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Highlights 

 Introducing a model for simultaneous detection of gear-bearing-rotor faults  

 Developing a fault detector insensitive to repetition, sensor position, and operating conditions 

 Providing the detection model that can be used for missing data 

 Proposing an improved algorithm for fault detection under new operating conditions 

 

Abstract 

In recent years, there has been a rise in the popularity of using data-driven artificial intelligence models 

for detecting faults in rotating machinery. The challenge lies in creating a model that can be used even 

when sensor data is not available and the operating conditions differ from those observed during 

development. This article addresses the issue of potential failures in gear, bearing, and shaft components 

and suggests two strategies - adjusting entry and cost functions - to address these challenges in 

developing a one-dimensional convolutional neural network model. These strategies enable the model 

to extract features from the input signal with minimal dependency on operating conditions. By analyzing 

the 2009 PHM (Prognostics and Health Management society) challenge competition dataset, the model 

achieved its highest accuracy by using the frequency spectrum of velocity and acceleration from 

vibrational signals. The model’s average accuracy for signals recorded by any arbitrary sensor is 79.6%, 

even if some operating speeds were not observed during training. Incorporating a suggested penalty 

function based on p-value into the cost function increased accuracy by up to 13.6%. Consequently, 

implementing the proposed strategies in similar cases is highly recommended, as demonstrated by 

successful application in two industrial cases. 

 

Keywords: Condition Monitoring, Fault Detection, Convolutional Neural Network, Gear Fault, Rolling Bearing, 

Rotor Faults, Missing Data. 
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1- Introduction 

Health management of industrial machinery by diagnosing 

faults and evaluating their severity to prevent catastrophic 

failures is an indispensable part of nowadays industries’ 

lifecycle. Three main challenges in fault detection of rotating 

machinery when solving real-life tasks are distinguishing 

between multiple faults that occurred simultaneously, dealing 

with missing (unknown or incomplete) input data, and 

detecting faults in unobserved conditions.  

     Rotating machinery consists of different parts like rotors 

(shafts), bearings, and sometimes gears. Each of them is 

susceptible to failure, and it is laborious to distinguish them 

if their failures occur concurrently. Most research has 

diagnosed a single part’s faults assuming that the other parts 

are healthy. Given that reliable industrial dataset with 

compound faults is not usually available, studies have used 

laboratory dataset. Lyu et al., in 2019 [1], introduced the 

maximum correlated deconvolution based on quantum 

genetic algorithm to diagnosis compound planetary gear and 

bearings faults. Zhiyi et al., in 2020 [2] and Xin et al., in 2021 

[3] detected rotor-bearing faults using infrared thermal 

images by convolutional neural network (CNN) for their 

simulation experimental platform. Xue et al. [4], used 

combined CNN and support vector machine (SVM) for 

diagnosis of rotor-bearing faults. Models trained on 

laboratory datasets have the potential to be generalized to 

industrial cases using transfer learning techniques. Among 

the available laboratory datasets, the most diverse one with 

simultaneous faults on the rotor, rolling bearings, and gears is 

the prognostics and health management (PHM) 2009 

challenge competition dataset. It has been widely utilized as 

a reference dataset to demonstrate the effectiveness of newly 

developed models.   

     In vibration analysis, as a common tool in condition 

monitoring (CM) technique, measurement is generally done 

at two points in the vertical, horizontal, and axial directions. 

Some tests may not be performed due to the lack of this 

number of sensors and the inaccessibility to the appropriate 

locations to put the sensors. Moreover, failure of data 

collection equipment may cause some sensor data to be lost 

in some cases. All these cases make the input data, which is 

the input feature vector of fault detectors, have a variable size 

for each data. Therefore, the detector, which is actually a 

classifier, is expected to cope with missing data. 

     Classification techniques to handle missing values can be 

grouped into four different types of approaches. In the first 

approach, incomplete data are removed, while they may be 

informative. The second approach first imputes the missing 

values (completes them based on the available data) before 

classification. These methods are not usually successful in the 

test set, because of the separate imputation and classification 

steps. So, the third approach combines imputation and 

classification tasks by the methods like multitask learning and 

multiple imputation. The last approach forms an ensemble of 

a one-class classifier trained on each feature and a decision is 

made based on the active classifiers for each data using fuzzy 

logic, Gaussian mixture models, etc. [5] 

     In the field of fault diagnosis, a few research concentrated 

on missing data issues. Zhang and Dong, in 2014 [6], used a 

Bayesian-based approach to monitor continuous stirred-tank 

reactors using the sensed thermodynamic features. Zhang et 

al. [7] employed an expectation–maximization algorithm to 

handle missing data in fault diagnosis of a ball-and-tube 

system based on ultrasonic sensor data. Liu et al., in 2018 [8], 

imputed missing data in a chemical process platform using a 

deep learning method. Venkatasubramanian et al., in 2022 

[9], managed denoising, missing data imputation, outlier 

discovery, and data fusion for the vibration data of the Case 

Western Reserve University bearing dataset using an 

ensemble network.  

     Since the stiffness of a rotor in rotating machinery varies 

in different positions, imputing the data based on the 

available data in different positions is associated with many 

uncertainties. Therefore, the fourth approach in dealing with 

missing data is in the spotlight. It is intended to develop an 

artificial intelligent (AI) model that can comment on the 

machine’s state based on the available data, similar to CM 

experts but with a more systematic view. Among AI models, 

a common solution to develop a model applicable to unseen 

conditions is to use transfer learning (TL) methods. PHM 

2009 dataset with compound rotor-bearing-gear faults has 

been repeatedly used to evaluate TL models based on 

adaptive CNN [10], adversarial CNN [11, 12], end-to-end 

CNN [13], combined multi-layer perception (MLP)-CNN 

[14], etc. when facing unobserved conditions. 

     This research aims to develop an AI-based model 

insensitive to operating and measurement conditions for 

detecting compound faults in rotating machinery. In this 

regard, the PHM 2009 dataset is used and therefore the 

model’s input is vibration signals. Previous publications have 

dealt with two simultaneous defects in machine parts, but this 

study studies three simultaneous rotor-bearing-gear faults. 

Notably, while addressing the issue of missing data, existing 

research has largely overlooked the specific realm of gear 

defects, a gap that is squarely addressed in this article. In this 

research, “missing data” pertains to the unavailability of 

sensor data from inaccessible locations. Given that an AI 

model with a fixed number of input features is unable to 

generate output when facing missing data, it is imperative to 

develop a model that is unaffected by sensor location. The 

robustness of the model is achieved by equipping it with 

diverse data without any information about the operating 

conditions, such as speed, loading, sensor location, and gear 
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type (spur or helical). Thus, the model attempts to classify 

inputs irrespective of the location of measurement and the 

prevailing operating conditions. As an additional innovation, 

this research modifies the loss function of the CNN to compel 

it to extract features insensitive to varying operating 

conditions when faced with missing data or unobserved 

operational scenarios, thereby enhancing the model’s 

accuracy under such conditions.  

     The rest of the research is organized as follows: The next 

section briefly introduces the PHM 2009 dataset. Section 3 

describes the architecture of CNN models for detecting rotor, 

bearing, and gear faults and selects the best input. Then, it 

explains how this research deals with missing data by 

adjusting the model’s inputs. Section 4 proposes a modified 

CNN model to extract insensitive features and train a model 

for unobserved conditions. Section 5 reports the potential of 

the proposed model in fault detection of two industrial cases. 

The summary, conclusion, and future interests are given at 

the end. 

 

2- Dataset 

PHM 2009 challenge dataset is related to a two-stage 

laboratory gearbox with four gears, shown in Fig. 1. Its 

vibrations have been measured by two accelerometers on 

both sides of the box with a sampling rate of 66.7 kHz. Two 

types of simple and helical gears with a reduction ratio of 5:1 

have been tested with, respectively, 8 and 6 sets of each in 

different states of health and failure on gears, bearings, and 

shafts according to Table 1. The faults analyzed in this dataset 

include a chipped gear tooth, eccentric gear on its shaft, 

broken tooth, damaged inner race/outer race/ ball bearings, 

imbalanced shaft, and bent shaft [15]. The tests have been 

carried out twice at five speeds from 30 Hz to 50 Hz with a 

step of 5 Hz for low and high load conditions. The total 

number of data is 560 (5 speeds * 2 loads * 2 repetitions * 2 

sensors * (8 sets of spur gears + 6 sets of helical gears)).  

 
Fig. 1 PHM 2009 data challenge gearbox [15] 

Fig. 2 depicts the number of healthy and defective PHM 2009 

data with a single fault on one element and combined faults 

on several elements. It can be seen that there is no data in two 

cases including the failure of only bearings and the 

simultaneous failure of gears and shafts. The purpose of the 

model introduced in the next section is to detect the healthy 

or unhealthy state of each element (gear, bearing, and shaft). 

Table 1 Unhealthy elements of PHM 2009 gearbox [15]  

Element 

Case 

Spur Gears Set Helical Gears Set 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 

Gears               

Bearings               

Shafts               

 
Fig. 2 Number of PHM 2009 data with no, single, and 

compound faults on gears, bearings, and shafts  

 

3- Entry Adjustment Strategy 

This section focuses on developing a model as insensitive to 

the operating conditions and missing data as possible. The 

strategy is to adjust the model’s inputs and force it to provide 

a robust model. First, the model architecture is introduced, 

then the trick used to make the model applicable to missing 

data cases is described. This entry adjustment strategy can 

also help make the model insensitive to the operating 

conditions. Finally, the results are given, and the inputs are 

changed to increase the accuracy. 

3-1- Model Architecture 

Due to the complexity of extracting the appropriate features 

from the recorded signals to detect the defects of various 

elements, feature extraction from the signals has been left to 

the intelligent model in this research. In this regard, an1D-

CNN model with the architecture shown in Fig. 3 is 

employed. In convolution layers, features are extracted from 

the input acceleration signals, and then the extracted features 

extracted by the intelligent model are used to classify the data 

by a fully-connected network with a hidden layer. This 

classification model determines whether the element is 

healthy or damaged.  

     The equations governing the convolutional and pooling 

layers can be expressed as follows: 
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(2) 

in which, OC, OP, I, C, A, and B respectively output of 

convolutional layer, output of the max pooling layer, input 

signal, convolutional filter, unknown multiplier, and 

unknown bias. Moreover, the equation representing the fully-

connected network is as follows: 

   3 2 1y f f f OF U V W     (3) 

in which, OF is the output of the convolution layers, and U, 

V, and W are unknown weights between flatten layer and 

fully-connected input layer, fully-connected input layer and 

hidden layer, hidden layer and output layer, respectively. 

Also, f1, f2, and f3 are nonlinear activation functions of the 

fully-connected layers. Further information on how to write 

the mentioned equations can be find in [16] and [17]. It must 

be noted that all foundational codes of this research have been 

developed utilizing functions available in MATLAB 

software. The architecture and structure of the models have 

been defined using appropriate coding techniques. 

    Three CNN models are trained for fault detection in gears, 

rolling bearings, and shafts. Each model is trained three 

times, each time with one of the three inputs of the frequency 

spectrum, envelope spectrum, and cepstrum, so that the 

appropriate input is selected. The investigated frequency 

range is from 4 to 4800 Hz with a step of 1 Hz. 

     The input data for training each model are randomly 

divided ten times into three categories of training, validation, 

and testing in order to evaluate the sensitivity of the model to 

the available training data. Therefore, each model must be 

trained a total of 30 times (ten batches of random data 

division for each of the three different inputs). 

     It should be noted that oversampling is also used for 

training and validation data. So that the number of available 

data with the same labels (healthy or unhealthy) is equal and 

the model is not biased towards the data of a class with more 

data. 

     Selecting an appropriate number of Convolutional and 

Pooling layers is crucial to ensure optimal learning capacity 

within the model. Too few layers may hinder learning while 

an excess may lead to overfitting. In this study, overfitting 

has been prevented by leveraging the validation dataset. The 

stopping criteria have been determined based on the analysis 

of errors observed in both the training and validation datasets. 

Subsequently, alterations have been made to the number of 

layers and the extracted features for three distinct inputs, 

encompassing spectrum, envelope, and cepstrum data. A 

comprehensive evaluation has been conducted through the 

generation of boxplots illustrating the error distribution 

across multiple runs, in relation to the number of extracted 

features from each input as see in Fig. 4. The outcomes, 

encompassing training and validation data, revealed that 

setting the number of extracted features to 30 yielded the 

highest accuracy across all inputs, exhibiting minimal 

variance across different iterations. Therefore, this 

configuration was deemed optimal for the architecture, as a 

start to apply the proposed methods on in this research. 

 

3-2- Struggleing with Missing Data 

The CNN structure introduced in the previous section is a 

classifier for fault detection. The approach of this research to 

provide a classifier insensitive to the sensor’s location is 

described here. The sensor location-insensitive model can 

detect the fault even if data from only one sensor is available 

or if missing data is encountered. The approach is to import 

data from different sensors as independent inputs but with the 

same labels into the model in the training phase. Therefore, 

the model is trained to obtain the same output for both data, 

regardless of which sensor the data is from. In other words, a 

model that has not received any information about the 

location of the corresponding sensor is forced to classify the 

signals of both sensors into the same category. It must be 

noted that this proposed approach has the advantage that the 

the number of missing data holds no significance in fault 

detection. 

 

3-3- Insensitive Model to Operating Conditions 

To develop a model insensitive to operating conditions (speed 

and load), the same approach as considered in the previous 

section to deal with missing data can be used. In this way, no 

information about the speed and loading conditions is given 

to the model during the training phase. This model can adopt 

this ability to detect healthy or unhealthy data regardless of 

operating conditions. 

 

3-4- Model with One-Channel Input  

The results of three fault detector models for gears, bearings, 

and shafts are given in Table 2. Each model’s results for three 

inputs, including spectrum, envelope, and cepstrum, are 

presented on training, validation, testing, and total data. It 

must be noted that by taking into account the number of data 

points within the three categories of training, validation, and 

testing, the accuracy of the model across all datasets are 

computed and reported as the total accuracy. The highest 

precision of the gear and bearing detectors is for the spectrum 

input by approximately 3.4% and 1.8% higher average 
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accuracy than the other inputs. The shaft detector provides the 

highest accuracy with the cepstrum input for the entire data 

by an almost 0.6% higher accuracy than the other inputs. 

Therefore, the appropriate input identical for all detectors is 

the frequency spectrum of the vibrational acceleration signal. 

      All elements, including gears, bearings, and shafts, may 

be defective in real-condition monitoring problems. 

Therefore, it is necessary to combine the results of the three 

fault detectors. With this point of view, the hybrid model's 

accuracy is calculated in such a way that its outcomes are 

accepted only if the failure of all elements is correctly 

expressed.  

 
Fig. 3 1D-CNN architecture for fault detection of rotating machinery with one of three inputs including spectrum, envelope, and 

cepstrum 

 

 
Fig. 4 Selecting the Number of Extreacted Features by the 1D-CNN for fault detection of rotating machinery with each of three inputs 

including spectrum, envelope, and cepstrum 
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Table 2 The accuracy (%) of the one-channel CNN in detecting 

gear, bearing, and shaft faults with different input 

Fault 

Detector 

Input: Spectrum Input: Envelope  Input: Cepstrum 
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Gear 100 94.5 93.1 97.9 98.6 85.6 81.9 93.6 100 88.0 84.6 95.4 

Bearing  100 93.5 91.5 97.6 100 86.1 89.4 95.8 99.9 88.0 86.2 95.9 

Shaft  99.3 82.9 77.7 92.9 99.6 79.2 76.1 92.3 98.9 83.3 78.7 93.4 

 

Table 3 presents the accuracy of the combined model with 

spectrum input for different cases of element defects. It can 

be seen that the results get worse compared to Table 2 

because the hybrid model gives wrong results if only one fault 

detector gives invalid result. The average accuracy of the 

model is approximately 90.9%.  

Table 3 Hybrid one-channel CNNs’s accuracy with spectrum 

input in different defective cases 

 

The outputs of hybrid models trained ten times with different 

inputs randomly divided into three categories of training, 

validation, and testing are different. To show the model's 

sensitivity to the initial data distribution, the results are 

presented in a box plot in Fig.5. This diagram shows the 

sensitivity of different combinations of defects in the 

elements. It can be seen that the sensitivity of the model to 

the division of the primary data, or in other words, the data 

available used for training is approximately between 8 and 

15%. 

 
Fig. 5 The accuracies of the hybrid models with spectrum 

input trained with different data for different combinations of 

faults- All: gear, bearing, and shaft faults 

In the training step, cases with different operating conditions 

have been entered into the model disregarding these 

variations. The aim was to develop an insensitive model to 

operating conditions in this way. Table 4 shows the detection 

accuracy at different conditions. It can be seen that the model 

is not sensitive to the sensor’s location (drive end or non-drive 

end). Therefore, if the information for each sensor is 

unavailable (in the case of missing data), the model still 

responds with the same accuracy. The model’s sensitivity to 

speed and loading is below 4.5% and is significant. As a 

result, if the data collection is done at a different rotor speed 

and load, this detector can still assess the failure status of the 

elements. The sensitivity to the type of gear (spur or helical) 

is relatively high and is equal to 10.7%. The following section 

attempts to increase accuracy by adding another channel to 

the model architecture. 

Table 4 Hybrid model’s accuracy with spectrum input in 

different conditions 

Different Cases Total Accuracy (%) 

Loading 
Low 86.4 

High 90.0 

Input Shaft 
Speed [Hz] 

30 87.1 

35 89.3 

40 89.7 

45 84.8 

50 91.5 

Sensor Location 
Input 88.9 

Output 88.0 

Gear Type 
Spur 93.0 

Helical 82.3 

 

3-5- Model with Two-Channel Input  

Depending on the speed of the output shaft (6-10 Hz), some 

faults may not be well represented in the acceleration signal. 

With this approach, it is possible to have the vibrational 

velocity signal as the input to a 1D-CNN model. Furthermore, 

another model can be developed by considering both velocity 

and acceleration as inputs of a two-channel CNN. The results 

of these newly trained models with spectrum input are 

presented in Table 5. For all three fault detectors, the accuracy 

with the vibrational velocity input is approximately 1.3% 

lower than the model with the vibrational acceleration input. 

Considering both inputs, the detection accuracy reaches 

100%. Therefore, there is information in both signals that are 

necessary for the precise classification. 

     Although the accuracy has reached 100% with two 

channels, the noteworthy point is that the model had seen at 

least one data sample of different operating conditions in its 

input while training. The question is whether the prediction 

will still be accurate if the signals are input to the detector in 

unprecedented conditions. To answer this question, the model 

is trained by entering data related to some rotor speeds and 

then used for fault detection at the other speeds. The results 

Defective Element 
Total Accuracy (%) 

Gear Bearing Shaft 

   87.9 

   91.4 

   88.8 

   96.4 

   90.8 

   89.9 
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of this study are presented in Table 6. It can be seen that the 

accuracy of the two-channel model with spectra input has 

decreased to 79.6%. The next section proposes a method to 

increase accuracy in such situations. 

Table 5 The accuracy (%) of the one-channels and two-channel 

CNNs in detecting gear, bearing, and shaft faults with different 

input 

Fault 

Detector 

Input: Accelration Input: Velocity  
Inputs: Acceleration & 

Velocity 
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Gear 100 94.5 93.1 97.9 100 90.3 86.7 96.5 100 100 100 100 

Bearing  100 93.5 91.5 97.6 99.6 89.4 91.5 96.3 100 100 100 100 

Shaft  99.3 82.9 77.7 92.9 99.2 80.6 76.6 91.8 100 100 100 100 

 

Table 6 The accuracy of the two-channel CNN is evaluated in 

unobserved conditions while training 

Trained Speeds [Hz] Default Features 

30 35 40 45 50 Train Validation Test Total 

     96.5 71.3 59.4 79.6 

     99.7 88.5 60.7 83.7 

     79.5 73.8 58.5 71.1 

     100 88.9 58.0 82.8 

     98.4 77.8 57.1 80.6 

Average (%) 94.8 80.1 58.7 79.6 

 

4- Cost Function Adjustment Strategy 

This section proposes a modification of the cost function of 

the 1D-CNN model to help convolution layers extract 

features that are as independent of speed as possible. After 

explaining the proposed model, the results are presented. 

 

4-1- Proposed Cost Function 

According to Fig. 3, the first part of the CNN model extracts 

30 features from the input signal, listed in the flattened layer. 

The dependence of these features can be quickly evaluated 

using the p-value parameter. A higher value corresponds to a 

greater dependence of the speed on features. A p-value higher 

than 0.95 is generally significant and observed for all models 

trained. 

     For the models whose results are presented in Table 5, the 

p-value expressing the effect of speed on the 30 extracted 

features is calculated and shown in Fig. 5. Almost 40% of the 

calculated P-values are greater than 95%, indicating a 

significant dependence of the features on speed. 

     The following cost function with a penalty function on the 

p-value is proposed to extract features with negligible rotor 

speed dependence: 

2 10

1 1

( ) 10
N F

i i f

n f

E t y g
 

     (4) 

1 ( ( ), ) 0.95

0

value

f

p feature f speed
g

otherwise


 


 

(5) 

 

in which, E, N, F, t, y, and gf, are the modified cost function 

of the 1D-CNN model, the number of training samples, the 

number of extracted features, the target state of the samples, 

the predicted state of the samples, and penalty function, 

respectively. The results of applying this cost function are 

given in the following section. 

 

4-2- Model Architecture 

The proposed cost function forces the CNN model to provide 

features with a p-value less than 0.95 in evaluating their 

sensitivity to speed. The accuracy of the model trained in this 

way is presented in Table 7. Compared to Table 6, the total 

accuracy for all cases has increased from 0.4% to 13.6%. In 

some cases, the accuracy of the training and validation data 

has been slightly reduced because the model was looking for 

speed-insensitive features, resulting in higher accuracy in the 

testing data. The average increment in accuracy using this 

method is 5%, which is a simple method to achieve higher 

accuracy in fault detection and is worth implementing. 

Table 7 The accuracy of the model trained with modified cost 

function in unobserved conditions while training 

Trained Speeds [Hz] Default Features 

30 35 40 45 50 Train Validation Test Total 

     95.8 79.5 58.1 80.0 

     100 98.7 63.8 86.6 

     99.7 82.9 65.2 84.7 

     99.0 82.4 63.0 83.3 

     100 76.1 70.1 85.7 

Average (%) 98.9 83.9 64.0 84.1 

 

5- Industrial Cases 

As stated in the Introduction, industrial data containing 

verified combined defects—meaning instances where 
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equipment has undergone vibration data collection, 

troubleshooting in the condition monitoring process, and 

subsequent confirmation of identified defects upon 

equipment inspection—are seldom encountered. Due to the 

limited availability of industrial data pertaining to this 

scenario, laboratory PHM dataset has been utilized to develop 

the model. To demonstrate the efficacy of the proposed model 

on industrial cases, this section assesses the model’s 

performance using two additional industrial datasets. It must 

be noted that before employing the proposed techniques in 

the article, the fault detection of these cases was unsuccessful 

based on the CNN model. 

 

5-1- Pump Bearing Fault Detection 

The first dataset pertains to a faulty bearing within a 37 kW 

pump at a power plant with a speed of 2965 rpm, wherein all 

components—namely, the inner race, outer race, and rolling 

element balls—exhibited damage. Fig. 6 illustreates the 

defective elements. It must be noted that this detection has 

been done based on the signals on only one side of the bearing 

in a single direction. 

 
Fig. 6 Defective bearing detected by the proposed CNN model 

 

5-2- Ball Mill Gearbox Fault Detection 

The second industrial case involves the gearbox of a ball mill 

within a pelletizing factory with a motor speed of 995 rpm 

and gear ratio of 1:6.77. See the schematic in Fig. 7. The 

resulting outcomes from the proposed model accurately 

detect gear defects on the middle gearbox. It must be noted 

that diagnosed gear fault by the conidion monitoring team of 

this ball mill is worn gear.  

 
Fig. 7 Schematic of a ball mill driver with the defect on the 

middle gearbox detected by the proposed model. 

It is praise to say that the defect identified by the condition 

monitoring team in the examined ball mill was the presence 

of a failure in the gear teeth, and the specific type of failure 

has not been determined. As is well known, accurately 

diagnosing the type of gear teeth failure through vibration 

analysis is a complex task in the industry. In many instances, 

the condition monitoring expert can only differentiate 

between gear tooth failure, gear misalignment, looseness, or 

lubrication issues. The model presented in this research has 

successfully identified failures associated with the gear. The 

diagnosis of the specific type of gear failure will be the focus 

of the authors’ future research. 

 

6- Summary/ Conclusion 

This research has focused on improving fault detection 

models built with CNN architectures. Two challenges in 

developing them are providing a model for missing input data 

and predicting unobserved cases. New conditions and 

missing data can be attributed to measurements at different 

loads and rotor speeds with a sensor placed in only one 

location. The topic focused on in this research has been the 

simultaneous fault detection of gears, bearings, and shafts 

using the PHM 2009 challenge dataset. However, the 

strategies introduced here can be applied to similar problems 

with different datasets. The proposed tricks have been 

adjusting the input and cost functions in the training phase. 

Three input vibrational acceleration signals, including 

spectrum, envelope, and cepstrum, have been studied, and the 

highest accuracy has been obtained using the first one with an 

accuracy of approximately 3.4%, 1.8%, and 0.1% higher than 

others in gear, bearing, and shaft fault detection, respectively. 

By adjusting the input, the models have provided 

approximately the same level of detection accuracy at various 

loads and operating speeds for different sensor locations. 

Considering velocity spectrum as inputs instead of 

acceleration have resulted in 1.3% less precision. Entering 

both signalw (acceleration and velocity) into the model has 

led to 100% accuracy. By training the model with data from 

only three rotor speeds, the accuracy has been reduced to 

79.6%. Then, the cost function of the CNN model has been 

modified to provide speed-insensitive features based on 

statistical analysis using p-value, and average accuracy has 

reached to 84.1%. Cost function adjustment has resulted in an 

accuracy increase of up to 13.6% for the PHM dataset. The 

proposed model has been used for two industrial cases helped 

to detect the generated faults. Future interest is in increasing 

the accuracy using other techniques such as transfer learning, 

especially when dealing with more industrial cases. 
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