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Abstract     

The small distance between two rotating shafts can disturb them, cause interference in their 

performance and affect the system's efficiency. Application of the counter-rotating double 

shafts has some specific benefits. For example, these shafts can be used under the water to 

neutralize the driving torque effect, prevent from the submarine's self- propulsion, and increase 

the submarine's power to move forward and maneuver. The aim of this study is designing an 

optimum viscoelastic vibration absorber for Counter-Rotating Double Shaft to deal with the 

vibration. In order to overcome vibrations, Viscoelastic cylinders are modeled as distributed 

spring and damper which are considered between the two shafts and their vibration equations 

are obtained. Optimal position and distributed stiffness and damping coefficients are 

determined using particle swarm optimization algorithm. The objective function to be 

minimized is defined as relative distance between shafts which is controlled by Equivalent 

stiffness and damping coefficients of considered viscoelastic vibration absorber. The present 

results show that applied viscoelastic polymer with the nearest features to the optimum values 

can drastically decrease the relative distance between shafts and absorb the vibration of rotating 

shafts. 

 

Keywords: Counter-rotating double shaft, Vibration absorber, Viscoelastic materials, PSO 

optimization 
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Abbreviations 
Parameter Notation Parameter Notation 

elastic displacements in the x, y, z 
directions, respectively 

u,v,w  cross-sectional area A 

variation of ( )    Young’s modulus E 

x



    shear modulus G 

t



  
.

 
shaft cross-section moment of 

inertia 
I 

denotes vector  


 torsional rigidity constant J 

density of the homogeneous model 

material 
  length of shaft 𝐿 

shaft rotational speed   excitation force  F 

Time response function   
location of absorber A 

  
damping coefficient of 

absorber 
C 

  
stiffness coefficient of 

absorber 
K 

  Time T 

 

1. Introduction 

Application of the counter-rotating double shafts has some specific benefits. For example, these 

shafts can be used under the water to neutralize the driving torque effect, prevent from the 

submarine's self- propulsion, and increase the submarine's power to move forward and 

maneuver. The cavitation and noise problem of these counter-rotating double shafts can also 

be addressed by designing propellers with smaller diameter. In the case that one of the motors 

connected to shafts is incapacitated, the submarine can still move forward under the water. 

However, the rotating movements of the shafts can intensify the vibrations, which cause 

disturbance. Furthermore, the little distance between shafts increases the possibility of their 

contact with each other, which consequently disturbs the system performance. In order to 

prevent from the interference between shafts, their vibrations should be controlled.  

To the best of our knowledge, no study has ever considered vibrations of the counter-rotating 
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double shafts in presence of vibration absorber material between rotating shafts.  

Since the most important practical application of the present study is about lubrication of  

Coaxial rotating shafts which are charged with  a polymeric viscoelastic material such as 

industrial oil or grease. Sarath et al. [1] have been Reviewed tribological behavior of polymeric 

materials. Optimal design of viscoelastic vibration absorbers for rotating systems was studied 

by Doubrawa Filho [2]. Jin et al. [3] have been studied the complex vibrational behavior of 

dual rotor aero engine by FEM and dynamic stability of their model was compared with 

measurements. Wong et al. [4] using modified fixed-points theory designed an optimization  of 

a viscoelastic dynamic vibration absorber. Design of optimum viscoelastic vibration absorbers 

based on the fractional calculus model  was studied by Spindola [5] and Numerical examples 

are produced and discussed. 

The free vibration analysis of a nonlinear slender rotating shaft with simply support conditions 

was studied by Shahgholi et al. [6]. Since the effect of shear deformation was negligible in the 

slender rotating shaft, the researchers modeled a system rotary inertia and studied the 

gyroscopic effect. The equations of motion were derived using the extended Hamilton principle 

and the nonlinear system was analyzed utilizing the multiple scales method. The forward and 

backward nonlinear frequencies of the slender rotating shaft were obtained. The scholars 

concluded that to have natural vibration of a slender rotating shaft, backward and forward 

modes were required. In the same vein, Hosseini and Khadem [7] investigated the free 

vibrations of an in-extensional simply supported rotating shaft with nonlinear curvature and 

inertia. Although the rotary inertia and gyroscopic effects were included, the shear deformation 

was neglected. They applied the multiple scales method to analyze the free vibrations of the 

shaft. This method was applied to the discretized equations and directly to the partial 

differential equations of motion. Huang et al. [8] focused on the noise prediction of a rotating 

shaft. They applied the Hamilton's principle and Galerkin's method to establish the motion 
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governing equations for a Rayleigh beam that rotated about its longitudinal axis and was 

subjected to a harmonic force. The aim was to solve the vibrating displacement of the shaft. In 

this regard, the aeroacoustics theory, introduced by Lighthill and improved by Ffowcs Williams 

and Hawkings was used for calculating the developed noise of the shaft in motion. 

Although some recent studies were conducted over vibrations of the rotating shafts, no research 

has ever designed a vibration absorber for controlling the vibrations of the counter-rotating 

double shafts and preventing the contact between them. In this research, a distributed spring 

and damper was considered between the two shafts and the vibration equations of the shafts 

were obtained as a couple. Furthermore, the optimum placement and distributed damping and 

stiffness coefficient were obtained using particle swarm optimization (PSO) algorithm. To 

design the vibration absorber between two shafts, viscoelastic materials has been used. 

Accordingly, in the first step, these materials have been modeled as a distributed spring and 

damper between two shafts. Next, the nearest polymer of viscoelastic materials with optimized 

features was considered as the vibration absorber. Finally, a polymer from a list of viscoelastic 

materials with the nearest features to optimum distributed damper and spring has been chosen 

as the vibration absorber. 

2. Vibration equations 

In this study, two rotating shafts are considered as cylinders with the same rotational axis which 

rotate in opposite direction. The schematic of the model is shown in Fig.1 and their dimensions 

are brought in Table 1. Axial propulsion force, which is applied to the end of the shafts, and 

rotating frequency of the inner and outer shafts are brought in Table 2.   
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Figure 1) Schematic of counter-rotating double shaft 

Table 1) Dimensions of the counter-rotating double shaft 

 

 

Table 2) Propulsion force and rotating frequencies of the counter-rotating double shaft 

o

axial force for
P

outter shaft

 
 
 

 i

axial force for
P

inner shaft

 
 
 

   o   i   F  

4000N  4000N  1500rpm  1500rpm   2000N  

 

A rotating shaft with axial applied force can be considered as a cantilever beam. Vibration 

equation of this shaft can be obtained using Eq. (1), [9]. 

where,  

E ,  ,  A  and P  are shaft’s Young’s modulus, density, surface section and axial force, 

respectively.  

Rotating shaft angular velocity causes inertia force. So, the rotating shaft vibration equation 

can be expressed by Eq. (2).  

15.5 mm R1 

22.5 mm R2 

27.6 mm R3 

35 mm R4 

1195 mm Length of outer shaft 

1300 mm Length of inner shaft 
5.1 mm Relative distance between of two shafts 
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  2       
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EI P A A w x t
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Different disturbances such as force caused by unbalances, sea waves and water flow are 

applied to the shaft such as external forces. Since the shaft is rotating with the angular velocity 

of   it can be said that excitation force has the same frequency. In this study, it is assumed 

that a force  F exists at the beginning part of the shaft and its vibration equation can be driven 

as Eq. (3). 
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
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By employing assumed mode method vibration equation can be rewritten as Eq. (4).  

  

 4 

    
4 2

2

4 2
1

0n n
n n n n

n

d W d W
EI P A W t AW t

dx dx
   





  
      

  
  

where, nW  is the mode of cantilever beam. After multiplying each side of the equation by sW  

and performing integration along the shaft length, the vibration equation can be written as Eq. 

(5).  
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After solving Eq. (5) using the Runge–Kutta method, time function 𝜂𝑛 can be extracted. 

Considering this time function, vibrations of the external shaft with harmonic excitations will 
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be obtained. 

 
Figure 2) Distance variation between the shafts 

As it can be seen in Fig.2, vibrations exceeded 5.1mm range and the two shafts have contact 

with each other. 

3. Verification  

Based on the shaft’s equations of motion, we compared our findings with the results of a similar 

study. Tavari et al. [9] examined a shaft affected by an external load (cutting tool). The 

workpiece shaft was modeled as a cantilever beam and its equations of motion were obtained 

in three directions (two directions in surface section of the shaft and one direction in twisted 

movement of shaft). In order to solve the system equations, we considered the initial conditions 

similar to the research by Tavari et al. [9]. The results were similar as Fig.3 shows.  
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Figure 3) Transverse vibration response by considering similar initial conditions to 

Tavari et al. research [9]. 

Table 3) Comparing Elastic displacement in the y direction respect to time of this 

study and ref [10] 

 Elastic displacement in the y direction 

Time (Sec) Present Study Ref [10] 

0.0936 0.498 0.497 

0.14 0.445 0.445 

0.257 0.398 0.398 

0.327 0.364 0.363 

0.398 0.336 0.338 

0.468 0.308 0.309 

0.538 0.287 0.288 

0.63 0.268 0.268 

0.772 0.240 0.241 

0.912 0.225 0.225 

1.10 0.206 0.207 

1.29 0.194 0.196 

1.52 0.188 0.187 

1.82 0.182 0.183 

2.27 0.179 0.176 

0.302 0.176 0.174 

0.430 0.180 0.179 

0.737 0.181 0.180 
 

 

It is seen that the values obtained by the present work has very weel agreement by ref Tavari 
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et al [9]. 

4. Vibration absorber design 

As discussed previously, the contact between the two shafts should be controlled to avoid 

system disturbance. Therefore, a vibration absorber was used between the two shafts. In this 

case, vibration equations of the internal and external shafts were coupled with each other by 

the stiffness and damping coefficients of the absorbing material. Vibration equations of shafts 

can be rewritten using assumed modes methods within time domain [10]. 
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Using assumed modes method and considering modes of the cantilever beam, Eqs. (6) can be 

rewritten as Eqs. (7). 
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In Eq. (8), it is assumed that the absorbing material with length b  which is considered 5cm  

existed between two shafts. Furthermore, parameter a  is the position of the absorbing material 

that will be obtained by optimization methods. 

5. Position and features determination of optimized absorber with PSO algorithm 

Position and features of the vibration absorber are effective parameters on system vibration. 

Therefore, , , ,a k c , that are the position, stiffness and damping coefficient of absorber were 

considered as the optimization parameters.  

In this paper, in order to achieve the optimum values of , , ,a k c Particle Swarm Optimization 

(PSO) was considered as the optimization algorithm. Among the available optimization 

algorithms, PSO algorithm has been used in many studies due to its specific features. Since the 

aim of this research was to prevent contact between shafts, the cost function was considered 

the sum of absolute value of the distance variation between the two shafts in a specific time 

interval. It should be noted that in this optimization, searching range for 𝑘 and 𝑐 was considered 

 0,5000000  and Table 3 shows configurations of the PSO algorithm. Optimum values of 

parameters , , ,a k c have been achieved and brought in Table 4.       

Table 3) PSO algorithm settings 

Inertia Weight 

Damping Ratio Inertia Weight Global Learning 

Coefficient 

Personal 

Learning 

Coefficient 
Population Size 

 0.98   1   50000   30000   100  

 

 Table 4) Optimized values for parameters a, c and k 

 fittness   k   c   a   

 0.1944   4.21 6e   1.59 5e    1.175  

  
 Best Solution  

 

6. Determination of vibration absorber material 

In mechanical systems, vibration and noise can be controlled or decreased using several 
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approaches. In recent years, viscoelastic materials were considered as one of the common and 

low-cost approaches. In this study, a viscoelastic material with both elastic and viscosity 

characteristics has been used; in other words, the selected material has two features; damping 

property (Energy loss) and structural property (Energy saving). These kinds of polymers are 

known as passive damper. Dynamic features of these materials under harmonic excitation can 

be expressed by complex elasticity modulus     t t E iE     , which is due to the phase 

time difference between the strain and stress. To control vibration of the system, polymers from 

different studies [10-14] have been used as a damping middle layer. Their operations in the 

system have been compared to each other to find a suitable absorber, which that has the nearest 

stiffness and damping coefficients to the optimum values. Polymers characteristics are shown 

in Table 5.  

 

 

Table 5) Specifications of polymers 

Ref. gT  

(oC) 
 Density  

(g/cm3) 
    s  

G
 

 GPa  
0G  

 MPa  
Polymer 

[12] -40 1.074 0.0363 0.5709 1.649E-7 1.859 2.144 1 
[12] -21 1.092 0.0269 0.5332 1.574E-6 3.573 1.558 2 
[12] 2 1.108 0.0259 0.6174 1.757E-3 2.375 2.340 3 
[12] 6 1.123 0.0695 0.6138 7.974E-4 1.169 2.370 4 
[12] 2 1.073 0.0533 0.6608 2.991E-4 1.415 1.490 5 
[12] -39 1.072 0.0309 0.5555 1.598E-7 2.395 1.917 6 
[12] 0 1.084 0.0296 0.6378 1.468E-4 2.129 2.002 7 
[12] 9 1.119 0.0566 0.6797 2.974E-3 1.099 2.307 8 
[12] -35 1.060 0.0659 0.5343 9.576E-8 1.626 1.762 9 
[12] 11 1.106 0.0935 0.7236 3.107E-3 0.8208 2.243 10 
[12] -34 1.064 0.0733 0.6396 2.971E-7 1.032 2.312 11 
[13] -43 1.087 0.0460 0.4998 7.127E-8 2.156 1.634 12 
[13] -51 1.073 0.1310 0.5347 1.214E-8 1.107 1.857 13 
[14] -35 1.090 0.1066 0.5480 3.319E-7 0.9417 6.388 14 
[14] -42 1.079 0.1323 0.5280 3.493E-8 0.8674 6.100 15 
[15] 28 1.170 0.0574 0.6602 8.268E-2 1.888 1.728 16 
[15] -6 1.154 0.2108 0.5558 1.178E-4 1.021 5.578 17 
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[15] -36 1.101 0.4116 0.4833 3.139E-9 1.453 3.372 18 
[16] 13 1.096 0.1356 0.4941 1.702E-1 0.8089 5.019 19 
[12] -48 1.139 0.1973 0.2609 7.764E-9 1.678 12.71 20 
[12] -57 1.105 0.3779 0.2947 4.92E-11 1.055 11.01 21 

 

Curve fitting parameters of each polymer are brought in Hartmann et al. [15]. Also, in this 

research curve fitting process and all required parameters were introduced. Considering the HN 

model represented in [16]. The elasticity modulus and damping coefficient of the polymers can 

be obtained with appropriate accuracy in a wide range of frequency.  

In order to consider the effect of vibration absorber material in the equations, an equivalent 

stiffness and damping coefficients of the absorber should be entered in the equations. To clarify 

this matter, one shaft was considered under axial load and the equivalent spring was obtained.  

 

Figure 4) Model of equivalent spring 

 

  9  
               eq

FL F EA
K

EA K L
      

Since the absorber was used in a small range of shaft length, the dominant vibration mode in 

absorber was equal to the vibrations along the shell thickness and bending effects were 

neglected. On the other hand, according to slippage between shafts and absorber, it is obviously 

that the absorber is just under the pressure. So, half of the cylindrical absorber is always under 

the pressure.            
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Figure 5) Vibration absorber modeling 

In order to achieve the distributed stiffness coefficient of the vibration absorber in shafts length, 

the stiffness coefficient of element should be initially calculated. It also should be noted that 

due to absorber thickness smaller than its diameter, an approximate rectangular shape can be 

considered for the element.  

 
Figure 6) Vibration absorber element 
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 E rd dxEA
k
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
   

Later, the energy method has been used and stiffness coefficient of the equivalent absorber has 

been calculated as Eq. (11).  
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where,  d and r are thickness and average diameter of the absorber, respectively. As it was 
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described in previous sections, in viscoelastic materials, Young’s modulus can be replaced as 

a complex number in the equations. Furthermore, the method mentioned in De Silva book [17] 

can also be used Eq. (12). 

  12   
* E

E E
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 
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Considering these explanations, equivalent distributed stiffness and damping coefficient of the 

absorber in longitudinal direction of the shaft are written in Eqs. (13). 
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It should be noted that temperature and frequency have some specific effects on viscoelastic 

materials. So, the applied forces should be determined initially. Since noise on the motor shafts 

has motor frequency, a harmonic force can be assumed with frequency of   (shaft frequency) 

at the head of the external shaft.  

 14     ,     of x t F sin t x L    

Using given  , equivalent stiffness and damping coefficients of the absorber can be obtained 

for each polymer and the polymer with nearest coefficients to the optimum values can be 

selected. Results show that stiffness coefficient variations have no effects on the system 

response, because the total stiffness coefficient of the structure is more significant than the 

absorber coefficient. Therefore, the main parameter to select the material is the equivalent 

damping coefficient. Comparison between the damping coefficients of different polymers 

shows that type 7 has the nearest equivalent damping coefficient to the optimum value. Using 

given the Young’s modulus and loss factor in shaft frequency, damping coefficient can be 
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obtained for each polymer by Eq. (13). Damping coefficient of polymer 7 is 1.3838 5,e  which 

is the nearest to the optimum value.  

 

Figure 7) Young’s modulus and damping coefficient of polymer number 7 

By replacing the equivalent stiffness and damping coefficient of the designed absorber in the 

vibration equations and solving these equations as couple to each other, the system response 

can be achieved. Fig.8 shows the distance variations between the two shafts. 
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Figure 8) Distance variation between two shafts after using the vibration absorber 

With regard to Fig.8, it can be concluded that the relative distance between the two shafts 

was controlled appropriately and their contact was prevented. 

7. Conclusion 

Using two counter uniaxial shafts in ships and submarines with pre-drive systems can 

increase the maneuvers of their motors. However, it should be considered that movements 

due to vibration of the rotating shafts can cause contact between them and leads to 

disturbance in system operation. So, it is important to control vibrations of the double 

counter shafts. The proposed method in this study was based on the application of the 

viscoelastic materials. These materials have been used between two shafts and vibration 

equations of these shafts have been extracted as a couple with each other. PSO algorithm 

has been employed to obtain optimum position and features of the vibration absorber. 
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According to proposed a model for the viscoelastic cylinder, appropriate viscoelastic 

polymer has been selected.  

Variations of relative distance between shafts show that the designed absorber can control 

the distance appropriately and prevent contact between two shafts. The distance between 

inner and outer shafts was 5.1mm. During system operation without vibration absorber 

maximum distance variation between the two shafts was 8𝑚𝑚; so, contact between the 

shafts and disturbances in system operation were observed. However, after using the 

vibration absorber in the considered position, it was observed that the maximum distance 

variation reduced to 0.2mm . 
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