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Highly nonlinear systems with parametric uncertainties and external disturbances deteriorate the 

tracking control performance of autonomous underwater vehicles. In this research, to attain an 

optimal precision, an adaptive integral-type terminal sliding mode controller is proposed. To this 

end, the kinematics and kinetics controller laws are developed as the outer and inner loop control 

to track desired trajectories. The kinematics controller, as the outer controller, is developed to 

control the position errors. The kinetics controller, as the inner servo loop, is developed based on 

the system dynamics model and an adaptive integral-exponential sliding surface to control the 

internal velocity errors. In order to enhance the control proficiency, we have implemented an 

adaptive switching rule within the kinetic control algorithm, enabling an automated adjustment of 

all controller parameters. Therefore, the increase and decrease of these switching parameters will 

occur according to the system conditions, while its stability is guaranteed using Lyapunov 

theorems. Obtained results show the merits of the proposed controller in terms of high accuracy 

performance and low computation cost for real-time implementations. 

Keywords — Adaptive Terminal Sliding Mode Control, Position Control, Autonomous 

Underwater Vehicles (AUV), Trajectory tracking. 
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1. Introduction 

In recent years, sophisticated submersible robots have become integral to underwater research 

and exploration efforts. These robots are utilized in various commercial, military, and scientific 

endeavors, as well as mapping initiatives, effectively reducing the need for human intervention. 

The exceptional capabilities of automated underwater robots, particularly in executing complex 

oceanic missions at significant depths, have solidified their pivotal role in the industry [1]. The 

primary focus of research on mobile robots in this category revolves around the complex 

challenges associated with modeling these systems. These challenges include nonlinear equations, 

uncertainties in both structural and non-structural aspects, environmental dependencies on model 

parameters, and external disturbances such as ocean currents. The intricate nature of these factors 

makes the study of these systems particularly enticing yet intricate [2]. Hence, extensive research 

has been dedicated to the dynamic analysis and design of control algorithms for these systems. 

Numerous studies have focused on the fields of system identification, modeling, and control 

methods in order to enhance the autonomy of these devices. Given the challenging operational 

environments in which these devices are deployed, it is essential to develop control techniques that 

not only offer high accuracy but also demonstrate robustness against external disturbances and 

noise attenuation capabilities [3]. To address these requirements, a variety of control methods have 

been suggested, including sliding mode controller [4-7], high-order sliding mode controller [8], 

backstepping sliding mode controller [9], adaptive controller [10-11], optimal controller [12-13], 

and fuzzy controller [14]. 

In sliding mode, the nonlinear closed-loop control system is insensitive to uncertain dynamics 

and averts bounded input disturbances. However, in the worst-case scenario, knowing uncertainty 

bounds is essential when planning of the sliding mode and robust controllers [15,16]. Therefore, 
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controller design can be extremely conservative that can decline the velocity of the closed-loop 

response. Considering the above characteristics, sliding mode control along with adaptive 

mechanisms is suitable for nonlinear and fast response applications.  

 Fussen [17] introduced an adaptive sliding mode controller for submarine robots which 

compensates for the uncertainty of the input matrix by adding a discrete term (sliding mode term) 

to an adaptive controller. This uncertainty is created due to the time-variant behavior of control 

input caused by feeder hydraulics. In [18] proposed an adaptive sliding mode control method for 

controlling an AUV in the vertical sheet which employs stare error as the feedback signal to update 

the linear parameter for compensating for linear uncertainties. Yoerger [19] empirically developed 

an adaptive sliding mode control for an AUV in which a nonlinear system model was used. When 

extended disturbances of system state exceed the tolerance layer of the sliding mode, this excess 

value is used to update the nonlinear model parameters and control inputs. Thus, this controller 

compensates for changes in the environment. Corradini [20] proposed an adaptive sliding mode 

controller which adjusts the sliding mode parameters based on the estimation of system parameter 

bounds. [21, 22] demonstrate the adaptive sliding mode tracking controller for entirely operated 

AUVs. Maghooli et al. [23] suggested a self-tuning robust tracking control that is independent, 

and contains known/unknown parts to control the AUV. 

Motivated by the above a new optimal self-tunning tracking control based on robust inner-loop 

system is presented in this paper to solve the trajectory tracking problem of the AUV subjected to 

uncurtains and external disturbances. By employing nonlinear adaptive sliding surfaces, the sliding 

manifolds can rapidly converge. The AUV system incorporates adaptive sliding mode surfaces 

that utilize fractional derivative and integral to enhance the speed of the attitude states. To this end, 

the kinematic and kinetic controller laws are designed as the outer and inner loop control to track 
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desired trajectories. The kinematics controller, as the outer controller, is developed to optimal self-

tuning control. The kinetics controller, as the inner servo loop, is developed based on adaptive 

nonsingular fast terminal sliding mode control law is further developed, and enhances the 

robustness of the AUV in the presence of external disturbances and uncertainties. Furthermore, the 

fluctuation in switching parameters occurs in accordance with the system's conditions, with the 

assurance of stability achieved through the application of Lyapunov theories.  

The current research effort showcases significant contributions as listed below: 

(i) The AUV has been fortified with a meticulously devised optimal self-tuning control mechanism 

employing the sequential quadratic programming algorithm. Such an approach emanates 

substantial advantages for the AUV control system, notably in terms of expeditious trajectory 

tracking performance and rapid finite-time convergence. 

(ii) Adaptive laws, which are predicated solely on velocity and position information, have been 

introduced to effectively contend with the upper bound of uncertainties and disturbances. These 

adaptive laws manifest realism and practicability. 

(iii) After conducting a thorough comparative analysis of alternative controllers, it can be 

confidently affirmed that the proposed controller has been found to be highly effective and its 

efficacy has been comprehensively ascertained. 

The remainder of this document is structured in the following manner: section 2 describes the 

kinematics and kinetics modeling of the AUV with/without uncertainties. In Section 3, an 

analytical description of the proposed algorithm and stability analysis are presented. Section 4 is 

illustrated obtained results compared with other methods, and finally, section 5, concludes this 

work.   
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2. Preliminaries and Mathematical Modeling 

2.1. North-East-Down (n-frame): NED 

This system is usually defined as a plane tangential to the ground surface that moves with the 

vessel's motion. Still, the direction of its axes is different from the direction of the axes of the body 

coordinate system (which is described below). For this system, the x-axis is northing, the y-axis is  

easting, and the z-axis is perpendicular to the ground surface and toward its center. The position 

of the NED coordinate system relative to the ECE coordinate system is determined by latitude and 

longitude. 

This coordinate system is used to navigate vessels operating in a restricted area. For these vessels, 

this coordinate system can be considered a bare coordinate system governed by Newton's laws. 

   2.2. Body Frame 

The body coordinate system is a moving coordinate device fixed on a vessel. The position of 

marine vessels is described relative to a bare device, while the linear velocities and angles of a 

vessel are defined in the body coordinate system. In submarine boat, the origin of the body 

coordinate system is usually located in the center of mass or the center of buoyancy, and its axes 

are considered in the direction of the vessel's motion, as shown in Fig. 1.  
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Fig1. Underwater vehicle (REMUS 100) Fig 1. North-East-Down and body frame [20] 

The pose vector of the AUV concerning the fixed frame is denoted by 𝜂 = [𝜂1  𝜂2]𝑇 ∈ ℛ6 . 

(i.e., 𝜂1 = [𝑥 𝑦 𝑧]𝑇: the position vectors and i.e., 𝜂2 = [𝜙 𝜃 𝜓]𝑇: the orientation vectors.  

The 𝑣 = [𝑣1  𝑣2]𝑇 ∈ ℛ6 is the velocity vector of the AUV expressed in body frame. (i.e., 𝑣1 =

[𝑢 𝑣 𝑤]𝑇: the linear velocity vectors, and i.e., 𝑣2 = [𝑝 𝑞 𝑟]𝑇: the angular velocity vectors)  

 

2.3.  Mathematical Modeling 

The kinematic and kinetics equations of the AUV [10] can be successfully acquired by employing 

the esteemed Eq. (1). 

 

  j    (1a) 

     M C D g          (1b) 

Where 
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 𝜏= [𝑋, 𝑌, 𝑍, 𝐾, 𝑀, 𝑁]𝑇 ∈ ℛ6  symbolizes the comprehensive applied propulsion force or 

torque vector on the AUV; 

  𝑀 = 𝑀𝑅𝐵 + 𝑀𝐴  where 𝑀𝑅𝐵 ∈ ℛ6×6 and 𝑀𝐴 ∈ ℛ6×6 represent the inertia matrix for the 

rigid body, and additionally includes the added mass contribution.; 

 𝐶(𝜐) = 𝐶𝑅𝐵(𝜐) + 𝐶𝐴(𝜐) where 𝐶𝑅𝐵(𝜐) ∈ ℛ6×6 and 𝐶𝐴(𝜐) ∈ ℛ6×6 represents the Coriolis 

and centripetal matrix, respectively; 

 𝐷(𝜐) = 𝐷𝑅𝐵(𝜐) + 𝐷𝐴(𝜐)  where 𝐷𝑅𝐵(𝜐) ∈ ℛ6×6  and 𝐷𝐴(𝜐) ∈ ℛ6×6  represent the 

combined effect of quadratic and linear drag.; 

 𝑔(𝜂) ∈ ℛ6×6 constitutes the vector that represents the hydrostatic restoring force; 

 𝑗(𝜂) = [
𝑗1(𝜂2) 03×3

03×3 𝑗2(𝜂2)
] is the Jacobian matrix; 

The properties of this model include the following: 

The added mass matrix 𝑀 is a definite positive matrix with constant values 

M  = 0TM   

 

For a rigid body moving in a fluid, the Coriolis and centrifugal matrix 𝐶(𝜐) is a Skew-

symmetric matrix so that. 

     60,
T

C v C v v R      

 

For a rigid body moving in a fluid, the hydrodynamic damping matrix is a definite real, 

asymmetric, and positive matrix so that. 

   60,D v v R   
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3. Mathematical Modeling in the Presence of Uncertainties 

Generally, there are inaccuracies and uncertainties in modeling a dynamic model such as an AUV. 

Uncertainties in dynamic model parameters are unavoidable, taking into account the complexies 

of modeling the equipment movement within a fluid environment.  

Due to the uncertainties and dynamic modeling errors, the actual values of the parameters ℳ, 

𝒞(𝜗), and 𝒟(𝜗) in Eq. (1) are the sum of the approximately known parts ( ℳ†, 𝒞†(𝜗), and 𝒟†(𝜗) 

), and unknown parts of the parameters ( ∆ℳ, ∆𝒞(𝜗), and ∆𝒟(𝜗) ). 

Thus, the model of the AUV with known/unknown parts can be aptly articulated as follows: 

(2)         † † † d                   

Where 𝒹 represent the external disturbances. 

Thus, model uncertainties can be defined in the following forms: 

(3)       d           

Substituting (3) into (2), one acquires: 

(4)      † † †

           

Thus, 𝜗̇ can be computed utilizing the following expression: 

(5)       † 1 † †

           

Calculating (6) by substituting (5) into (4): 

(6)           † 1 † † d                   

Simplifications yield: 
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(7)  
            

1
† 1 † 1 † †I d         


             

Therefore, δ (external disturbances and system uncertainties) is upper bounded as 

(8)  

  

 
      

      

1
† 1 † 1 † †

1
† 1

I

I d

    

   


 




     

  



  

 

Equivalent to the essence of mechanical systems, it is assumed that [10]: 

1) The norm of inertia mass is upper bounded as 

(9)   0  

2) The norm of the Coriolis matrix and centripetal terms (𝒞(𝜗) ∈ ℜ4×4) are upper bounded as 

(10)    1 2       

 

3) The norm of the damping matrix (𝒟(𝜗) ∈  ℜ4×4) is upper bounded as 

(11)     3 4      

Based on the dynamic model of AUV, the upper bound for the magnitude of the actuator forces 

vector is constrained to follow the norm. 

(12)    

Thus, the norm of 𝛿 is upper bounded as 

(13)   5 6     2

0 1 2         

in which 𝛼𝑖  (𝒾 = {0 , . . ,6}) & 𝛾𝑖 (𝒾 = {0 , … , 2}) are precisely set as the upper bounds for the 

dynamic model uncertainties. 
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4.  Methodology 

Fig. 2 displays the intended control framework for AUV. 

 

Fig. 2. The proposed control algorithm for trajectory tracking 

 

 

3.1 Geometry of Workspace  

The reference trajectory for the AUV in Cartesian space is expressed as time-dependent functions. 

(14)   d d t   

Utilizing the envisioned path and the recorded output signal, the tracking errors can be precisely 

characterized as: 

(15)       dt t t     

3.2 Outer-Loop Controller 
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A. Optimal Self-Tunning Controller  

As a fundamental principle, the control law known as Proportional-Integral-Derivative can be 

expressed in the following manner: 

(16)  
       c P I D

d
K t K t dt K t

dt
     

 
         

 
 

 

The arduous aspect of this design lies in the determination of the optimal values for these nine 

constant parameters, which would bring about the most favorable response from the system. In 

this paper, the parameters of the control law (𝐾𝑃𝑖
 , 𝐾𝐼𝑖

 , 𝐾𝐷𝑖
) have been estimated using the 

Sequential Quadratic Programming algorithm. 

 

3.3  Inner Loop controller   

5.  Feedback linearizing control (FLC) 

The initial regulator of the dynamic portion is depicted utilizing the FLC. Thus, tracking error is 

determined as: 

(17)  
c     

Where 𝜗𝑐 represents a kinematic input vector achieved from the kinematic controller design. Thus, 

the control law is: 

(18)     τ c          

Where 𝒦 shows the gain matrix of the system.  

Proposition 2: Tracking error of system velocities is stabilized by the control law of Eq. (18) for 

dynamic systems about origin asymptotically (Eq.1). 
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Proof: To guarantee the closed-loop system’s stability, the candidate Lyapunov function is chosen 

as in Eq. (19).  

(19)  
FLDC

1

2

TV    

The chosen Lyapunov function’s time derivative is explained in Eq. (20).  

(20)  ˙
T

FLDC

T

cV     
 

   
 

 

To obtain Eq. (21) dynamic model of Eq. (1) are replaced, and control inputs of Eq. (18) are 

applied. 

(21)            1 1

NDC

TV                    

Simplifications yield 

(22)  T

NDCV     

 

Hence, the derivative of the positive definite Lyapunov function needs to be negative to realize the 

convergence of the velocity errors and system stability. Thus, coefficients 𝒦 must be positive.  

 

6. Sliding mode control (SMC) 

Sliding mode control possesses features such as robustness against parametric and structural 

uncertainties. Moreover, it has the proper transient response, which discriminates it from other 

control approaches.  

PI filtered tracking error as the sliding surface is determined (Eq.23), where 𝒦 shows the gain 

matrix of the sliding surface integrator.  

(23)   
0

t

S d        

Take SMDC control law into account, as in Eq. (24).  
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(24)       τ sgnc s sS W S             

Where 𝒦𝑠, and 𝑊𝑠 are the control gains of the system.  

Proposition 3: For the AUV, the tracking error of the system velocities is stabilized by the control 

law of Eq. (24) about the origin asymptotically (Eq.1).  

 

Proof: The definitely positive function of Eq. (25) is considered a Lyapunov function.  

(25)  
SMDC

1

2

TV S S   

This function’s time derivative is expressed in Eq. (26).  

(26)   T

SMDC

TV S S S        

Eq. (26) can be simplified as in Eq. (27) through the control input of Eq. (24) and the dynamic 

model.  

(27)    T

SMDC sgns sV S S W S      

Hence, in order to attain system stability, it is imperative that the derivative of the positive definite 

Lyapunov function demonstrates negativity. Therefore, coefficients 𝒦𝑠, and 𝑊𝑠  must be positive.  

 

7.  Adaptive fast Terminal sliding mode dynamic controller 

AUVs find significant utilization in various challenging and diverse habitats, primarily 

exemplified by expansive and unpredictable oceanic settings. Consequently, it becomes imperative 

to devise control approaches that not only exhibit exceptional precision but also exhibit 

unwavering resilience to disruptive external factors. Sliding-mode controller is one of the control 

methods which have these characteristics. To this end, the integral-exponential sliding surface is 

defined based on velocity tracking error as in Eq. (28). 
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(28)  
       ,TSMTC

0 0

a
t t

bt t d sign t d         t t  

Where 𝜆 and 𝜅 are positive constants, 𝑎, and b are positive odd integers satisfying 0 < 
𝑎

𝑏
 <1. 

The FTSMC scheme eliminates the offset, and the steady state errors converge to zero.  

The adaptive integral-exponential sliding surface is defined based on velocity tracking error as in 

Eq. (29). 

(29)  
       ,TSMTC

0 0

ˆ ˆ
a

t t
b

i it t d sign t d         t t  

The following ATSMC law: 

(30)  
        

˙
†

ATTSMC
0

ˆ{ ˆ
t

id i t t d               t  

           

    

˙
1

0 0

† 2

0 1 2

 ˆ ˆ

ˆ ˆ ˆ

}

sign

a a
t t

b b
i i

a
t d sign t t t d sign t

b

s

      

    

 
 

 
  

         

  

 t t
.  

 

The following adaptive rules are used to obtain the control parameters of the sliding surfaces and 

the switching control law:  

(31)  
     

˙ ˙

0 0
diag   ˆ ,   diˆ ag

T
at t T
b ii s t d s t d    

  
        

 t t  

˙ ˙ ˙
2

0 0 2 1 3 2
ˆ ,  , ˆ ˆs s s             

The estimation error in calculating these parameters can be described as follows. 

(32)  
0

ˆ     

 

Proof: Considering the following Lyapunov function candidate: 
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(33)    T 2

APISMC

1 1
, L

2 2
V s s     

Where: 

(34)     1 1 1

0 1 2  , L diag , ,
TT

i           

The function candidate time derivative is obtained as: 

(35)  
      

˙ ˙ ˙
T T

APISMC
0

ˆ ˆ, L L {
t

T T
id iV s s s s t t d                 t  
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Using dynamic model and simplifications yields: 
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(36)  
  

˙
T

APISMC , L  TV s s    

     2

0 1 2
ˆ ˆ signˆs s             

Consequently, 

(37)     
˙

T 2

APISMC 0 1 2, L { }ˆ ˆ ˆV s s s              

Using (35) and (36), yields 

(38)  

  APISMC ,V s   

 

˙ ˙ ˙
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0 1 2

0 1 2

ˆ ˆ ˆ
s s s s    

  
     

  

     
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     

    

 

Applying adaptive laws (31) and simplifications yields 

(39)    APISMC ,V s s     

Henceforth, it is duly acknowledged that the achieved state of the control algorithm stability has 

been successfully materialized. 

8. Obtained results 

We will now proceed to showcase the results that have been achieved in various scenarios in the 

subsequent section to confirm the effectiveness of the ATSMC scheme proposed in this study. An 

external disturbance of significant magnitude (as defined in Eq. 40) has been introduced into the 

system's dynamic Eq.s to assess the robustness of the controller. The specific model parameters of 

the Autonomous Underwater Vehicle (AUV) can be found in reference [25]. 

The selected simulation environment for this endeavor is the renowned MATLAB/Simulink 

platform. Its immense capability to efficiently simulate linear, nonlinear, multi-rate, variable-step, 
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and fixed-step systems, coupled with its vast collection of toolboxes dedicated to swift research 

and development tasks, render it the prime choice for this specific undertaking. 

(40)       

sin  cos   
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 
  
    

u u  

 

In the initial situation, the robot effectively followed the intended trajectory, commencing from 

any random location within the Cartesian space. (Refer to Fig. 3 for visual representation) 
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Fig3. The reference and the real motion path (starting from four deferent points) for the AUV in 3D space. 

 

In an alternative scenario for evaluating the effectiveness of the proposed method, thorough 

comparisons were made between the feedback linear (FL), sliding mode control (SMC), the 

methodology outlined in reference [10], and Adaptive nonsingular fast integral-type terminal 

sliding mode control techniques. The movement trajectory of the robot and the reference trajectory 

in both 3D and 2D spaces, amidst external disturbances, were depicted in Fig. 4-5 for all controllers 

under scrutiny. 

Between 30 to 50 seconds into the simulation, a significant external disturbance was introduced 

into the system. Noteworthy is that the controllers demonstrated their resilience by promptly 

addressing the situation. Subsequently, the results pertaining to position tracking error and the 3-

axis control inputs were illustrated in Fig. 6-7. 
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Fig 4. Comparison of various algorithms for a 3D motion path 
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Fig 5. Comparison of various algorithms for a 2D motion path 

 

 

 

 
 

a) x-direction  b) y-direction 
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c) z-direction 

 

Fig 6. Tracking errors in the x/y/z-direction for all compared controllers 

 

 

 

 

a) Control input (N) in x-direction  b) Control input (N) in y-direction 
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c) Control input (N) in z-direction 

 

 

Fig 7. Control input (N) for all compared controllers 

 

In summation, the adaptive robust nonlinear control strategy outlined in this document 

demonstrates a high level of competency in effectively tracing trajectories, even when faced with 

uncertainties and disturbances. While the efficiency of all algorithms discussed in this article is 

deemed acceptable. 

 

 

5 Conclusions  

A highly advanced tracking controller utilizing an inner/outer-loop approach has been developed 

to address the trajectory tracking challenges of the AUVs in the presence of ocean current 

disturbances. In comparison to traditional sliding mode controllers, the incorporation of an 

adaptive integral sliding mode surface significantly boosts the robustness of the control system, 

while the double loop controller structure greatly improves its dynamic performance. Notably, the 

new switching method successfully mitigates the sliding mode chattering of the AUVs. The 
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asymptotic convergence of tracking error in joint space is proven using the Lyapunov direct 

method. Furthermore, this innovative approach simplifies the algorithm, and streamlines 

implementation on the AUVs embedded platform. The outcomes demonstrate that the tracking 

controller for the AUVs functions effectively with both stability and robustness. 
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