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ABSTRACT: In recent years, there has been a rise in the popularity of using data-driven artificial 
intelligence models for detecting faults in rotating machinery. The challenge lies in creating a model that 
can be used even when sensor data is not available and the operating conditions differ from those observed 
during development. This article addresses the issue of potential failures in gear, bearing, and shaft 
components and suggests two strategies - adjusting entry and cost functions - to address these challenges 
in developing a one-dimensional convolutional neural network model. These strategies enable the model 
to extract features from the input signal with minimal dependency on operating conditions. By analyzing 
the 2009 PHM (Prognostics and Health Management Society) challenge competition dataset, the 
model achieved its highest accuracy by using the frequency spectrum of velocity and acceleration from 
vibrational signals. The model’s average accuracy for signals recorded by any arbitrary sensor is 79.6%, 
even if some operating speeds were not observed during training. Incorporating a suggested penalty 
function based on p-value into the cost function increased accuracy by up to 13.6%. Consequently, 
implementing the proposed strategies in similar cases is highly recommended, as demonstrated by 
successful application in two industrial cases.
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1- Introduction
Health management of industrial machinery by diagnosing 

faults and evaluating their severity to prevent catastrophic 
failures is an indispensable part of nowadays industries’ 
lifecycle. Three main challenges in fault detection of rotating 
machinery when solving real-life tasks are distinguishing 
between multiple faults that occurred simultaneously, dealing 
with missing (unknown or incomplete) input data, and 
detecting faults in unobserved conditions. 

Rotating machinery consists of different parts like rotors 
(shafts), bearings, and sometimes gears. Each of them is 
susceptible to failure, and it is laborious to distinguish them if 
their failures occur concurrently. Most research has diagnosed 
a single part’s faults assuming that the other parts are healthy. 
Given that reliable industrial datasets with compound faults 
are not usually available, studies have used laboratory 
datasets. Lyu et al., in 2019 [1], introduced the maximum 
correlated deconvolution based on a quantum genetic 
algorithm to diagnose compound planetary gear and bearings 
faults. Zhiyi et al., in 2020 [2] and Xin et al., in 2021 [3] 
detected rotor-bearing faults using infrared thermal images 
by a convolutional neural network (CNN) for their simulation 
experimental platform. Xue et al. [4], used a combined CNN 

and support vector machine (SVM) for diagnosis of rotor-
bearing faults. Models trained on laboratory datasets have the 
potential to be generalized to industrial cases using transfer 
learning techniques. Among the available laboratory datasets, 
the most diverse one with simultaneous faults on the rotor, 
rolling bearings, and gears is the prognostics and health 
management (PHM) 2009 challenge competition dataset. It 
has been widely utilized as a reference dataset to demonstrate 
the effectiveness of newly developed models.  

In vibration analysis, as a common tool in condition 
monitoring (CM) technique, measurement is generally done 
at two points in the vertical, horizontal, and axial directions. 
Some tests may not be performed due to the lack of this 
number of sensors and the inaccessibility to the appropriate 
locations to put the sensors. Moreover, failure of data 
collection equipment may cause some sensor data to be lost 
in some cases. All these cases make the input data, which 
is the input feature vector of fault detectors, have a variable 
size for each data. Therefore, the detector, which is actually a 
classifier, is expected to cope with missing data.

Classification techniques to handle missing values can be 
grouped into four different types of approaches. In the first 
approach, incomplete data are removed, while they may be 
informative. The second approach first imputes the missing 
values (completes them based on the available data) before 
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classification. These methods are not usually successful in the 
test set, because of the separate imputation and classification 
steps. So, the third approach combines imputation and 
classification tasks by methods like multitask learning and 
multiple imputation. The last approach forms an ensemble of 
a one-class classifier trained on each feature and a decision is 
made based on the active classifiers for each data using fuzzy 
logic, Gaussian mixture models, etc. [5]

In the field of fault diagnosis, a few research concentrated 
on missing data issues. Zhang and Dong, in 2014 [6], used a 
Bayesian-based approach to monitor continuous stirred-tank 
reactors using the sensed thermodynamic features. Zhang 
et al. [7] employed an expectation–maximization algorithm 
to handle missing data in fault diagnosis of a ball-and-tube 
system based on ultrasonic sensor data. Liu et al., in 2018 
[8], imputed missing data in a chemical process platform 
using a deep learning method. Venkatasubramanian et al., 
in 2022 [9], managed denoising, missing data imputation, 
outlier discovery, and data fusion for the vibration data of the 
Case Western Reserve University bearing dataset using an 
ensemble network. 

Since the stiffness of a rotor in rotating machinery 
varies in different positions, imputing the data based on the 
available data in different positions is associated with many 
uncertainties. Therefore, the fourth approach in dealing with 
missing data is in the spotlight. It is intended to develop an 
artificial intelligence (AI) model that can comment on the 
machine’s state based on the available data, similar to CM 
experts but with a more systematic view. Among AI models, 
a common solution to develop a model applicable to unseen 
conditions is to use transfer learning (TL) methods. PHM 
2009 dataset with compound rotor-bearing-gear faults has 
been repeatedly used to evaluate TL models based on adaptive 
CNN [10], adversarial CNN [11, 12], end-to-end CNN [13], 
combined multi-layer perception (MLP)-CNN [14], etc. 
when facing unobserved conditions.

This research aims to develop an AI-based model 
insensitive to operating and measurement conditions for 
detecting compound faults in rotating machinery. In this 
regard, the PHM 2009 dataset is used and therefore the 
model’s input is vibration signals. Previous publications 
have dealt with two simultaneous defects in machine parts, 
but this study studies three simultaneous rotor-bearing-gear 
faults. Notably, while addressing the issue of missing data, 
existing research has largely overlooked the specific realm of 
gear defects, a gap that is squarely addressed in this article. 
In this research, “missing data” pertains to the unavailability 
of sensor data from inaccessible locations. Given that an 
AI model with a fixed number of input features is unable to 
generate output when facing missing data, it is imperative to 
develop a model that is unaffected by sensor location. The 
robustness of the model is achieved by equipping it with 
diverse data without any information about the operating 
conditions, such as speed, loading, sensor location, and gear 
type (spur or helical). Thus, the model attempts to classify 
inputs irrespective of the location of measurement and the 
prevailing operating conditions. As an additional innovation, 

this research modifies the loss function of the CNN to compel it 
to extract features insensitive to varying operating conditions 
when faced with missing data or unobserved operational 
scenarios, thereby enhancing the model’s accuracy under 
such conditions. 

The rest of the research is organized as follows: The next 
section briefly introduces the PHM 2009 dataset. Section 3 
describes the architecture of CNN models for detecting rotor, 
bearing, and gear faults and selects the best input. Then, 
it explains how this research deals with missing data by 
adjusting the model’s inputs. Section 4 proposes a modified 
CNN model to extract insensitive features and train a model 
for unobserved conditions. Section 5 reports the potential of 
the proposed model in fault detection of two industrial cases. 
The summary, conclusion, and future interests are given at 
the end.

2- Dataset
PHM 2009 challenge dataset is related to a two-stage 

laboratory gearbox with four gears, shown in Fig. 1. Its 
vibrations have been measured by two accelerometers on 
both sides of the box with a sampling rate of 66.7 kHz. Two 
types of simple and helical gears with a reduction ratio of 5:1 
have been tested with, respectively, 8 and 6 sets of each in 
different states of health and failure on gears, bearings, and 
shafts according to Table 1. The faults analyzed in this dataset 
include a chipped gear tooth, eccentric gear on its shaft, 
broken tooth, damaged inner race/outer race/ ball bearings, 

 
 

Fig. 1 PHM 2009 data challenge gearbox [15] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. PHM 2009 data challenge gearbox [15]

Table 1. Unhealthy elements of PHM 2009 gearbox [15]
Table 1 Unhealthy elements of PHM 2009 gearbox [15]  
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imbalanced shaft, and bent shaft [15]. The tests have been 
carried out twice at five speeds from 30 Hz to 50 Hz with 
a step of 5 Hz for low and high load conditions. The total 
number of data is 560 (5 speeds * 2 loads * 2 repetitions * 2 
sensors * (8 sets of spur gears + 6 sets of helical gears)). 

Fig. 2 depicts the number of healthy and defective PHM 
2009 data with a single fault on one element and combined 
faults on several elements. It can be seen that there is no data 
in two cases including the failure of only bearings and the 
simultaneous failure of gears and shafts. The purpose of the 
model introduced in the next section is to detect the healthy 
or unhealthy state of each element (gear, bearing, and shaft).

3- Entry Adjustment Strategy
This section focuses on developing a model as insensitive 

to the operating conditions and missing data as possible. The 
strategy is to adjust the model’s inputs and force it to provide a 
robust model. First, the model architecture is introduced, and 
then the trick used to make the model applicable to missing 
data cases is described. This entry adjustment strategy 
can also help make the model insensitive to the operating 
conditions. Finally, the results are given, and the inputs are 
changed to increase the accuracy.

3- 1- Model Architecture
Due to the complexity of extracting the appropriate 

features from the recorded signals to detect the defects of 
various elements, feature extraction from the signals has 
been left to the intelligent model in this research. In this 
regard, an1D-CNN model with the architecture shown in Fig. 
3 is employed. In convolution layers, features are extracted 
from the input acceleration signals, and then the extracted 
features extracted by the intelligent model are used to classify 
the data by a fully connected network with a hidden layer. 
This classification model determines whether the element is 

healthy or damaged. 
The equations governing the convolutional and pooling 

layers can be expressed as follows:
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in which, OC, OP, I, C, A, and B respectively output of 
convolutional layer, output of the max pooling layer, input 
signal, convolutional filter, unknown multiplier, and unknown 
bias. Moreover, the equation representing the fully-connected 
network is as follows:
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in which, OF is the output of the convolution layers, and 
U, V, and W are unknown weights between the flattening 
layer and fully-connected input layer, fully-connected input 
layer and hidden layer, and hidden layer and output layer, 
respectively. Also, f1, f2, and f3 are nonlinear activation 
functions of the fully-connected layers. Further information 
on how to write the mentioned equations can be found in [16] 
and [17]. It must be noted that all foundational codes of this 
research have been developed utilizing functions available 
in MATLAB software. The architecture and structure of 
the models have been defined using appropriate coding 
techniques.

Three CNN models are trained for fault detection in gears, 
rolling bearings, and shafts. Each model is trained three 
times, each time with one of the three inputs of the frequency 
spectrum, envelope spectrum, and cepstrum, so that the 
appropriate input is selected.  The investigated frequency 
range is from 4 to 4800 Hz with a step of 1 Hz.

The input data for training each model are randomly 
divided ten times into three categories of training, validation, 
and testing in order to evaluate the sensitivity of the model 
to the available training data. Therefore, each model must 
be trained a total of 30 times (ten batches of random data 
division for each of the three different inputs).

It should be noted that oversampling is also used for 
training and validation data. So that the number of available 
data with the same labels (healthy or unhealthy) is equal and 
the model is not biased towards the data of a class with more 
data.

Selecting an appropriate number of Convolutional and 
Pooling layers is crucial to ensure optimal learning capacity 
within the model. Too few layers may hinder learning while 

 
 

Fig. 2 Number of PHM 2009 data with no, single, and compound faults on gears, bearings, and shafts  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Number of PHM 2009 data with no, single, and 
compound faults on gears, bearings, and shafts 
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an excess may lead to overfitting. In this study, overfitting 
has been prevented by leveraging the validation dataset. The 
stopping criteria have been determined based on the analysis 
of errors observed in both the training and validation datasets. 
Subsequently, alterations have been made to the number of 
layers and the extracted features for three distinct inputs, 
encompassing spectrum, envelope, and cepstrum data. A 
comprehensive evaluation has been conducted through the 
generation of boxplots illustrating the error distribution across 
multiple runs, in relation to the number of extracted features 
from each input as seen in Fig. 4. The outcomes, encompassing 
training and validation data, revealed that setting the number 
of extracted features to 30 yielded the highest accuracy 
across all inputs, exhibiting minimal variance across different 
iterations. Therefore, this configuration was deemed optimal 
for the architecture, as a start to apply the proposed methods 
on in this research.

3- 2- Struggling with Missing Data
The CNN structure introduced in the previous section is 

a classifier for fault detection. The approach of this research 
to provide a classifier insensitive to the sensor’s location is 
described here. The sensor location-insensitive model can 
detect the fault even if data from only one sensor is available 
or if missing data is encountered. The approach is to import 
data from different sensors as independent inputs but with the 
same labels into the model in the training phase. Therefore, 
the model is trained to obtain the same output for both data, 
regardless of which sensor the data is from. In other words, a 
model that has not received any information about the location 

of the corresponding sensor is forced to classify the signals of 
both sensors into the same category. It must be noted that 
this proposed approach has the advantage that the number of 
missing data holds no significance in fault detection.

3- 3- Insensitive Model to Operating Conditions
To develop a model insensitive to operating conditions 

(speed and load), the same approach as considered in the 
previous section to deal with missing data can be used. In this 
way, no information about the speed and loading conditions 
is given to the model during the training phase. This model 
can adopt this ability to detect healthy or unhealthy data 
regardless of operating conditions.

3- 4- Model with One-Channel Input 
The results of three fault detector models for gears, 

bearings, and shafts are given in Table 2. Each model’s results 
for three inputs, including spectrum, envelope, and cepstrum, 
are presented on training, validation, testing, and total data. 
It must be noted that by taking into account the number of 
data points within the three categories of training, validation, 
and testing, the accuracy of the model across all datasets is 
computed and reported as the total accuracy. The highest 
precision of the gear and bearing detectors is for the spectrum 
input by approximately 3.4% and 1.8% higher average 
accuracy than the other inputs. The shaft detector provides 
the highest accuracy with the cepstrum input for the entire 
data by an almost 0.6% higher accuracy than the other inputs. 
Therefore, the appropriate input identical for all detectors is 
the frequency spectrum of the vibrational acceleration signal.

 
 

Fig. 3 1D-CNN architecture for fault detection of rotating machinery with one of three inputs including spectrum, 
envelope, and cepstrum 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 1D-CNN architecture for fault detection of rotating machinery with one of three inputs including 
spectrum, envelope, and cepstrum
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All elements, including gears, bearings, and shafts, may be 
defective in real-condition monitoring problems. Therefore, it 
is necessary to combine the results of the three fault detectors. 
With this point of view, the hybrid model’s accuracy is 
calculated in such a way that its outcomes are accepted only 
if the failure of all elements is correctly expressed.

Table 3 presents the accuracy of the combined model 
with spectrum input for different cases of element defects. 
It can be seen that the results get worse compared to Table 
2 because the hybrid model gives wrong results if only one 
fault detector gives invalid results. The average accuracy of 
the model is approximately 90.9%. 

The outputs of hybrid models trained ten times with 

different inputs randomly divided into three categories of 
training, validation, and testing are different. To show the 
model’s sensitivity to the initial data distribution, the results 
are presented in a box plot in Fig.5. This diagram shows 
the sensitivity of different combinations of defects in the 
elements. It can be seen that the sensitivity of the model to 
the division of the primary data, or in other words, the data 
available used for training is approximately between 8 and 
15%.

In the training step, cases with different operating 
conditions have been entered into the model disregarding 
these variations. The aim was to develop an insensitive 
model to operating conditions in this way. Table 4 shows 

 
 

Fig. 4 Selecting the Number of Extracted Features by the 1D-CNN for fault detection of rotating machinery with each of 
three inputs including spectrum, envelope, and cepstrum 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Selecting the Number of Extracted Features by the 1D-CNN for fault detection of rotating machinery with 
each of three inputs including spectrum, envelope, and cepstrum

Table 2. The accuracy (%) of the one-channel CNN in de-
tecting gear, bearing, and shaft faults with different input

Table 2 The accuracy (%) of the one-channel CNN in detecting gear, bearing, and shaft faults with different input 

 

Fault 
Detector 

Input: Spectrum Input: Envelope  Input: Cepstrum 

T
ra

in
 

V
al

id
at

io
n 

T
es

t 

T
ot

al
 

T
ra

in
 

V
al

id
at

io
n 

T
es

t 

T
ot

al
 

T
ra

in
 

V
al

id
at

io
n 

T
es

t 

T
ot

al
 

Gear 100 94.5 93.1 97.9 98.6 85.6 81.9 93.6 100 88.0 84.6 95.4 

Bearing  100 93.5 91.5 97.6 100 86.1 89.4 95.8 99.9 88.0 86.2 95.9 

Shaft  99.3 82.9 77.7 92.9 99.6 79.2 76.1 92.3 98.9 83.3 78.7 93.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Hybrid one-channel CNNs’  accuracy with spec-
trum input in different defective cases

Table 3 Hybrid one-channel CNNs’  accuracy with spectrum input in different defective cases 
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the detection accuracy at different conditions. It can be seen 
that the model is not sensitive to the sensor’s location (drive 
end or non-drive end). Therefore, if the information for each 
sensor is unavailable (in the case of missing data), the model 
still responds with the same accuracy. The model’s sensitivity 
to speed and loading is below 4.5% and is significant. As a 
result, if the data collection is done at a different rotor speed 
and load, this detector can still assess the failure status of the 
elements. The sensitivity to the type of gear (spur or helical) 
is relatively high and is equal to 10.7%. The following section 
attempts to increase accuracy by adding another channel to 
the model architecture.

3- 5- Model with Two-Channel Input 
Depending on the speed of the output shaft (6-10 Hz), 

some faults may not be well represented in the acceleration 
signal. With this approach, it is possible to have the vibrational 

velocity signal as the input to a 1D-CNN model. Furthermore, 
another model can be developed by considering both velocity 
and acceleration as inputs of a two-channel CNN. The 
results of these newly trained models with spectrum input 
are presented in Table 5. For all three fault detectors, the 
accuracy with the vibrational velocity input is approximately 
1.3% lower than the model with the vibrational acceleration 
input. Considering both inputs, the detection accuracy reaches 
100%. Therefore, there is information in both signals that are 
necessary for the precise classification.

Although the accuracy has reached 100% with two 
channels, the noteworthy point is that the model had seen at 
least one data sample of different operating conditions in its 
input while training. The question is whether the prediction 
will still be accurate if the signals are input to the detector in 
unprecedented conditions. To answer this question, the model 
is trained by entering data related to some rotor speeds and 
then used for fault detection at the other speeds. The results 
of this study are presented in Table 6. It can be seen that the 
accuracy of the two-channel model with spectra input has 

Table 4. Hybrid model’s accuracy with spectrum input in 
different conditions

Table 4 Hybrid model’s accuracy with spectrum input in different conditions 
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Fig. 5 The accuracies of the hybrid models with spectrum input trained with different data for different combinations of 
faults- All: gear, bearing, and shaft faults 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The accuracies of the hybrid models with spec-
trum input trained with different data for different 
combinations of faults- All: gear, bearing, and shaft 

faults

Table 5. The accuracy (%) of the one-channels and two-
channel CNNs in detecting gear, bearing, and shaft faults 

with different input

Table 5 The accuracy (%) of the one-channels and two-channel CNNs in detecting gear, bearing, and shaft faults with 
different input 
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Table 6. The accuracy of the two-channel CNN is evalu-
ated in unobserved conditions while training

Table 6 The accuracy of the two-channel CNN is evaluated in unobserved conditions while training 
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decreased to 79.6%. The next section proposes a method to 
increase accuracy in such situations.

4- Cost Function Adjustment Strategy
This section proposes a modification of the cost function 

of the 1D-CNN model to help convolution layers extract 
features that are as independent of speed as possible. After 
explaining the proposed model, the results are presented.

4- 1- Proposed Cost Function
According to Fig. 3, the first part of the CNN model extracts 

30 features from the input signal, listed in the flattened layer. 
The dependence of these features can be quickly evaluated 
using the p-value parameter. A higher value corresponds to a 
greater dependence of the speed on features. A p-value higher 
than 0.95 is generally significant and observed for all models 
trained.

For the models whose results are presented in Table 5, 
the p-value expressing the effect of speed on the 30 extracted 
features is calculated and shown in Fig. 5. Almost 40% of 
the calculated P-values are greater than 95%, indicating a 
significant dependence of the features on speed.

     The following cost function with a penalty function 
on the p-value is proposed to extract features with negligible 
rotor speed dependence:
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in which, E, N, F, t, y, and gf, are the modified cost function 

of the 1D-CNN model, the number of training samples, the 
number of extracted features, the target state of the samples, 
the predicted state of the samples, and penalty function, 
respectively. The results of applying this cost function are 
given in the following section.

4- 2- Model Architecture
The proposed cost function forces the CNN model to 

provide features with a p-value less than 0.95 in evaluating 
their sensitivity to speed. The accuracy of the model trained 
in this way is presented in Table 7. Compared to Table 6, the 
total accuracy for all cases has increased from 0.4% to 13.6%. 
In some cases, the accuracy of the training and validation data 
has been slightly reduced because the model was looking for 
speed-insensitive features, resulting in higher accuracy in the 
testing data. The average increment in accuracy using this 
method is 5%, which is a simple method to achieve higher 
accuracy in fault detection and is worth implementing.

5- Industrial Cases
As stated in the Introduction, industrial data containing 

verified combined defects—meaning instances where 
equipment has undergone vibration data collection, 
troubleshooting in the condition monitoring process, and 
subsequent confirmation of identified defects upon equipment 
inspection—are seldom encountered. Due to the limited 
availability of industrial data pertaining to this scenario, 
the laboratory PHM dataset has been utilized to develop the 
model. To demonstrate the efficacy of the proposed model on 
industrial cases, this section assesses the model’s performance 
using two additional industrial datasets. It must be noted that 
before employing the proposed techniques in the article, the 
fault detection of these cases was unsuccessful based on the 
CNN model.

5- 1- Pump Bearing Fault Detection
The first dataset pertains to a faulty bearing within a 37 

kW pump at a power plant with a speed of 2965 rpm, wherein 
all components—namely, the inner race, outer race, and 
rolling element balls—exhibited damage. Fig. 6 illustrates 
the defective elements. It must be noted that this detection 
has been done based on the signals on only one side of the 
bearing in a single direction.

Table 7. The accuracy of the model trained with modified 
cost function in unobserved conditions while training

Table 7 The accuracy of the model trained with modified cost function in unobserved conditions while training 

 
Trained Speeds [Hz] Default Features 

30 35 40 45 50 Train Validation Test Total 

     95.8 79.5 58.1 80.0 

     100 98.7 63.8 86.6 

     99.7 82.9 65.2 84.7 

     99.0 82.4 63.0 83.3 

     100 76.1 70.1 85.7 

Average (%) 98.9 83.9 64.0 84.1 

 

 

 

 
 

Fig. 6 Defective bearing detected by the proposed CNN model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Defective bearing detected by the proposed 
CNN model
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5- 2- Ball Mill Gearbox Fault Detection
The second industrial case involves the gearbox of a ball 

mill within a pelletizing factory with a motor speed of 995 
rpm and a gear ratio of 1:6.77. See the schematic in Fig. 7. 
The resulting outcomes from the proposed model accurately 
detect gear defects on the middle gearbox. It must be noted 
that the diagnosed gear fault by the condition monitoring 
team of this ball mill is worn gear. 

It is praise to say that the defect identified by the condition 
monitoring team in the examined ball mill was the presence 
of a failure in the gear teeth, and the specific type of failure 
has not been determined. As is well known, accurately 
diagnosing the type of gear teeth failure through vibration 
analysis is a complex task in the industry. In many instances, 
the condition monitoring expert can only differentiate 
between gear tooth failure, gear misalignment, looseness, or 
lubrication issues. The model presented in this research has 
successfully identified failures associated with the gear. The 
diagnosis of the specific type of gear failure will be the focus 
of the authors’ future research.

6- Summary/ Conclusion
This research has focused on improving fault detection 

models built with CNN architectures. Two challenges in 
developing them are providing a model for missing input 
data and predicting unobserved cases. New conditions and 
missing data can be attributed to measurements at different 
loads and rotor speeds with a sensor placed in only one 
location. The topic focused on in this research has been 
the simultaneous fault detection of gears, bearings, and 
shafts using the PHM 2009 challenge dataset. However, 
the strategies introduced here can be applied to similar 
problems with different datasets. The proposed tricks have 
been adjusting the input and cost functions in the training 
phase. Three input vibrational acceleration signals, including 
spectrum, envelope, and cepstrum, have been studied, and 
the highest accuracy has been obtained using the first one 
with an accuracy of approximately 3.4%, 1.8%, and 0.1% 
higher than others in gear, bearing, and shaft fault detection, 

respectively. By adjusting the input, the models have 
provided approximately the same level of detection accuracy 
at various loads and operating speeds for different sensor 
locations. Considering the velocity spectrum as inputs instead 
of acceleration has resulted in 1.3% less precision. Entering 
both signals (acceleration and velocity) into the model has 
led to 100% accuracy. By training the model with data from 
only three rotor speeds, the accuracy has been reduced to 
79.6%. Then, the cost function of the CNN model has been 
modified to provide speed-insensitive features based on 
statistical analysis using p-value, and the average accuracy 
has reached  84.1%. Cost function adjustment has resulted in 
an accuracy increase of up to 13.6% for the PHM dataset. The 
proposed model has been used for two industrial cases helped 
to detect the generated faults. Future interest is in increasing 
the accuracy using other techniques such as transfer learning, 
especially when dealing with more industrial cases.

Highlights
• Introducing a model for simultaneous detection of gear-

bearing-rotor faults 
• Developing a fault detector insensitive to repetition, 

sensor position, and operating conditions
• Providing the detection model that can be used for missing 

data
• Proposing an improved algorithm for fault detection 

under new operating conditions
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