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ABSTRACT: Highly nonlinear systems with parametric uncertainties and external disturbances 
deteriorate the tracking control performance of autonomous underwater vehicles. In this research, to 
attain- optimal precision, an adaptive integral-type terminal sliding mode controller is proposed. To 
this end, the kinematics and kinetics controller laws are developed as the outer and inner loop control 
to track desired trajectories. The kinematics controller, as the outer controller, is developed to control 
the position errors. The kinetics controller, as the inner servo loop, is developed based on the system 
dynamics model and an adaptive integral-exponential sliding surface to control the internal velocity 
errors. In order to enhance the control proficiency, we have implemented an adaptive switching rule 
within the kinetic control algorithm, enabling an automated adjustment of all controller parameters. 
Therefore, the increase and decrease of these switching parameters will occur according to the system 
conditions, while its stability is guaranteed using Lyapunov theorems. The obtained results show the 
merits of the proposed controller in terms of high accuracy performance and low computation cost for 
real-time implementations.
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1- Introduction
In recent years, sophisticated submersible robots have 

become integral to underwater research and exploration efforts. 
These robots are utilized in various commercial, military, 
and scientific endeavors, as well as mapping initiatives, 
effectively reducing the need for human intervention. The 
exceptional capabilities of automated underwater robots, 
particularly in executing complex oceanic missions at 
significant depths, have solidified their pivotal role in the 
industry [1]. The primary focus of research on mobile robots 
in this category revolves around the complex challenges 
associated with modeling these systems. These challenges 
include nonlinear equations, uncertainties in both structural 
and non-structural aspects, environmental dependencies on 
model parameters, and external disturbances such as ocean 
currents. The intricate nature of these factors makes the 
study of these systems particularly enticing yet intricate [2]. 
Hence, extensive research has been dedicated to the dynamic 
analysis and design of control algorithms for these systems. 
Numerous studies have focused on the fields of system 
identification, modeling, and control methods to enhance the 
autonomy of these devices. Given the challenging operational 
environments in which these devices are deployed, it is 
essential to develop control techniques that not only offer 
high accuracy but also demonstrate robustness against 

external disturbances and noise attenuation capabilities [3]. 
To address these requirements, a variety of control methods 
have been suggested, including sliding mode controller [4-7], 
high-order sliding mode controller [8], backstepping sliding 
mode controller [9], adaptive controller [10-11], optimal 
controller [12-13], and fuzzy controller [14].

In sliding mode, the nonlinear closed-loop control system 
is insensitive to uncertain dynamics and averts bounded input 
disturbances. However, in the worst-case scenario, knowing 
uncertainty bounds is essential when planning the sliding 
mode and robust controllers [15,16]. Therefore, controller 
design can be extremely conservative that can decline the 
velocity of the closed-loop response. Considering the above 
characteristics, sliding mode control along with adaptive 
mechanisms is suitable for nonlinear and fast response 
applications. 

 Fussen [17] introduced an adaptive sliding mode controller 
for submarine robots which compensates for the uncertainty 
of the input matrix by adding a discrete term (sliding mode 
term) to an adaptive controller. This uncertainty is created 
due to the time-variant behavior of control input caused by 
feeder hydraulics. In [18] proposed an adaptive sliding mode 
control method for controlling an AUV in the vertical sheet 
which employs stare error as the feedback signal to update 
the linear parameter for compensating for linear uncertainties. 
Yoerger [19] empirically developed an adaptive sliding mode 
control for an AUV in which a nonlinear system model was 
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used. When extended disturbances of the system state exceed 
the tolerance layer of the sliding mode, this excess value is 
used to update the nonlinear model parameters and control 
inputs. Thus, this controller compensates for changes in the 
environment. Corradini [20] proposed an adaptive sliding 
mode controller that adjusts the sliding mode parameters 
based on the estimation of system parameter bounds. [21, 22] 
demonstrate the adaptive sliding mode tracking controller 
for entirely operated AUVs. Maghooli et al. [23] suggested 
a self-tuning robust tracking control that is independent and 
contains known/unknown parts to control the AUV.

Motivated by the above a new optimal self-tunning 
tracking control based on a robust inner-loop system is 
presented in this paper to solve the trajectory tracking 
problem of the AUV subjected to uncurtains and external 
disturbances. By employing nonlinear adaptive sliding 
surfaces, the sliding manifolds can rapidly converge. The 
AUV system incorporates adaptive sliding mode surfaces 
that utilize fractional derivative and integral to enhance the 
speed of the attitude states. To this end, the kinematic and 
kinetic controller laws are designed as the outer and inner 
loop control to track desired trajectories. The kinematics 
controller, as the outer controller, is developed for optimal 
self-tuning control. The kinetics controller, as the inner 
servo loop, is developed based on adaptive nonsingular 
fast terminal sliding mode control law is further developed, 
and enhances the robustness of the AUV in the presence of 
external disturbances and uncertainties. Furthermore, the 
fluctuation in switching parameters occurs in accordance 
with the system’s conditions, with the assurance of stability 
achieved through the application of Lyapunov theories. 

The current research effort showcases significant 
contributions as listed below:

(i) The AUV has been fortified with a meticulously 
devised optimal self-tuning control mechanism employing 
the sequential quadratic programming algorithm. Such an 
approach emanates substantial advantages for the AUV 
control system, notably in terms of expeditious trajectory 
tracking performance and rapid finite-time convergence.

(ii) Adaptive laws, which are predicated solely on 
velocity and position information, have been introduced to 
effectively contend with the upper bound of uncertainties 
and disturbances. These adaptive laws manifest realism and 
practicability.

(iii) After conducting a thorough comparative analysis of 
alternative controllers, it can be confidently affirmed that the 
proposed controller is highly effective and its efficacy has 
been comprehensively ascertained.

The remainder of this document is structured in the 
following manner: section 2 describes the kinematics and 
kinetics modeling of the AUV with/without uncertainties. In 
Section 3, an analytical description of the proposed algorithm 
and stability analysis are presented. Section 4 is illustrates the 
obtained results compared with other methods, and finally, 
section 5, concludes this work.  

2- Preliminaries and Mathematical Modeling
2- 1-  North-East-Down (n-frame): NED

This system is usually defined as a plane tangential to the 
ground surface that moves with the vessel’s motion. Still, the 
direction of its axes is different from the direction of the axes 
of the body coordinate system (which is described below). 
For this system, the x-axis is northing, the y-axis is 

easting, and the z-axis is perpendicular to the ground 
surface and toward its center. The position of the NED 
coordinate system relative to the ECE coordinate system is 
determined by latitude and longitude.

This coordinate system is used to navigate vessels 
operating in a restricted area. For these vessels, this coordinate 
system can be considered a bare coordinate system governed 
by Newton’s laws.

2- 2- Body Frame
The body coordinate system is a moving coordinate device 

fixed on a vessel. The position of marine vessels is described 
relative to a bare device, while the linear velocities and angles 
of a vessel are defined in the body coordinate system. In the 
submarine boat, the origin of the body coordinate system 
is usually located in the center of mass or the center of 
buoyancy, and its axes are considered in the direction of the 
vessel’s motion, as shown in Fig. 1. 

The pose vector of the AUV concerning the fixed frame 
is denoted by [ ] 6

1 2  Tη η η= ∈ . (i.e., [ ]1   : Tx y zη = the position 
vectors and i.e., [ ]2   Tη φθψ= : the orientation vectors. 

The [ ] 6
1 2   Tv v v= ∈ is the velocity vector 

of the AUV expressed in the body frame. (i.e.,
[ ]1   : the linear velocity vectorsTv uv w= , and i.e.,
[ ]2   : the angular velocity vectorsTv p q r= ) 

2- 3-  Mathematical Modeling
The kinematic and kinetics equations of the AUV [10] can 

be successfully acquired by employing the esteemed Eq. (1).
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Where
τ = [ ] 6, , , , , TX Y Z K M N ∈  symbolizes the 

comprehensive applied propulsion force or torque vector on 
the AUV;

 RB AM M M= +  where 6 6
RBM ×∈  and 6 6  AM ×∈

represent the inertia matrix for the rigid body, and additionally 
includes the added mass contribution.;

( ) ( ) ( )RB AC C Cυ υ υ= +  where ( ) 6 6
RBC υ ×∈  and 

( ) 6 6
AC υ ×∈  represents the Coriolis and centripetal matrix, 

respectively;
( ) ( ) ( )RB AD D Dυ υ υ= +  where ( ) 6 6

RBD υ ×∈  and 
( ) 6 6

AD υ ×∈  represent the combined effect of quadratic and 
linear drag.;

( ) 6 6  g η ×∈ constitutes the vector that represents the 
hydrostatic restoring force;
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 is the Jacobian matrix;
The properties of this model include the following:
The added mass matrix M  is a definite positive matrix 

with constant values
M  = 0TM >

For a rigid body moving in a fluid, the Coriolis and 
centrifugal matrix ( )C υ  is a Skew-symmetric matrix so that.
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For a rigid body moving in a fluid, the hydrodynamic 
damping matrix is a definite real, asymmetric, and positive 
matrix so that.
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3- Mathematical Modeling in the Presence of Uncertainties
Generally, there are inaccuracies and uncertainties in 

modeling a dynamic model such as an AUV. Uncertainties 
in dynamic model parameters are unavoidable, taking into 
account the complexies of modeling the equipment movement 
within a fluid environment. 

Due to the uncertainties and dynamic modeling errors, the 
actual values of the parameters  , ( )ϑ , and ( )ϑ  in Eq. 
(1) are the sum of the approximately known parts ( ( )† †, ϑ 
, and ( )† ϑ  ), and unknown parts of the parameters ( ∆ , 

( )ϑ∆ , and ( )ϑ∆  ).
Thus, the model of the AUV with known/unknown parts 

can be aptly articulated as follows:
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(2)

Where d  represents the external disturbances.
Thus, model uncertainties can be defined in the following 

forms:
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Substituting (3) into (2), one acquires:
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Thus,  ϑ  can be computed utilizing the following 
expression:

 j    (a) 

     M C D g          (b) 

 

 

    60,TC v C v v R      

  60,D v v R    

2    
   

† † †

d

     

    

  

   
  

 

3     d           

 

4    † † †
           

 

5     † 1 † †
           

 

6     
   

† 1 † †

d
      

   

    

  
 

 

7  
    

   

1† 1

† 1 † †

I

d



    

   





 

    
 
    

 

 

(5)

Calculating (6) by substituting (5) into (4):
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Fig1. Underwater vehicle (REMUS 100) Fig 1. North-East-Down and body frame [20] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Underwater vehicle (REMUS 100)
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Simplifications yield:
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Therefore, δ (external disturbances and system 
uncertainties) is upper-bounded as
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Equivalent to the essence of mechanical systems, it is 
assumed that [10]:

1) The norm of inertia mass is upper bounded as
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2) The norm of the Coriolis matrix and centripetal terms (

( ) 4 4ϑ ×∈R ) are upper bounded as
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3) The norm of the damping matrix ( ( ) 4 4 ϑ ×∈R ) is 
upper bounded as
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Based on the dynamic model of AUV, the upper bound for 
the magnitude of the actuator forces vector is constrained to 
follow the norm.
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Thus, the norm of δ  is upper-bounded as
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in which { }( ) 0 ,  ..,6i iα =  & { }( ) 0 ,  ,  2i iγ = …  are 
precisely set as the upper bounds for the dynamic model 
uncertainties.

4-  Methodology
Fig. 2 displays the intended control framework for AUV.

 

Fig. 2. The proposed control algorithm for trajectory tracking 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The proposed control algorithm for trajectory tracking
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4- 1- Geometry of Workspace 
The reference trajectory for the AUV in Cartesian space is 

expressed as time-dependent functions.
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Utilizing the envisioned path and the recorded output 
signal, the tracking errors can be precisely characterized as:
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4- 2- Outer-Loop Controller
Optimal Self-Tunning Controller 
As a fundamental principle, the control law known as 

Proportional-Integral-Derivative can be expressed in the 
following manner:
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The arduous aspect of this design lies in the determination 
of the optimal values for these nine constant parameters, 
which would bring about the most favorable response from 
the system. In this paper, the parameters of the control law (

 ,    ,
iP i IK K  D iK ) have been estimated using the Sequential 

Quadratic Programming algorithm.

4- 3-  Inner Loop controller  
 

5- Feedback linearizing control (FLC)
The initial regulator of the dynamic portion is depicted 

utilizing the FLC. Thus, tracking error is determined as:
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Where cϑ  represents a kinematic input vector achieved 
from the kinematic controller design. Thus, the control law is:
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Where   shows the gain matrix of the system. 
Proposition 2: Tracking error of system velocities is 

stabilized by the control law of Eq. (18) for dynamic systems 
about origin asymptotically (Eq.1).

Proof: To guarantee the closed-loop system’s stability, 
the candidate Lyapunov function is chosen as in Eq. (19). 
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The chosen Lyapunov function’s time derivative is 
explained in Eq. (20). 
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To obtain Eq. (21) dynamic model of Eq. (1) is replaced, 
and control inputs of Eq. (18) are applied.
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Simplifications yield
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Hence, the derivative of the positive definite Lyapunov 
function needs to be negative to realize the convergence of 
the velocity errors and system stability. Thus, coefficients   
must be positive. 

6- Sliding mode control (SMC)
Sliding mode control possesses features such as robustness 

against parametric and structural uncertainties. Moreover, it 
has the proper transient response, which discriminates it from 
other control approaches. 

PI filtered tracking error as the sliding surface is 
determined (Eq.23), where   shows the gain matrix of the 
sliding surface integrator. 
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Take SMDC control law into account, as in Eq. (24). 
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Where s , and sW  are the control gains of the system. 
Proposition 3: For the AUV, the tracking error of the 

system velocities is stabilized by the control law of Eq. (24) 
about the origin asymptotically (Eq.1). 

Proof: The definitely positive function of Eq. (25) is 
considered a Lyapunov function. 
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This function’s time derivative is expressed in Eq. (26). 
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Eq. (26) can be simplified as in Eq. (27) through the 
control input of Eq. (24) and the dynamic model. 
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Hence, to attain system stability, it is imperative that 
the derivative of the positive definite Lyapunov function 
demonstrates negativity. Therefore, coefficients s , and  sW  
must be positive. 

7- Adaptive fast Terminal sliding mode dynamic controller
AUVs find significant utilization in various challenging 

and diverse habitats, primarily exemplified by expansive and 
unpredictable oceanic settings. Consequently, it becomes 
imperative to devise control approaches that not only exhibit 
exceptional precision but also exhibit unwavering resilience 
to disruptive external factors. Sliding-mode controller is one 
of the control methods which have these characteristics. To 
this end, the integral-exponential sliding surface is defined 
based on velocity tracking error as in Eq. (28).

28  

     

,TSMTC

0 0

at t
b

t

t d sign t d







    



  t t
 

 

29 
     

 
,TSMTC 0

0

ˆ

ˆ

at
b

i

t

i

t t d sign

t d

    

 

 






t

t

 

 

30    

   
ATTSMC

˙
†

0
ˆ{ ˆ

t
id i t t d

    

    

 

    t
 

    

      

    

˙

0

1

0

† 2
0 1 2

 

ˆ

}

s

ˆ

ign

ˆ

ˆ ˆ

at
bi

at
b

i

t d sign t

at t d sign t
b

s

  

   

    

  
 



          

  





t

t .  

 

 

31 
 

  

˙

0

˙

0

diag   , 

 di g

ˆ

ˆ a

Tat
bi

t T
i

s t d

s t d





 

 

         

 





t

t

 

˙ ˙ ˙
2

0 0 2 1 3 2ˆ , , ˆ ˆs s s             

 

32 0ˆ     

 

33   T 2
APISMC

1 1, L
2 2

V s s     

(28)

Where  λ and κ  are positive constants, , a and b are 
positive odd integers satisfying 0 <  a

b <1.
The FTSMC scheme eliminates the offset, and the steady-

state errors converge to zero. 
The adaptive integral-exponential sliding surface is 

defined based on velocity tracking error as in Eq. (29).
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The following ATSMC law:
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The following adaptive rules are used to obtain the control 
parameters of the sliding surfaces and the switching control 
law: 
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The estimation error in calculating these parameters can 
be described as follows.
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Proof: Considering the following Lyapunov function 
candidate:
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Where:
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The function candidate time derivative is obtained as:
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Using dynamic model and simplifications yields:
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Consequently,
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Using (35) and (36), yields
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Applying adaptive laws (31) and simplifications yields
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Henceforth, it is duly acknowledged that the achieved 
state of the control algorithm stability has been successfully 
materialized.

8- Obtained results
We will now proceed to showcase the results that have 

been achieved in various scenarios in the subsequent section 
to confirm the effectiveness of the ATSMC scheme proposed 

in this study. An external disturbance of significant magnitude 
(as defined in Eq. 40) has been introduced into the system’s 
dynamic Eq.s to assess the robustness of the controller. The 
specific model parameters of the Autonomous Underwater 
Vehicle (AUV) can be found in reference [25].

The selected simulation environment for this endeavor 
is the renowned MATLAB/Simulink platform. Its immense 
capability to efficiently simulate linear, nonlinear, multi-
rate, variable-step, and fixed-step systems, coupled with 
its vast collection of toolboxes dedicated to swift research 
and development tasks, renders it the prime choice for this 
specific undertaking.
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(40)

In the initial situation, the robot effectively followed the 
intended trajectory, commencing from any random location 
within the Cartesian space. (Refer to Fig. 3 for visual 
representation)

In an alternative scenario for evaluating the effectiveness 
of the proposed method, thorough comparisons were made 
between the feedback linear (FL), sliding mode control 
(SMC), the methodology outlined in reference [10], and 
Adaptive nonsingular fast integral-type terminal sliding 
mode control techniques. The movement trajectory of the 
robot and the reference trajectory in both 3D and 2D spaces, 
amidst external disturbances, were depicted in Fig. 4-5 for all 
controllers under scrutiny.

Between 30 to 50 seconds into the simulation, a 
significant external disturbance was introduced into the 
system. Noteworthy is that the controllers demonstrated their 
resilience by promptly addressing the situation. Subsequently, 
the results pertaining to position tracking error and the 3-axis 
control inputs were illustrated in Fig. 6-7.

In summation, the adaptive robust nonlinear control 
strategy outlined in this document demonstrates a high 
level of competency in effectively tracing trajectories, even 
when faced with uncertainties and disturbances. While the 
efficiency of all algorithms discussed in this article is deemed 
acceptable.

9- Conclusions 
A highly advanced tracking controller utilizing an inner/

outer-loop approach has been developed to address the 
trajectory tracking challenges of the AUVs in the presence of 
ocean current disturbances. In comparison to traditional sliding 
mode controllers, the incorporation of an adaptive integral 
sliding mode surface significantly boosts the robustness of 
the control system, while the double loop controller structure 
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Fig3. The reference and the real motion path (starting from four different points) for the AUV in 3D space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The reference and the real motion path (starting from four different points) for the AUV in 3D space.

 
 

Fig 4. Comparison of various algorithms for a 3D motion path 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of various algorithms for a 3D motion path
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Fig 5. Comparison of various algorithms for a 2D motion path 
 

 

 

 

 

 

 

Fig. 5. Comparison of various algorithms for a 2D motion path
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a) x-direction  b) y-direction 

 

c) z-direction 
 

Fig 6. Tracking errors in the x/y/z-direction for all compared controllers 

 

 

 

 

 

 

 

Fig. 6. Tracking errors in the x/y/z-direction for all compared controllers
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a) Control input (N) in x-direction  b) Control input (N) in y-direction 

 

c) Control input (N) in z-direction 
 

 
Fig 7. Control input (N) for all compared controllers 

 

 

 

 

Fig. 7. Control input (N) for all compared controllers
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greatly improves its dynamic performance. Notably, the new 
switching method successfully mitigates the sliding mode 
chattering of the AUVs. The asymptotic convergence of 
tracking error in joint space is proven using the Lyapunov 
direct method. Furthermore, this innovative approach 
simplifies the algorithm, and streamlines implementation on 
the AUVs embedded platform. The outcomes demonstrate 
that the tracking controller for the AUVs functions effectively 
with both stability and robustness.
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