

a flexible and effective approach for clustering tasks. 

To construct a fuzzy classifier, we defined 4 fuzzy rules listed in Table 1. Each rule would assign a score or 

a penalty to the pre-onset signal for each movement. Finally, the overall score of each signal determined 

the movement. The results for the fuzzy classifier have been tabulated in Table 2 for 15 subjects. As can be 

seen, the classification accuracy rate is an average of 71.18% which is not so satisfactory.  

Table 1: The rules of scoring four features for a simple classifier 

Rules Correct Incorrect 

If the mean of channel 2 is less than 0.5 +1   -1 

If the mean of channel 4 is less than 1 +1 -1 

If the maximum of channel 2 is less than 0.8 +1 -1 
If the maximum of channel 4 is less than 0.8 +1 -1 

 

This result led us to optimize the fuzzy rules; we utilized the Genetic algorithm (GA) for the optimization 

method using the GA toolbox of Matlab software. The cost function was a function of the average accuracy 

percentage; that is:  

 Cost Function 1 Correct Answers%   (1) 
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Table 2: Accuracy of predicting each movement for each subject using a simple fuzzy classifier 

Subject Total% Abduction% Grasping% Pinching% 

#1 87.50 84.38 100 78.13 

#2 63.54 9.38 84.38 96.88 
#3 77.08 46.88 90.63 93.75 

#4 61.46 100 84.38 0 

#5 57.29 40.63 78.13 53.13 
#6 46.88 37.50 31.25 71.88 

#7 69.79 81.25 93.75 34.38 

#8 64.58 43.75 62.50 87.50 

#9 50.00 31.25 56.25 62.50 
#10 81.25 100 87.50 56.25 

#11 61.46 31.25 62.50 90.63 

#12 82.29 81.25 90.63 75 
#13 94.79 96.88 90.63 96.88 

#14 92.71 100 81.25 96.88 

#15 77.08 75.00 84.38 71.88 

 

Table 3 presents the refined set of rules that form the basis of our optimized fuzzy classifier. These rules 

were carefully crafted based on the insights gained from the Genetic Algorithm (GA) optimization process. 

With the help of each rule's conditions for scoring four attributes, data points can be precisely classified. 

Through meticulous adjustment of parameters, the optimized rules ensure enhanced accuracy and reliability 

in categorizing movements. 

The outcomes of using our improved fuzzy classifier to forecast different moves for every subject are shown 

in Table 4. The average classification accuracy rate is an incredible 74.03%, which is a notable improvement 

above the results of the basic fuzzy classifier. The aforementioned table presents the percentage accuracy 

of predicting various movements for every subject, showcasing the effectiveness of our optimized approach 

in achieving more precise and reliable data categorization. These findings highlight the value of optimized 

fuzzy rules to better align with the complexities of the dataset, ultimately leading to superior classification 

outcomes. 

Finally, the last method utilized to classify the inputs was the W-KNN algorithm. According to this 

algorithm, classification is based on the calculation of the distance of an unknown signal from all classes; 

then its proximity to the nearest class would determine its corresponding class.  

Therefore, the distance of each movement is compared to the predetermined movements based on the 

selected features. By selecting K = 10 as the input to this method, and also using Matlab software which 

has W-KNN as an embedded toolbox, the classification was accomplished; the results for this part are listed 

in Table 5 in which it can be seen that the average accuracy percentage is 83.1% which is considerably 

higher than previous methods. 

Each channel targets multiple muscles with certain movements, and because of that, in each channel, 

specific movements have more power than others. To explain this, for example, channel #2 covers the 

Flexor Digitorium Superficialis and Flexor Digitorium Profundus muscles which are responsible for grasp. 

Although Opponents Digiti Minimi muscle and Lumbricals of the hand are also both hand flexors, they do 

not reach to channel area. Since these muscles are farther away from channels one, three, and four relatives 

to channel #2, their movement signals could be traced by channel two better than the others. 

 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



10 

Table 3: The optimized rules of scoring four features for the optimized fuzzy classifier 

Rules Correct Incorrect 

If the mean of channel 2 is less than 0.64 +1     -1 

If the mean of channel 4 is more than 1.36 +1 -1 
If the maximum of channel 2 is less than 0.97 +1 -1 

If the maximum of channel 4 is more than 0.96 +1 -1 

 

Table 4: Accuracy of predicting each movement for each subject using an optimized fuzzy classifier 

Subject Total% Abduction% Grasping% Pinching% 

#1 87.50 80.21 96.88 71.88 

#2 68.75 31.25 81.25 93.75 
#3 79.17 56.25 84.38 96.88 

#4 62.50 100 81.25 6.25 

#5 76.04 62.50 90.63 75 

#6 50 37.50 28.13 84.38 
#7 71.88 71.88 78.13 65.63 

#8 62.50 28.13 62.50 96.88 

#9 52.08 28.13 46.88 81.25 
#10 90.63 90.63 87.50 93.75 

#11 72.92 53.13 68.75 96.88 

#12 76.04 65.63 68.75 93.75 

#13 90.63 100 75 96.88 
#14 89.58 90.63 78.13 100 

#15 80.21 75 71.88 93.75 

 

Table 5: Accuracy of predicting each movement for each subject using the W-KNN algorithm 

Subject Total% Abduction% Grasping% Pinching% 

#1 91.67 90.63 100 84.38 

#2 92.71 87.5 96.88 93.75 
#3 91.67 84.38 96.88 93.75 

#4 90.63 100 87.5 84.38 

#5 94.79 93.75 96.88 93.75 

#6 84.38 78.13 78.13 96.88 
#7 83.33 81.25 96.88 71.88 

#8 78.13 65.63 71.88 96.88 

#9 83.33 62.5 93.75 93.75 
#10 97.92 100 100 93.75 

#11 91.67 84.38 93.75 96.88 

#12 87.5 78.13 87.5 96.88 
#13 100 100 100 100 

#14 97.92 93.75 100 100 

#15 88.54 81.25 93.75 90.63 

 

For the same reason, channel four is the best detector of finger abduction movements as it covers the 

Extensor Indicis, Extensor Pollicis Longus, and Abductor Pollicis Longus muscles. Dorsal Interossei and 

Adductor Pollicis muscles are the main finger abductors, but their origin and location are far from all four 

channels. Considering that most of the active muscles are located at the areas under the control of channels 
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#2 and 4 during the tests performed, the results obtained from two channels (channels #2 and #4) should 

not be much different in comparison to the results obtained from three and four channels (either or both of 

channel #1 and #3 included).  The W-KNN algorithm, the most effective classifier, was used to investigate 

how the two channels (1 and 3) affected classification accuracy. When the data from channel #1 was added 

to the analysis, the accuracy was 84.8%; however, if the data from channel #3 was added, the accuracy was 

85.8%. Finally, we added data from both channels #1 and #3 to the previous data of channels #2 and #4 and 

gained classification accuracy of 86.7% showing a 3.6% improvement in comparison to using only two 

channels #2 and #4.   

         4. Conclusion  

Prosthesis and exoskeletons are becoming more common in patients, and the need for their improvement is 

felt more than ever. The electromechanical delay caused by transporting signals is one of the existing issues. 

The main purpose of this work was to decrease the delay time by predicting movements before they became 

completed. In this study, our goal was to figure out how to anticipate hand movements. To do this, we 

investigated the signals that happen just before someone begins moving their hand. We specifically 

concentrated on a period of about 500 milliseconds from when a signal is triggered by a photodiode to when 

the subject actually starts moving his/her hand. By studying this short time frame, we aimed to comprehend 

the lead-up to a hand movement, which can be used in rehabilitation devices. This made it easier for us to 

understand how our brain signals and senses work together to produce a deliberate movement. This work 

was done by extracting features from four channels, and ultimately using only two of them for classification 

with three methods (fuzzy, optimized fuzzy, and W-KNN classification). 

By using only channel #1 for W-KNN classification, the prediction accuracy reached 84.8%. With the 

addition of channel #3, the accuracy increased to 85.8%. Finally, by incorporating data from all four 

channels, the classification accuracy improved to 86.7%, representing a 3.6% increase compared to using 

only channels #1 and #3. While these results are better than those with two channels, using just channels 

#1 and #3 would be sufficient when considering the time and computational cost of the process. Even with 

four channels, the number of electrodes is fewer than in other related studies, without significantly reducing 

prediction accuracy. Additionally, fewer electrodes help minimize time-related expenses. Therefore, this 

study, compared to previous works with more channels, achieved faster movement prediction, reduced 

computational costs, and enhanced functionality for prosthesis and exoskeleton applications. Notably, this 

work focused on prediction rather than recognition, as it analyzed signals before the onset of motion. 

Statements: This research has not been funded by any resource or agency; the authors declare no conflict 

of interest regarding this paper. 

References 

[1] M. Kadkhodazade, M. Pourmokhtari, B. Yazdankhoo, B. Beigzadeh, The influence of sex factor on 

the modeling of the human hand/arm interacting with a teleoperation system, Journal of Mechanics 

in Medicine and Biology, (2023) 2350106. 

[2] A. Costa, M. Itkonen, H. Yamasaki, F. S. Alnajjar, S. Shimoda, Importance of muscle selection for 

EMG signal analysis during upper limb rehabilitation of stroke patients, in 2017 39th Annual 

international conference of the IEEE engineering in medicine and biology society (EMBC), 2017, 

pp. 2510–2513.  

[3] E. Garcia-Cossio, N. Birbaumer, A. Ramos-Murguialday, Facilitation of completely paralyzed 

forearm muscle activity in chronic stroke patients, in 2013 6th International IEEE/EMBS 

Conference on Neural Engineering (NER), 2013, pp. 1545–1548.  

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



12 

[4] B. Yazdankhoo, M.R. Ha’iri Yazdi, F. Najafi, B. Beigzadeh, L 1 impedance control for bilateral 

teleoperation containing model uncertainty, Transactions of the Institute of Measurement and 

Control, 44(16) (2022) 3154-3164.  

[5] B. Yazdankhoo, F. Najafi, M.R. Hairi Yazdi, B. Beigzadeh, Position synchronization for an 

uncertain teleoperation system with time delays using L1 theory, Scientia Iranica 30(1) (2023) 16-

29. 

[6] SM. Rahmati, M. Rostami, B. Beigzadeh, Prediction of human gait trajectories during the SSP 

using a neuromusculoskeletal modeling: A challenge for parametric optimization, Technology and 

Health Care, 26(6) (2018) 889-907.  

[7] MA. Rahmati, M. Rostami, B. Beigzadeh, A low-cost optimization framework to solve muscle 

redundancy problem, Nonlinear Dynamics 90 (4) (2017) 2277–2291. 

[8] M. A. Ali, K. Sundaraj, R. B. Ahmad, N. U. Ahamed, M. A. Islam, S. Sundaraj, SEMG activities of 

the three heads of the triceps brachii muscle during cricket bowling, Journal of Mechanics in 

Medicine and Biology, 16(05) (2016) 1650075.  

[9] N. U. Ahamed, K. Sundaraj, M. Alqahtani, O. Altwijri, M. A. Ali, M. A. Islam, EMG-force 

relationship during static contraction: Effects on sensor placement locations on biceps brachii 

muscle, Technology and Health Care, 22(4) (2014) 505–513.  

[10] M. R. Ahsan, M. I. Ibrahimy, O. O. Khalifa, Electromygraphy (EMG) signal based hand gesture 

recognition using artificial neural network (ANN), in 2011 4th international conference on 

mechatronics (ICOM), 2011, pp. 1-6.   

[11] MR. Sabaapour, MR. Hairi Yazdi, B. Beigzadeh, From Passive Dynamic Walking to Passive 

Turning of Biped walker, Journal of Computational Applied Mechanics 47 (1) (2016) 24-34.  

[12] M. Jaberi Miandoab, B. Beigzadeh, Asymmetric three-link passive walker, Nonlinear Dynamics, 

111(10) (2023) 9145–9159.   

[13] B. Beigzadeh, SA. Razavi, Dynamic Walking Analysis of an Underactuated Biped Robot with 

Asymmetric Structure, International Journal of Humanoid Robotics 18 (04) (2021) 2150014. 

[14] B. Beigzadeh, MR. Sabaapour, MR. H. Yazdi, K. Raahemifar, From a 3D Passive Biped Walker to 

a 3D Passivity-Based Controlled Robot, International Journal of Humanoid Robotics, 15(04) 

(2018) 1850009. 

[15] A. Imran, B. Beigzadeh, MR. Haghjoo, A New Passive Transfemoral Prosthesis Mechanism Based 

on 3R36 Knee and ESAR Foot providing Walking and Squatting, Theoretical and Applied 

Mechanics Letters, 13(05) (2023) 100476. 

[16] A. Imran, MR. Haghjoo, B. Beigzadeh, Design of a novel above-knee prosthetic leg with a passive 

energy-saving mechanism, Engineering Solid Mechanics 11(04) (2023) 339-352. 

[17] A. Vali, B. Beigzadeh, MR. Haghjoo, Modified Shadow Robot Control method for optimal path 

synthesis of mechanisms: Application to five-link mechanism, Proceedings of the Institution of 

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(15) (2023) 3472-

3482.  

[18] A. Vali, MR. Haghjoo, B. Beigzadeh, Synthesis of a six-link mechanism for generating the ankle 

motion trajectory using shadow robot control method, AUT Journal of Mechanical Engineering 

6(2) (2022) 189-200. 

[19] J. Pettersson, P. Falkman, Intended Human Arm Movement Direction Prediction using Eye 

Tracking, International Journal of Computer Integrated Manufacturing, (2023) 1–19.  

[20] G. Johns, E. Morin, K. Hashtrudi-Zaad, The role of electromechanical delay in modelling the 

EMG-force relationship during quasi-dynamic contractions of the upper-limb, in 2016 38th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 

2016, pp. 3634–3637. 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



13 

[21] T. Lenzi, S. M. M. De Rossi, N. Vitiello, and M. C. Carrozza, Intention-based EMG control for 

powered exoskeletons, IEEE transactions on biomedical engineering, 59(8) (2012) 2180–2190. 

[22] W. T. Shi, Z. J. Lyu, S. T. Tang, T. L. Chia, C. Y. Yang, A bionic hand controlled by hand gesture 

recognition based on surface EMG signals: A preliminary study, Biocybernetics and Biomedical 

Engineering, 38(1) (2018) 126–135. 

[23] D. Karabulut, F. Ortes, Y. Z. Arslan, M. A. Adli, Comparative evaluation of EMG signal features 

for myoelectric controlled human arm prosthetics, Biocybernetics and Biomedical Engineering, 

37(2) (2017) 326–335.  

[24] D. F. Stegeman, B. U. Kleine, B. G. Lapatki, J. P. Van Dijk, High-density surface EMG: Techniques 

and applications at a motor unit level, Biocybernetics and Biomedical Engineering, 32(3) (2012) 3–

27.  

[25] D. Młoźniak, M. Piotrkiewicz, Method of automatic recognition and other solutions used in new 

computer program for full decomposition of EMG signals, Biocybernetics and Biomedical 

Engineering, 35(1) (2015) 22–29.  

[26] U. Baspinar, H. S. Varol, V. Y. Senyurek, Performance comparison of artificial neural network and 

Gaussian mixture model in classifying hand motions by using sEMG signals, Biocybernetics and 

Biomedical Engineering, 33(1) (2013) 33–45. 

[27] Z. O. Khokhar, Z. G. Xiao, C. Menon, Surface EMG pattern recognition for real-time control of a 

wrist exoskeleton, Biomedical engineering online, 9 (2010) 1–17. 

[28] M. Ebrahimian, M. Pourmokhtari, M. Ghiyasi, B. Yazdankhoo, B. Beigzadeh, Online Bilateral 

Predictive Control for Time-Delayed Teleoperation of Snake-like Robots, Journal of Intelligent & 

Robotic Systems 110(2) (2024) 80. 

[29] M. Nikpour, B. Yazdankhoo, B. Beigzadeh, A. Meghdari, Adaptive online prediction of operator 

position in teleoperation with unknown time-varying delay: simulation and experiments, Neural 

Computing and Applications 33 (2021): 7575-7592. 

[30] M. Pourmokhtari, B. Beigzadeh, Simple recognition of hand gestures using single-channel EMG 

signals, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in 

Medicine 238(3) (2024): 372-380. 

[31] A. H. Al-Timemy, G. Bugmann, J. Escudero, N. Outram, Classification of finger movements for 

the dexterous hand prosthesis control with surface electromyography, IEEE journal of biomedical 

and health informatics, 17(3) (2013) 608–618.  

[32] M. Yokoyama, M. Yanagisawa, Logistic regression analysis of multiple interosseous hand-muscle 

activities using surface electromyography during finger-oriented tasks, Journal of 

Electromyography and Kinesiology, 44 (2019) 117–123. 

[33] A. Waris, I.K. Niazi, M. Jamil, O. Gilani, K.Englehart, W. Jensen, M. Shafique, E.N. Kamavuako, 

The effect of time on EMG classification of hand motions in able-bodied and transradial amputees, 

Journal of Electromyography and Kinesiology, 40 (2018) 72–80.  

[34] P. Koch, M. Dreier, M. Maass, B. Martina, H. Phan, A. Mertins, A Recurrent Neural Network for 

Hand Gesture Recognition based on Accelerometer Data, in 2019 41st Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 5088–

5091. 

[35] C. A. Libardi, T.M. Souza, M.S. Conceição, V. Bonganha, M.P.T. Chacon‐Mikahil, C.R. Cavaglieri, 

A.C. de Moraes, C. Ugrinowitsch, Electromechanical delay of the knee extensor muscles: 

Comparison among young, middle-age and older individuals, Clinical physiology and functional 

imaging, 35(4) (2015) 245–249. 

[36] P. R. Cavanagh, P. V. Komi, Electromechanical delay in human skeletal muscle under concentric 

and eccentric contractions, European journal of applied physiology and occupational physiology, 

42(3) (1979) 159–163. 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



14 

[37] L. Li, B. S. Baum, Electromechanical delay estimated by using electromyography during cycling at 

different pedaling frequencies, Journal of Electromyography and Kinesiology, 14(6) (2004) 647–

652.  

[38] K. Sasaki, T. Sasaki, N. Ishii, Acceleration and force reveal different mechanisms of 

electromechanical delay, Medicine and science in sports and exercise, 43(7) (2011) 1200–1206.  

[39] D. M. Corcos, G. L. Gottlieb, M. L. Latash, G. L. Almeida, G. C. Agarwal, Electromechanical 

delay: An experimental artifact, Journal of Electromyography and Kinesiology, 2(2) (1992) 59–68.  

[40] S. Zhou, M.J. McKenna, D.L. Lawson, W.E. Morrison, I. Fairweather, Effects of fatigue and sprint 

training on electromechanical delay of knee extensor muscles, European Journal of applied 

physiology and occupational physiology, 72 (1996) 410–416.  

[41] C. W. Linford, J. T. Hopkins, S. S. Schulthies, B. Freland, D. O. Draper, I. Hunter, Effects of 

neuromuscular training on the reaction time and electromechanical delay of the peroneus longus 

muscle, Archives of physical medicine and rehabilitation, 87(3) (2006) 395–401. 

[42] S. Zhou, D. L. Lawson, W. E. Morrison, I. Fairweather, Electromechanical delay in isometric 

muscle contractions evoked by voluntary, reflex and electrical stimulation, European journal of 

applied physiology and occupational physiology, 70(2) (1995) 138–145.  

[43] P. Koch, H. Phan, M. Maass, F. Katzberg, A. Mertins, Early Prediction of Future Hand Movements 

Using sEMG Data, in 2017 39th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), 2017, pp. 54–57. 

[44] P. Koch, H. Phan, M. Maass, F. Katzberg, R. Mazur, A. Mertins, Recurrent neural networks with 

weighting loss for early prediction of hand movements, in 2018 26th European Signal Processing 

Conference (EUSIPCO), 2018, pp. 1152–1156.  

[45] A. G. Siavashani, A. Y. Koma, Estimation and early prediction of grip force based on sEMG 

signals and deep recurrent neural networks, Journal of the Brazilian Society of Mechanical 

Sciences and Engineering, 45(5) (2023) 264.  

[46] M. P. Mobarak, R. M. Guerrero, J. M. Gutierrez Salgado, V. L. Dorr, Hand movement classification 

using transient state analysis of surface multichannel EMG signal, in 2014 Pan American Health 

Care Exchanges (PAHCE), 2014, pp. 1-6.  

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T


