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ABSTRACT: This study investigated the effect of an auxetic structure, positioned as the central layer in
a three-layered cylindrical shell, on its buckling behavior. The material for all three layers is aluminum.
The covers are assumed isotropic. Axial and static loads are modeled as pressure on the shell’s surface.
In this study, modified shear deformation theory and Galerkin’s numerical solution method were used,
and the effect of the presence of an auxetic core on the buckling behavior of a three-layered cylindrical
shell was investigated. The assumed structure for the auxetic cell was a 2D Re-entrant honeycomb.
Finally, we explore how the length-to-radius ratio, core thickness-to-total thickness ratio, and cell angle
of the auxetic structure impact the system’s stability, presenting the results. The distinguishing feature of
the current work compared to previous studies lies in its mathematical approach. We present the system’s
equations as comprehensively as possible. Finally, the effect of the length-to-radius ratio, the auxetic
layer’s thickness relative to the whole shell’s thickness, and the cell angle’s size on the buckling load
were investigated. In short, with the increase of both ratios, the amount of load required for buckling
decreases, or in other words, system stability is reduced. Also, the size of the cell angle has little effect
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on the system’s stability.

1- Introduction

The study of buckling in shells is crucial in structural
mechanics. Buckling often leads to structural failure and
can occur without prominent warning, making it particularly
important for shell structures. Understanding buckling
behavior helps estimate critical loads at which shells may
buckle, preventing catastrophic collapse. Additionally,
comprehensive analyses of buckling and strength provide
valuable information about structural deformation and verify
load values. Whether it is analyzing cylindrical panels,
viscoelastic spherical shells, or silos, studying buckling
ensures safer and more reliable structures.

Cylindrical shells find widespread application across
various industries, including oil and gas, marine, acrospace,
and construction. Simultaneously, scientists and researchers
continually strive to enhance material properties and
characteristics. Advances in manufacturing technology have
enabled the production and presentation of a wide range
of materials. Among these, auxetic materials-part of the
metamaterial family-stand out due to their unique features
[1]. As a result, they have garnered interest in using them
in diverse structural applications. The focus of this study
is to investigate the buckling behavior of a three-layered
cylindrical shell that incorporates an auxetic structure in its
central layer.

*Corresponding author’s email: k-khorshidi@araku.ac.ir

Unlike ordinary materials, auxetic materials expand and
contract in the direction perpendicular to the applied load
axis when subjected to tension or compression [2]. The
study of auxetic structures is receiving increasing attention,
and researchers have explored various two-dimensional
and three-dimensional structures [3]. In this research, we
focus on the internal honeycomb structure. Gibson et al.[4]
introduced the internal honeycomb structure in 1982. When
this structure experiences tension, the diagonal sides of
the cells move outward in the vertical direction, causing
the structure to expand in the transverse direction [5]. In
reviewing previous studies, Pakrooyan et al. [6] analyzed
the parameters of a sandwich sheet with an auxetic core
embedded in an ideal fluid matrix. They investigated the free
vibration of sandwich panels using the second-order Frostig
model for the auxetic core with a honeycomb structure and
the first-order shear deformation theory (FSDT) for the cover
sheets. In another study, Khorshidi et al. [7] explored energy
harvesting in a sandwich sheet with an auxetic core featuring
a honeycomb structure. Their investigation considered
procedures reinforced with carbon nanolayers. Shabani and
colleagues have investigated the buckling in porous beams
made of graded functional materials [8]. Buckling, defined
as the point of instability in the static behavior of cylinders
subjected to external loads, plays a crucial role in these
studies [9]. In 1941, Von Karman and Tessin conducted initial
studies on the static stability of thin-walled cylindrical shells
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under axial load. They developed and presented a nonlinear
theory to explain the significant discrepancies between
experimental results and linear theories [10]. The proposed
nonlinear theory introduced a form of radial deformation
capable of reproducing the diamond-shaped pattern observed
in experimental buckling tests. In a subsequent book written
in 1983, Babcock examined many related articles [11]. In
this book, static buckling, dynamic buckling, post-buckling,
plastic, and elastic buckling with and without consideration of
imperfections have been investigated. He also investigated the
sensitivity of each defect by conducting various experimental
tests. It has now been shown that geometric defects are
the most influential and essential defects, and converting
them into known factors is not easy. In 1984, Yamaki [12]
conducted an extensive investigation into the impact of
geometrical defects on the buckling behavior of thin-walled
cylindrical shells. His study encompassed theoretical,
numerical, and experimental approaches. Subsequently, in
1995, Kaladin [13] emphasized the significance of initial
stresses resulting from geometrical imperfections and
unspecified boundary conditions in influencing shell buckling
performance. Kaladin also introduced intriguing relationships
for approximating buckling predictions. He investigated
simultaneous buckling modes and concluded that it is crucial
to consider geometrical defects and locked stresses when
analyzing buckling. These defects can arise from boundary
conditions. In 2001, Elishakoff et al. [14] studied buckling
behavior in shells with variable thickness. Additionally,
Gongalves and Del Prado investigated dynamic buckling in
a flawless cylindrical shell subjected to static and dynamic
axial loading 2002 [15]. In 2015, Thomson and Micheal
conducted theoretical and experimental investigations on
shell buckling using an energy-based approach. Their study
also explored shock sensitivity in incompressible thin shells
[16]. In 2018, Kumar and Srinivasa published a review article
on buckling and free vibration of composite cylindrical sheets
and shells [17]. Evkin et al. (2019) also studied local buckling
in isotropic cylinders. Various cylindrical shell configurations
were analyzed under different disturbance conditions [18]. In
2019, Ly et al. investigated the nonlinear buckling behaviour
of a carbon nanotube-reinforced cylindrical shell. They
examined the impact of auxetic core, carbon distribution,
and volume fraction on the critical buckling load [19]. In
2020, Guo et al. employed finite element methods to explore
the behaviour of cylindrical shells composed of various
auxetic structures. Additionally, their study analyzed energy
absorption in these different structures [20].

In this study, the effect of the presence of an auxetic
structure (2D Re-entrant honeycomb) as the central layer in
a three-layer cylindrical shell is investigated. Donell’s theory
is widely used in other papers. In this study, the modified
shear deformation theory is used, and four kinds of functions,
exponential, trigonometric, hyperbolic, and parabolic,
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are applied, and the results are compared. Aluminum is
considered the material for all three layers, including the
inner and outer layers of the isotropic shell. Additionally,
the axial and static load is modeled as the pressure applied
to the surface of the shell. In this study, modified shear
deformation theory and Golerkin’s numerical solution
method were used, and the effect of the presence of an austic
core on the buckling behavior of a three-layered cylindrical
shell was investigated. The finite element software validated
the results of the equations and used them for a layered
cylindrical shell. Finally, the impact of parameters such as
length-to-radius ratio, core thickness-to-total thickness ratio,
and cell angle of the auxetic structure is investigated, and the
results are presented. It was seen that increasing the length-
to-radius ratio in a relatively thick shell (#/, =0.1) reduces
the stiffness required for buckling by 25%. In the thinner
shell (%/ =0.05), the system’s stability decreases with
the increase of the length-to-radius ratio, and for the value
of 10, it almost disappears. With the most minor force, the
system buckles experimentally. By examining the effect of
the ratio of the thickness of the auxetic layer to the thickness
of the shell, it was seen that for a thin shell (£/, =0.01), the
system’s stability is shallow, and the change of the said ratio
does not have a significant effect. However, increasing the
auxetic layer’s thickness for relatively thicker shells reduces
the system’s stability more strongly. It was also seen that
changing the angle in the auxetic cell does not significantly
change the system’s stability.

2- Define the problem:

A three-layered cylindrical shell with length L , radius R
, and total thickness /4 is considered as in Fig.1. To facilitate
the mathematical modeling of the problem, a cylindrical
coordinate system with x ,6, andz components has been
used. The purpose of this research is to investigate the
buckling behavior of the mentioned cylindrical shell.

3- Formulation of a three-layer cylindrical shell with an
auxetic core:

To investigate the buckling behavior, it is assumed that
the cylindrical shell is subjected to a uniform axial load, and
Eq.(1) has been used [21]:

[(0U o + 8Vt =0 ()

where oU ,, is the potential energy changes of the shell,
and OV is the potential energy changes caused by the axial
load N . By using the theory of modified shear deformation
of Egs. (2), the governing equations of the system can be
reached [17].
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Top Layer
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Fig. 1. Definition of cylindrical coordinates for a three-layer shell under axial loading

ul(x, 9,z,t):u(x, H,t)

ow
—fl(z )%ﬂ"z(z )q)l(x, H,t) (2)
uz(x, 0,z,t)=v (x, 9,t)

1 ow (x, 0,t 2
_fz(aZ)( (29 )_v(x’e,,)] o @
+f2(z)q)2(x, H,t)

(3. 0.2,0) = (x. 0,1) ©

where u (x , 0, t),v (x , 0, t),w (x , 0, t) represent
longitudinal, circumferential and transverse,
respectively displacement of the cylindrical shell and
? (x, 0, t),¢)2 (x, 0, ;) represent the rotation of the middle
plane around the x and 6 axes, respectively. fi (z ) S (z)
are also considered based on different theories as in Table 1.

Assuming linearity, the strain-displacement relations for a
cylindrical shell will be in the form of Egs. (3) [4, 5]:
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Table 1. Mathematical theories for modeling configurations [22]

where E , G and v are Young’s modulus, shear modulus,

Theory fl (2) f2 (2)
2
ESDPT  Exponential -z —2@
ze
: : h . (7z
TSDPT Trigonometric —Z —Ssin| —
V2 h
) ) z 1
HSDPT Hyperbolic -z hsinh 7 —zcosh 5
. S5 5
PSDPT Parabolic -z Z| =752
4 3h
ou, Ou, Oow o (z o, (z
v, = 873 + 6—1 = ao[l + é( )J + 28()¢1 @ and Poisson’s ratio of aluminum, respectively. The properties
* o o - “ of the auxetic layer (k=2), according to the assumed
_ 1 Ouy Ou, u, 3 structure, which in this research is considered as a re-internal
Vor = RO oz R (3) honeycomb structure according to Fig.2, are obtained from
e Eqgs. (6) [6].
L E)) (Lo, vy) a(e) © O
+ Iy - |t ¢,
Oz R 00 R Oz

Also, the structural relations of the three-layer cylindrical
shell are defined as Eq. (4) [6]:

o 1@ [0 0 0 0 0],
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o, 0 0 0 Q¥ o0 ||
O 0 0 0 0 é’g) V0

where the superscript Xk represents the layer number. The
dimensions of the stiffness matrix for layers first and third are
defined as Egs. (5). These two layers are made of aluminum
and are assumed to be isotropic[6].
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Fig. 2. A Re-internal Honeycomb Cell Structure [20]

l, t,
where 7= I Fam= 7 =7, G, and E_ are the elastic
properties and pé is the den51ty of the material that makes

up the auxetic core, which here is made of aluminum. Eq.(7)
is used to obtain changes in shell strain energy[7].

1 3
. :EZ‘J.V‘“({%’ G0> Ox0> Oz > Op: }(k) (7

k
’{gxx > 899’ j/xﬁ’ }/xz b 7/192 })dv( )
By placing the strain-displacement equations and then

partially integrating, the strain energy changes for the
cylindrical shell can be obtained in the form of Eq.(8) [23]:
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that the forces and moments are defined in the form of
Egs. (9) [23]:
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Also, potential energy changes due to axial loading will
be N, and is obtained by Eq.(10) [7]:

sv=[]"- [ WOa“wO

2
06;2"5\/()JRd9dx (10)

By substituting Eq.(8) and Eq.(10) in Eq.(1), the governing
equations of the system are obtained in the form of Egs. (11)
[24].
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The equations of Egs. (11) are in terms of force and
moment, and they can be written in terms of displacement as
Eq.(12) to Eq.(16):
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4- Solving the governing equations of the system:
In this study, the simply supported boundary conditions
are chosen in the following circumestances[25]:

v _Ow
vzw:o,gr:axz Ox OL (18)

The numerical Galerkin method is considered to solve
the governing equations of the system. The function of trying
to solve the problem is assumed as Egs.(19). Tried functions
are not time-dependent because the problem is defined and
solved statically [9].

i
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Table 2. Critical load values of isotropic cylindrical shell buckling using mathematical equations and FEM

R=1(m),L=3(m), % =3 (mm), E =70 (GPa) ,v=0.3

Exponential theory

FEM (present work)

Hyperbolic theory
(present work)

Trigonometric theory
(present work)

Parabolic theory
(present work)

3.6281x10° (N) 3.64388x10° (N)

3.64388x10° (N)

3.64388x10° (N) 3.64388x10° (N)

In Egs. (19) u,;,V.:,W;isP5; and @, .. are unknown
coefficients that are obtained after minimizing the error.
uwo(x, 0)wo(x, 0)wo(x,0).4,(x,0) and ¢,(x,o)are tried
functions that satisfy the boundary conditions and are
considered the same weight functions in the Galerkin method.
Tried functions for simply support conditions are considered

as Eq.(20) [9].

to (x, 8) = cos(a,x)cos (i)

l_/'o (x, 0) =sin(a,x)sin(70)

ZVO (x, 8) =sin(a,x)cos (7i0) (20)
%1 (x, @) = cos(a;x)cos(7i0)

@, (x, ) =sin(a,,x)sin(70) for S5

By putting the approximation functions in the governing
Eq.(12) to Eq.(16), the system of equations is in the form
Eq.(21):

I:Cl.l] i Vi Wi ¢lmn ¢2mn} =0 (i,jzl, ,5) (21)

By setting the determinant of the matrix of coefficients
C equal to zero, the critical load equation of the system can
be obtamed which will be according to Eq.(22):

}/1 N02r+}/2Ncr+}/3:O (22)

where N is the critical buckling load and 7; are
constant coefficients. By solving Eq.(22), the critical load of

the system will be obtained.
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5- Validation of results

To validate the relationships obtained in the previous
section, the value of the critical buckling load for an isotropic
cylinder was obtained using the assumed theory and compared
with the results obtained from ABAQUS software for the
same cylinder and finally presented in Table 2 and Fig. 3

The information presented in Table 2 indicates that the
mathematical relationships obtained in the second part have
appropriate accuracy.

6- Investigating the effect of different parameters of the
cylindrical shell on the amount of critical load:

* Effect of length-to-radius ratio on critical load:

The effect of the ratio of length to radius (L/R) on the
critical load for thin and relatively thick shells with the
boundary conditions of two simple support ends is presented
in Table 3. It can be seen that in thin and relatively thick
shells, the critical load decreases continuously with the
increase in the ratio of the length to the radius of the shell. It
should be noted that with the increase of the mentioned ratio,
the stiffness of the structure and the stability of the system
will decrease, and the shell will experience buckling with less
load.

e The effect of the ratio of the thickness of the auxetic
core to the total thickness (h, / h ) on the critical load:

The effect of the ratio of core thickness to total thickness
(h, /h) in thin and relatively thick shells with the boundary
conditions of two simple support ends is shown in Table 4.
A decreasing trend can be seen by increasing the ratio of the
core thickness to the total thickness. Due to the existence
of the internal honeycomb structure and the behavior
characteristic of this structure against the compressive force,
it is predictable to observe a downward trend for the critical
load and a decrease in the stability of the system.

o The effect of the cell angle of the auxetic structure on
the amount of critical load
The parameter € is known as the cell angle in the auxetic
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B: Eigenvalue Buckling
Total Deformation

Type: Total Deformation
Load Multiplier (Linear): 3.6281e+0Q
Unit mm
6/8/2024 2:05 AM

1 Max
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[ — X
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Fig. 3. Verifing Equations With FEM Analysis

Table 3. Critical buckling load of the cylindrical shell according to the change of the length-to-radius ratio
and the thickness ratio of the cylindrical shell (x 10° )

L/R h/R=0.01 h/R=0.05 h/R=0.08
1 3.31232 76.9195 186.321
3 3.0178 73.7303 163.539
5 2.86879 67.6411 151.131
7 2.85157 55.6731 140.711
10 2.67397 54.5211 132.14

Table 4. The effect of the ratio of the thickness of the auxetic core on the total thickness of the critical
buckling load (x 10°)

h.lh h/R=0.01 h/R=0.05 h/R=0.1

0 3.4405 66.442 278.734
0.1 3.24009 62.2526 269.675
0.2 3.03105 57.9082 259.221
0.3 2.80475 53.2584 238.699
0.4 2.55259 48.1519 211.742
0.5 2.26593 42.4357 182.701
0.6 1.93612 35.9542 151.042
0.7 1.55452 28.5516 116.267
0.8 1.11265 20.1073 56.1987
0.9 0.603331 6.77047 14.9217
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load (x 10°)

h./h 0=-10 0=-30 0 =-45 0 =-60 0 =-80
0.1 3.239 3.23975 3.24009 3.24055 3.24368
0.2 3.02891 3.03037 3.03105 3.03195 3.03827
0.3 2.80163 2.830377 2.80475 2.80608 2.81546
0.4 2.5486 2.55135 2.55259 2.55432 2.56682
0.5 2.26122 2.26449 2.26593 2.26802 2.28363
0.6 1.93088 1.93457 1.93612 1.93854 1.95727
0.7 1.54895 1.55294 1.55452 1.55819 1.57887
0.8 1.10699 1.11114 1.11265 1.11542 1.13977
0.9 0.58856 0.60047 0.60333 0.60616 0.63222

structure. (Refer to Fig.2) The more significant the absolute
value of this angle, the greater the rigidity and density of the
system, and as a result, the system’s stability is expected to
be more significant. The data presented in Table 5 confirm
this fact. Of course, this increase in stability happens with
a minimal slope. On the other hand, according to the data
in Table 5, it can be seen that the effect of the ratio of the
core thickness to the total thickness on the system’s stability
is significant and more effective than the angle changes in the
auxetic cell. The reason for this issue was also discussed in
the previous section.

7- Conclusion and summary:

In this study, the mathematical relationships governing
the buckling phenomenon in a three-layer cylindrical shell
consisting of two isotropic layers of aluminum inside and
outside the shell and a central layer of aluminum made of an
auxetic cell structure of the re-internal honeycomb have been
obtained. For this purpose, high-order shear deformation
theory and the Galerkin numerical method are used. The
assumed boundary conditions for the problem of simple
support are considered on both sides of the shell. Finally,
three parameters of length to radius (L/, ), the ratio of the
thickness of the auxetic core to the totalRthickness (h,/h),
and the cell angle of the auxetic structure’s critical load are
discussed. Based on the results, it can be stated:

* By increasing the ratio of length to radius (° % ), system
stability and critical load decrease. As in all constant
coefficients, L has the direct effect, and R has the opposite
effect.

* The auxetic structure of the inner honeycomb is not stable
in compressive loading, and with the increase of core
thickness to total thickness ratio( 4, /A ), the stability and
load capacity decreases with a steep slope.

¢ Cell angle changes have a small effect on system stability.
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The explanation is that increasing the size of the cell
angle () increases the stiffness and stability of the system
and will cause a small increase in the critical load of the
system.

8- Nomenclature

A Area, m?

E Modulus of Elasticity, N/m?
512
£(2)

Considered different theories

Considered different theories

G Shear modulus, N/m?

h Total thickness of the shell

L Length of shell

R Rradius of shell

u, Longitudinal displacement of the
middle plane

u, Longitudinal displacement

u, Circumferential displacement

u, Transverse displacement

U Strain energy

Vy Circumferential displacement of
the middle plane
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Transverse displacement of the

Wo
middle plane
x,0,z Cylindrical-coordinate parameters
14 Poisson’s ratio
The variation of the function
0, Represent the rotation of the
middle plane around the 4 axis
0, Represent the rotation of the
middle plane around the x-axis
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