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         Minimum  Time  Search  Path  Planning  for  Multiple  Fixed-Wing  Unmanned  Aerial
Vehicles with Adaptive Formation

   

ABSTRACT: Planning the flight path for a fleet of fixed-wing unmanned aerial vehicles during search 
and rescue operations poses a significant challenge as it requires minimizing search time and optimizing 
the formation of the unmanned aerial vehicles. This paper proposes a novel integration of a leader-
follower formation flight technique for multiple fixed-wing unmanned aerial vehicles with a minimum-
time search path planning algorithm. In the first step, the proposed algorithm, based on continuous ant 
colony optimization, plans a sequence of safe and feasible waypoints for the leader while determining 
appropriate azimuth angles for the followers. In the next step, the algorithm utilizes a nonlinear three-
degree-of-freedom model, developed based on a leader-follower formation flight technique, to plan 
the followers’ flight paths. Applying Dubins curves based on kinematic constraints of the unmanned 
aerial vehicles not only reduces computational time but also ensures the feasibility of the best search 
paths between planned waypoints. Furthermore, in the presence of static obstacles, a developed function 
in the planning process addresses collision and obstacle avoidance constraints. The effectiveness and 
performance of the suggested method in detecting targets in minimum-time search missions and the 
ability of the planner to reconfigure the formation of unmanned aerial vehicles in cluttered environments 
are demonstrated through comprehensive simulation studies and Monte Carlo analysis.
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1- Introduction
The rapid growth in the use of unmanned aerial vehicles 

(UAVs) in recent years can be attributed to their cost-
effectiveness, compact size, high speed, and agility, leading 
to an expanded range of applications, including scenarios 
with inherent risks. These versatile aircraft serve multiple 
purposes, such as locating survivors in the aftermath of natural 
disasters, conducting maritime search and rescue (SAR) 
missions, and aiding in the search for missing persons in 
remote forest or wilderness areas [1, 2]. Drawing inspiration 
from traditional human search and rescue operations, UAVs 
enable rescue teams to effectively patrol and access hard-to-
reach locations during SAR missions [3, 4].

Compared to using a single unmanned aerial vehicle 
(UAV), employing multiple UAVs that work together 
collaboratively can lead to more effective and efficient 
operations due to their redundancy and ability to cooperate 
during mission execution. These sensors (UAVs) have the 
potential to enhance sensing flexibility, reduce search times 
in a wide area, and therefore effectively speed up and improve 
SAR operations. Furthermore, various emergency scenarios 
necessitate the use of multiple UAVs5[. ا[.  Utilizing multiple 
UAVs in predefined formations during search missions has the 
advantage of covering and sweeping a wide area in minimal 

time. Research on formation flight typically focuses on 
methods to maintain the desired formation through tracking 
control  [6] or regulation control [7] techniques.

Formation path planning algorithms can be categorized 
into traditional and intelligent approaches. The traditional 
algorithms are such as the Dijkstra algorithm [8], and the 
Voronoi diagram [9], and the new ones are categorized 
as evolutionary-based planning methods and machine 
learning-based methods. The most popular evolutionary-
based algorithms for formation flight in literature are the 
genetic algorithm (GA) [10], particle swarm optimization 
(PSO) [11], and ant colony optimization (ACO) [12]. 
Machine learning-based strategies include neural network 
(NN) [13], reinforcement learning (RL) [14], and deep 
reinforcement learning (DRL) algorithms [15] that simulate 
human learning behavior for multi-UAV formation control. 
Usually, in most formation flight missions, the UAVs avoid 
changing the formation, but in a different strategy because 
of some limitations or constraints, such as malfunctions, 
collision avoidance, member replacement, and fuel savings, 
the formation of the UAVs must be changed. The formation 
reconfiguration is an optimal control problem in the presence 
of some constraints, and there are a variety of solutions in 
the literature for it [16]. Harikumar et al. [17] proposed an 
Oxyrrhis Marina-inspired search and dynamic formation 
control (OMS-DFC) framework for multi-UAV systems to *Corresponding author’s email: sabzeh@aut.ac.ir.
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search forest fires in an unknown environment. Chen et al. in 
[18] proposed a trajectory planning method based on Dubins 
trajectory and the PSO algorithm in a mission with formation 
reconstruction. To conduct an exhaustive search of mobile 
ground targets, Brown et al. proposed a dynamic spiral-out 
formation for a team of UAVs [19]. 

Optimizing cooperative search missions involves 
considering various objective functions. These functions 
are divided into two general categories: entropy-related and 
detection-related functions. While entropy-based measures 
face challenges in detecting non-Gaussian targets, detection-
related functions offer a wider range of applications [20]. In a 
one-sided search problem where the object’s motion model is 
independent of the searcher’s actions [21], different objective 
functions can be considered based on the mission’s goal. Some 
of these objectives can be listed as maximizing the probability 
of target detection [22], maximizing the information gain [23], 
maximizing the surveillance coverage [24, 25], maximizing 
the time-discounted reward [26], minimizing the search time 
for finding all targets, or maximizing the number of target 
detections [27]. Finding one or several targets immediately 
in unknown locations is essential in MTS problems to meet 
the minimum time requirements. Additionally, the MTS 
effectively utilizes information on the target’s location and 
dynamics from sources like maps and witnesses to increase 
the likelihood of detection [28]. Optimization approaches 
based on probabilistic theory and bioinspired algorithms 
are often used to solve MTS problems [29]. As a result of 
uncertainty in the sensors’ performance and the location and 
dynamics of the targets, we cannot estimate an exact target 
detection time for a search trajectory. References such as [28, 
30] minimize the expectation of the detection time (ET) by 
modeling the uncertainty sources with a probability function 
model. The effectiveness of the MTS strategy based on the 
ET as a detection-related function has been successfully 
approved in recent works [28-32], for aircraft with different 
constraints.

The authors’ findings show that previous references 
separately consider the problem of minimum time search and 
reconfiguration of the formation flight of a fleet of UAVs. 
In addition, they don’t discuss minimum time search in the 
configuration of adaptive formation flight of fixed-wing 
UAVs. This study proposes a minimum-time search algorithm 
for a team of fixed-wing UAVs that fly in an adaptive formation 
to find a static survivor in a limited environment with strict 
static obstacles. Where the environment is certain and prior 
knowledge is available for the UAVs. In this regard, the main 
contributions of this paper are summarized as follows: 

•	 This study integrates the minimum time search 
approach with adaptive formation flight using a 
leader-follower strategy to maximize instant coverage 
by multiple UAVs while preventing overlapping 
search trajectories.

•	 The  continuous ant colony optimization algorithm 
(ACOR) [33] is utilized to simultaneously plan 
optimal waypoints for a leader and optimal azimuth 

angle for followers in the configuration of formation 
flight of UAVs.

•	 To address challenges related to kinematic constraints 
and computational complexity in path planning, the 
analytical Dubins method [34] is integrated with the 
minimum-time search algorithm.

•	 The proposed algorithm simultaneously considers 
various constraints, including obstacle and collision 
avoidance, kinematic constraints, and communication 
constraints, when planning minimum time search 
paths for all members of the team. 

The remainder of this paper is organized as follows: 
Section 2 outlines the modeling of the search problem and the 
utilization of formation flight for multiple fixed-wing UAVs 
in this context. Sections 3 and 4 introduce the continuous 
ant colony algorithm as an optimization algorithm to find 
MTS paths and address various constraints associated with 
this problem. Section 5 illustrates the MTS algorithm in 
the framework of the formation flight of multiple UAVs to 
achieve maximum coverage in each instance of the search 
mission. Section 6 simulates different search scenarios and 
performs statistical analysis to illustrate the performance 
of the proposed algorithm. Finally, Section 7 presents a 
discussion and conclusion based on the obtained results.

2- Modeling the problem
This section describes the mission environment, target, 

sensor, and UAV models for the initialization of the search 
problem. It is assumed that all UAVs have initial information 
about the environment and obstacles, and their knowledge of 
the environment updates based on the information they detect 
with their detection sensors and the data they share with each 
other. Also, it is considered that each UAV independently 
estimates the position of the target in a decentralized fashion.

2- 1- Mission environment and target probability map
In this work, it is assumed that the search environment 

can be simplified to a two-dimensional space by considering 
that all UAVs maintain a constant altitude while flying 
in formation. The target probability map illustrates the 
distribution of targets within the defined search area and 
provides information on potential target locations throughout 
the search mission. This probability map is represented on 
a grid map with dimensions

x yN N× , where each grid cell 
contains the probability of the target’s presence. If each cell 
of the grid in time t  has a target existence probability defined 
by tv , the target probability map (belief map) can be derived 
with ( ) ( )t tb v P v= . Here, the ( )tP v is a probability distribution 
function (PDF) to model the probable target’s location at time 
t  based on the available information. In an initial probability 
distribution ( 0t = ), the probability of targets appearing on all 
grid cells of the map equals one as follows [30]:
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If the target detection sensor of the UAVs is configured 
to focus on a single cell in its field of view, the probability 
map can be continually updated through recursive Bayesian 
estimation. The estimation procedure for stationary targets 
can be succinctly described by Eq. (2) [30]. This method 
updates the belief of the unobserved probability over the map 
using the information provided by the sensors of the UAVs 
as they traverse each cell of the grid. Through this iterative 
process, the algorithm can make more precise decisions about 
where to look for targets.0
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Where, t
uz , t

ur , and tv  are sensor measurements, the 
location of the uth UAV, and the target position at time t , 
respectively. Also, P  is the probability model of the target 
detection sensor.

2- 2- UAV model
In this paper, we consider three homogeneous fixed-wing 

UAVs with the same performance constraints that fly at a 
constant altitude (means 0γ = ) in their entire flight paths. 
Various linear and non-linear mathematical models can be 
employed to represent the flight behavior of fixed-wing UAVs 
[35, 36]. In many cases, kinematic models are sufficient for 
path-planning tasks because they can accurately predict the 
motion of the UAV without considering the detailed dynamics 
of the system. This simplification decreases computation time 
and enhances the efficiency of planning algorithms. In two-
dimensional space, under the assumption that the mass of the 
flying vehicle does not change and considering heading rate 
as the UAV’s control input, by using first-order dynamics, the 
kinematic model for each UAV about the vertical axis of its 
body-frame reference can be written as follows [37]:
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Where ( , )x y  displays the UAV’s horizontal position, V  
is airspeed, minR , and χ  are the minimum level turn radius 
and heading angle of the UAV, respectively. 

2- 3- Target Model 
Various methods can be used to model targets in search 

and rescue missions. The most popular models used for 
modeling different targets include the generic target model, 
the Markovian target model, the random target model, the 
deterministic model, and the model of decaying certainty [26]. 
As a useful and applicable method, the probability map can be 
used to model the presence of the target in a wide search area 
[38, 39]. This study focuses on a scenario where a stationary 
target is located in a known environment, but its precise 

position is uncertain. Information is available about specific 
regions with a high probability of target presence within the 
context of a target probability map. The target, assumed to 
be a survivor, is considered to be capable of emitting radio 
signals symmetrically or being visually detectable from all 
directions. The probability of the survivor’s presence in each 
cell of the network remains constant over time. Additionally, 
it is assumed that if the survivor is within the range of the 
UAV’s sensor, it will be accurately identified.

2- 4- Sensor model
Some assumptions are usually used for the sensor model 

to simplify the search and make updating the probability map 
convenient [40, 41]. It is assumed that all UAVs are equipped 
with identical downward-looking sensors for the detection of 
survivors, and the sensor position coincides with the position 
of the UAV. The detection sensor of all UAVs has a disk-
shaped footprint with a radius sR . This radius is influenced 
by the UAV’s altitude, but we considered a constant altitude 
to return the best detection capability or resolution for UAVs. 
Generally, two potential target sensor measurements are 
taken into account, depending on whether the target is present 
inside the sensor detection disk or not. By defining t

uz , t
ur , 

and tv ,  the probability model of the sensor can be expressed 
as:
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In which ( , )t t
ud r v  illustrates the horizontal Euclidean 

distance between the target and the UAV and ( | , ) 1t t t
u uP z v r =

means the uth UAV and target are simultaneously at a distance 
smaller than sR . The t

uz D=  and t
uz D=  show detection 

and non-detection of the target by the UAV, respectively. It 
is assumed that the search process will stop after the first 
detection.

2- 5- The structure of the formation
Among the various formation strategies, such as behavior-

based, leader-follower formation, and the virtual structure 
approach [42], we used the behavior-based method proposed 
in [43] to ensure that the followers follow the leader in an 
appropriate azimuth angle. To achieve the desired formation, 
this approach generates appropriate acceleration commands 
to adjust the position and velocity of the followers relative 
to the leader. Our research focused on a formation flight 
involving three fixed-wing UAVs, comprising a leader and 
two followers. It is assumed that all UAVs have the same 
performance constraints and are equipped with the same 
sensors for target detection (featuring a detection disk with a 
specific radius sR ).  By assuming that UAVs only fly in the 
horizontal plane, Fig. 1 shows the typical navigation model of 
the followers in the local ( l lX Y ) and inertial ( I IX Y ) frames. 
Fig. 1 displays three UAVs in the configuration of a leader-
follower formation, where two followers are symmetrically 
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placed at a distance of LFd  and an azimuth angle of LFψ  
relative to the leader. The behavior-based formation strategy 
tries to maintain the relative distance and azimuth angle between 
the leader and followers throughout the entire flight path. To 
achieve this goal, the speed and direction of movement of the 
followers must be adjusted according to the velocity vector  
(V ) of the leader. By aligning a local frame’s X-axis with the 
leader’s velocity vector (as shown in Fig. 1), the followers’ 
positions in the local frame are determined using Eq. (5).
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It is assumed that the distance between each follower and 
leader is fixed and equal 2 sR , to ensure collision avoidance 
between them. To prevent collisions between the followers, 
it is also important to maintain a minimum safe distance 
between them during the reconfiguration process. Since UAVs 
can cover a circular area with a radius of sR , it is necessary 
to consider a minimum safe distance 2 sR  to prevent overlap 
regions observed by followers. (The minor variations in the 
UAV’s flight altitude are ignored). Based on the considered 
distances between the members of the team and the assumption 
of a symmetrical formation, the azimuth angle (a parameter 
that is optimized in the minimum time search process) can 
continuously vary from 90˚ to 30˚. Therefore, the position of 
followers relative to the leader in the local frame can range 
from Form (A) to Form (B) as depicted in Fig. 2. Forms (A) 
and (B) represent configurations for maximum and minimum 
coverage bandwidth during search operations, respectively. 
The region covered by all UAVs has a bandwidth ranging 
from 4 sR  to 6 sR , as illustrated in Fig. 2.

2- 6- Objective function for the search problem
The objective of the minimum time search approach is to 

minimize the time spent searching and detecting a specified 
lost target. Uncertainties such as the unspecified exact target 
location and dynamic make it impossible to determine the 
exact target detection time for planned search paths. To 
overcome the uncertainty related to the MTS problem, [28-
32] recommends optimizing the expected value of the target 
detection time rather than the exact target detection time. 

In this work, the expected value of target detection 
time for the trajectories, 0:

1:( )t
UET r , is considered based on 

[30] as the main objective function criterion. Generally, a 
probability function model is used to formulate the MTS 
objective function. This function is calculated based on Eq. 
(6) by adding up the probability of not detecting the target 

1: 0:
1: 1:( | )t t

U UP z D r=  up to each time step for a specific horizon 
time T. The probability that the target remains undetected at 
the time t  is determined by the cumulative sum of all cell 
values in the unnormalized probability map, ( )tb v  which 
is generated from observations made by all UAVs. The 
unnormalized probability map is calculated using Eq. (7), 
employing a recursive Bayesian estimation process described 
in Eq. (2) and incorporating non-detection likelihood 
information from ( | , )t t t

u uP z D v r=  [33, 44]. A detailed process 
for developing the expected value of the target detection time 
objective function can be reached in [28, 30].
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Fig. 1. Illustration of the azimuth angle between the followers and leader in the local frame 
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Where, T  is the maximum horizon length (time). The ET 
function can only provide minimum time search paths, while 
the algorithm needs another objective function to determine 
the best formation of the UAVs to maximize coverage. To 
determine the coverage bandwidth (CB) of all UAVs, Eq. 
(8) has been formulated and utilized as the criterion. If we 
consider Form (B) in Fig. 2 as the scenario with the least 
search coverage, the bandwidth of the area covered by the 
followers specifically denotes the width of the region covered 
solely by the followers without any overlap with the leader’s 
coverage area. 
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In general, by considering the same influence coefficient 
for ET and CB, the overall cost 0:

1:( )t
UJ r is obtained as follows:

0

0 ( ) 1
x yv N N

b v
 

=  (1) 

1

1

1:

( ) ( | , ) ( )
t

t t t t t
u u

u U v

b v P z v r b v
−

−

=

=   (2) 

( / )max min

cos

sin

    , V R

x V

y V

command command 





 =

=

=

= 

 (3) 

( | , ) 1     ( )     

( | , ) 0     ( )   

,

,

t t t t t t

u u u u

t t t t t t

u u u u

s

s

P z v r if d r v and z D

P z v r if d r v and z D

R

R

= =

= =









 (4) 

 

1

1

2

2

cos

 sin

cos

 sin

F

F

F

F

l LF LF

l LF LF

l LF LF

l LF LF

X d

Y d

X d

Y d









= −
 =

= −
 = −

 (5) 

0 : 1 : 0 : 
1: 1: 1:

0 0

( ) ( | ) ( )
t

x y

T T
t t t t

U U U
t t v N N

ET r P z D r b v
= =  

= = =    (6) 

-1

-1 0

1:

( ) ( | , ) ( )     ; ( ) Initial probability map
t

x y

t t t t t
u u

u U v N N

b v P z D v r b v b v
=  

= = =  (7) 

0 : 
1:U

1 0

4
( )t S

U T
t
u

u t

TR
CB r

Bandwidth
= =

=


 

(8) 

0 : 0 : 0 : 
1: 1: 1:( ) ( ) ( )t t t

U U UJ r ET r CB r= +  (9) 

A:    

1 2
1 1 1 1 1

1 2
2 2 2 2 2

1 2

1 2

{ ,  ,  ,  ,  ,  }
{ ,  ,  ,  ,  ,  }

   =   ,   ,  ,   ,  ,   
{ ,  ,  ,  ,  ,  }

   =   ,   ,  ,   ,  ,       
{ ,  ,  ,  ,  ,  }

n N

n N

n N
k k k k k

n N
K K K K K

S s s s s
S s s s s

S s s s s

S s s s s

=

=

=

=

 (10) 

   (9)

3- Optimization algorithm
In the MTS problem, various intelligent optimization 

algorithms have been used in different references. One 
such method is the ant colony algorithm, an intelligent 
metaheuristic optimization technique inspired by the 
pheromones and foraging behavior of real ants [45]. This 

method has the benefits of positive feedback, improved 
flexibility, robustness, and strong optimization capacity 
to tackle some different kinds of large and combinatorial 
optimization problems [46]. ACO had significantly provided 
acceptable results for extracting optimal solutions to the 
MTS problems in the presence of various constraints. In this 
optimization technique, a colony of artificial ants constructs, 
updates, and probabilistically follows potential solutions 
based on synthetic pheromone trails and heuristic input 
[21]. While ACO has been successful in solving discrete 
domains, it is not suitable for continuous domains. To 
address this limitation, an extension of the algorithm known 
as ACOR was introduced [33], which incorporates relevant 
pheromone updates and solution construction processes 
aligned with ant-inspired algorithms. In ACO, a probability 
mass function and a pheromone table are utilized to handle 
discrete decision variables, while in ACOR, a probability 
density function and an archive of solutions are employed 
for continuous decision variables [44]. Generally, the ACOR 
uses all information to generate an archive and then uses 
this archive to construct solutions. A solution archive (A) 
illustrated in Eq. (10) stores a collection of K  best solutions 
( ,  1,  2 ,  ... ,  kS k K= ) as pheromone information in ACOR. In 
each solution, N  continuous decision variables are present  
( ,  1,  2 ,  ... ,  ns n N= ) that should be optimized in the 
optimization problem. All the solutions stored in the archive 
(A) are sorted by their fitness rank. At the end of each 
iteration of the algorithm, the solution archive with a fixed 
and unchanged size is updated by adding new solutions and 
removing the worst ones [44]. 

 

Fig. 2. The different positions of followers with respect to the leader  
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(10)

The solution archive is used to model a 
probability density function for each variable  
( ,  1,  2 ,  ... ,  nG n N= ) in the form of a Gaussian 
function with mean µ  and standard deviation σ  
(Eq. (11)). For this problem, the mean for each 

nG   is equal to each variable in the solution archive  
( n n

k ksµ = ), and the standard deviation is calculated using Eq. 
(12) [44]. 
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(12)

Where ξ  is a positive parameter to control the convergence 
speed of ACOR. The large and small values for this parameter 
force the algorithm for high exploration and exploitation, 
respectively. The new solutions are selected according to 
a selection probability based on Eq. (13). Where kw  is the 
weight of the solution kS , and is calculated according to Eq. 
(14) [33, 44].
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(14)

The parameter q  in Eq. (14) is a selection pressure 
parameter that influences the solutions. Assigning 0q =
means only the best solution will be used for the generation 
of the new solution, and q = ∞means all solutions have the 
same influence in generating the new solution.

4- Constraints 
The planning of a trajectory in the presence of several 

constraints and optimization criteria is a critical aspect 
of the MTS problem. The optimization process has many 
constraints, especially for continuous MTS problems, so it’s 
necessary to incorporate some of the conventional or new 
approaches to handling constraints. In this work, constraints 
including collision paths, communication, obstacle avoidance, 
dynamics, and kinematic characteristics are considered. 
Within this algorithm, we not only plan safe and flyable MTS 
paths for all UAVs but also consider adaptive formations to 
maximize coverage by all UAVs.

4- 1- Minimum time search constraint 
In this study, the main constraint for returning search 

paths with minimal search time is the expected value of target 
detection time, as outlined in Eq. (6).  Furthermore, since 
a complex optimization problem can greatly benefit from 
including problem-specific knowledge, in a similar strategy 
to [44, 47], we developed a heuristic function that uses a 
small group of ants in ACOR to construct a part of the solution 
uniquely using information related to the optimization 
problem. This function selects the next waypoints aligned 
to cells with a high probability of the target’s presence. By 
using this technique, the UAVs are directed toward the closest 
regions with the highest likelihood of having a target present. 
In addition, by defining the concept of maximum instant 
coverage based on Eq. (8), the algorithm planes search paths 
with an allowable wide bandwidth, which helps reduce search 
time.

4- 2- Kinematic constraints
The kinematic constraints of fixed-wing UAVs can have 

a significant impact on the solution of search missions. 
Fixed-wing UAVs face kinematic constraints due to their 
continuous motion and inability to hover. These constraints 
make it a challenge to design a flyable trajectory for this 
type of aircraft. Utilizing Dubins paths can address issues 
of flyability and curvature constraints when creating search 
paths for this type of aircraft.

It is proved by Dubins in [48] that a whole path containing 
straight lines and arcs with maximum curvature or minimum 
turn radius ( minR , based on the kinematic constraint of the 
UAVs) is an optimal path between two points with different 
heading angles. The minimum turn radius for a fixed-wing 
aircraft with constant speed V  and maximum bank angle   
(φ ) under gravitational acceleration g is calculated as 
follows [49]:
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(15)

Using Dubins paths directly in the MTS problem has 
enabled the development of continuous search paths that meet 
the kinematic constraints of the fixed-wing UAVs at the lowest 
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computational cost. For UAVs in a predefined formation, the 
minimum turn radius should be considered for all UAVs. For 
example, for a clockwise turn of the formation shown in Fig. 
1, if the leader turns with minR , follower 1 and follower 2 
have to turn with a smaller and larger turn radius, respectively. 
In this work, we tackle and ensure the kinematic constraint of 
all UAVs that fly in the formation with 90LFψ = ° (Form (A) 
in Fig. 2), and by considering minLFd R= , the minimum turn 
radius of the leader for planning the Dubins path is set min2R
. This radius for other formations can be calculated based on 
the azimuth angle of the follower, as follows: 
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To satisfy the formation constraints, we developed a 
nonlinear three-degree-of-freedom simulation based on [36] 
alongside a formation flight strategy derived from [43]. The 
proposed MTS algorithm uses this simulator to generate 
the flyable path for followers based on the four constraints, 
including minimum and maximum safe distance, appropriate 
elevation, and azimuth angles between followers and leaders 
in a symmetrical form.

4- 3- Collision avoidance and communication constraints
In leader-follower formation flight, it is crucial for 

followers to maintain stable and real-time communication 
with the leader, while such communication is not necessary 
between followers themselves. Generally, the distance 
between any two UAVs must be greater than a safe distance 
(to avoid collision) and less than a specified fixed distance 
(to maintain communication). In this regard, we considered 
a fixed distance between each follower and leader equal to 
2  ( 2 )s LF sR d R= . Based on the formation flight rules, followers 
must adjust their speed to maintain this distance, which helps 
satisfy collision avoidance and communication constraints 
between leader and followers. To prevent collisions among 
followers, we also considered a minimum safe distance equal 
to 2 sR  between the followers during reconfiguration. By 
assuming a symmetrical formation, it means the minimum 
azimuth angle ( LFψ ) is limited to 30˚. This approach is 
summarized as follows:
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(17)

Where, t
Lr  and t

Fr  are the positions of the leader and 
follower at the time t , respectively. 

4- 4- Obstacle avoidance
In this study, UAVs are prevented from colliding 

with static obstacles by assuming the presence of initial 
information about them. Where, by defining a confidence 

area, the boundaries of the obstacles have been increased 
for the amount of sR  in all directions, and the planning 
algorithm avoids generating waypoints and paths inside this 
area. It is obvious that by defining the capability of the sensor 
of the UAVs to scan an area with a radius sR , all regions 
near the obstacles can be searched by only one UAV on the 
border of the confidence area. In this regard, in each iteration 
of the algorithm, the generated flight path is checked for 
collision based on Eq. (18), and the path that cannot satisfy 
the obstacle avoidance constraint is ineligible and rejects the 
solution obtained in the MTS algorithm.
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5- MTS in formation flight
This section proposes the MTS planner for a fleet of 

fixed-wing UAVs with one fixed leader and two followers 
in a symmetrical form. The key innovation of this planner 
lies in its ability to plan search paths that minimize the 
expected detection time while maximizing coverage for all 
UAVs in the optimal formation. To achieve this, the planner 
must account for various constraints such as the kinematics 
of fixed-wing aircraft, obstacle avoidance, collision 
avoidance, and communication simultaneously. In each step 
of the search mission, the proposed algorithm fine-tunes the 
position of the sequence of waypoints to generate the shortest 
possible search paths and also adjusts the azimuth angle of 
the followers to maximize the coverage of the environment. 
This algorithm is built upon the ACOR approach with specific 
objective functions, comprising two main components: 
1) constructing an archive in the form of Eq. (10) and 2) 
iteratively searching for the best outcome based on Eqs. (11) 
to (14) and the methodology detailed in section 3. Through 
a step-by-step planning process for waypoints and azimuth 
angles, the archive is formed for 1N =  as follows:
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Our methodology is based on the MTS-ACOR algorithm 
proposed by Sara Perez-Carabaza et al. in [44], which we 
have adapted for the formation flight of UAVs. We extended 
this algorithm by using two parameters, the position of 
waypoints and the azimuth angle of followers, instead of 
focusing solely on the sequence of UAV actions over a fixed 
period. Additionally, we integrated the analytical Dubins 
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path planning method into this algorithm to increase its 
convergence speed. The pseudocode and flowchart of the 
proposed approach are shown in Algorithm 1 and Fig. 3, 
respectively. The algorithm builds MTS paths iteratively by 
employing a group of UAVs in an adaptive formation flight to 
locate the target. It consists of two main sections: generating 
an archive (lines 2 to 9) and the main ACOR loop (lines 11 
to 22). As mentioned before, p  the percentage of the initial 

solutions in archive A ( .PN p K= ) is obtained based on 
the MTS heuristic information (line 4). In this regard, the 
waypoints are selected at a random distance (between min4R
to min6R ) and aligned to cells with a high probability of the 
presence of the target; moreover, by assuming the optimal 
configuration as Form (B) in Fig. 2, the heuristic value for 
azimuth angle is considered equal to 30˚. It is obvious that to 
fulfill the generating archive 

PK N−  random waypoint with 

Algorithm 1: MTS in the formation flight 
Inputs: Initial probability map 0( )b v , UAVs initial positions, ACOR Parameters (

,  ,  ,  ,  K S p q ) 
1: while the target is not found do 
2:  while generating an archive with a size K do 
3:   Select a random distance from min4R to min6R  
4:   Using p  percent of ants to find PN  heuristic waypoints for the next position of 

the leader (with the heuristic formation of the followers). 
5:   Finding PK N−  random waypoints and random azimuth angle, for the next 

position of the leader and for constructing formation flight in free space, 
respectively. 

6:   Calculating the minR for the leader based on Eq. (16) and planning Dubins path 
between the current position of the leader and other waypoints. 

7:   Planning the flight path for all followers based on the simulation of the formation 
flight. 

8:   Evaluating obstacle avoidance constraints for all planning paths and storing 
collision-free paths. 

9:  end while 
10:  Evaluating and sorting generated paths in the archive based on Eq. (9). 
11:  while stop conditions are not met do 
12:   while finding H feasible paths do 
13:    Using p percent of the ants in each iteration to find HN heuristic waypoint 

for the leader (with heuristic azimuth angle of the followers). 
14:    Using Eq. (11) to Eq. (14) for generating HH N− (safe and flyable) new 

solutions (waypoints with related formation azimuth angles). 
15:    Calculating the minR for the leader based on Eq. (16) and planning Dubins 

path between the current position of the leader to the generated waypoints. 
16:    Planning the flight path for all followers based on the simulation of the 

formation flight. 
17:    Evaluate obstacle avoidance constraints for all planning paths and select 

collision-free paths.   
18:   end while 
19:   Merging and updating the previous archive with new solutions. 
20:   Evaluate and sort all generated paths based on Eq. (9). 
21:   Select K best solutions in the new archive. 
22:  end while 
23:  Return the information in the first row of the archive as the best next waypoint and 

azimuth angle 
24:  Update belief based on the generated path and coverage area by all UAVs 
25: end while  
26: Return a sequence of waypoints and flyable MTS flight path with the best formation for 

maximum coverage by UAVs  
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random azimuth angles should be generated (line 5). In the 
next step, after calculating minR , the flyable path of the leader 
is generated using the Dubins method based on the kinematic 
constraints of the UAVs (line 6). After planning the flight path 
of the leader, the flight paths of the followers are obtained 
through a nonlinear three-degree-of-freedom simulation (line 
7). Finally, in line 8, the flight paths must be evaluated from 
the point of view of not encountering obstacles based on Eq. 
(18). After completing the archive, it is sorted in line 10 based 
on Eq. (9). 

The main ACOR loop utilizes an iterative process until a 
stop condition is met. Within this loop, for affecting the new 
solutions with heuristic information, similar to line 4, p  the 
percent of the new solution population, H , ( .HN p H= ) is 
obtained based on the MTS heuristic information (line 13). 
Immediately after, within each ACOR iteration, in line 14, 

HH N−  new solutions are generated based on the archive and 

the process outlined in section 3. The algorithm repeats the 
process from lines 6 to 8 for the new solutions in lines 15 
to 17. After completing the inner loop of the algorithm, the 
new solutions are merged with the previous archive. The new 
archive is then sorted using Eq. (9) in line 20, and the top 
K  solutions are selected to update the archive for the next 
iteration in line 21. When the main algorithm’s stop condition 
is met, the first member of the archive is chosen as the new 
waypoint for the leader and the optimal azimuth for followers 
in for new formation (line 23). This step is the final step for 
one segment of the search path. By flying the UAVs on the 
planned paths and searching the environment, the belief map 
can be updated based on Eqs (2)ا and  )4( and information 
gathered and shared by all UAVs (line 24). The mentioned 
steps will continue until the algorithm finds the survivor (as a 
target) as a termination condition. 

 

 

 

Fig. 3. The flowchart of the MTS in the formation flight algorithm 

 

 

 

 

 

 

Fig. 3. The flowchart of the MTS in the formation flight algorithm
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6- results
In this study, due to the absence of real flight-testing 

capabilities and the benchmarking test data, we have simulated 
the search mission for various complex scenarios. Statistical 
analysis is conducted to assess the effectiveness of the 
proposed algorithm. For this purpose, a two-dimensional area 
of 20 km 20 km× is designated as the search environment, 
and three identical long-endurance surveillance fixed-
wing UAVs with similar functionalities and performance 
constraints as outlined in Table 1 are chosen to carry out the 
search missions. To prepare the target probability map, this 
area is discretized into a 40 40×  cell and the model for target 
presence is considered with a Gaussian distribution function 
as follows:

1

( , )
K

n n
n k k k

k

G P  
=

= N  (11) 

( )
1

1

K
n n
k r

n r
k K

 
  =

−
=

−


 

(12) 

1

k
k K

k
k

w
P

w
=

=


 

(13) 

( )2

2 2

1

2q1
2

k

K
kw e

qK 

− − 
  
 =  (14) 

2

min 2(  ) -1

1 where  
cos

V
R

g load factor
load factor


= =  (15) 

2

min 2
sin( )

(  ) -1
LF LF

Leader d
V

R
g load factor

= +  (16) 

1 2

                           ;          

2   30    ;       
LF

s LF

t t
L F

t t
F F

d

R

r r For all followers during the entire flight time

r r or In the entire flight time

− =

−  





 (17) 

1 2             { } { }
     

                                    

 

            

t t t
L F FObstacle free path if r r r Obs

Ineligible Oth w

Conf

er is

Area

e

= 



 (18) 

A:    

int
1 1 1

int
2 2 2

int

int

  

  

{ ,  }
{ ,  }

 =           ,        
{ ,  }

 =           ,               
{ ,  }

azimuth

az

K

i

waypo

waypo

waypo
k k k

wayp

i

muth

az muth

azimutho
K K

S s s
S s s

S s s

S s s

=

=

=

=

 (19) 

2 2

2 2

( ) ( )

0 1
, ( ) ( )

, 1 1

( )

k k

k

x y k k

x y k

i a j b
Q c

kk
i j N N i a j b

N N Q c
ki j k

d e
P v

d e

  − + −
−   

=
    − + −

−    
= =


=





 
 (20) 

 

(20)

Where, Q is the number of target presence regions and 
ka′ , kb′ , kc′ , and kd ′  are some parameters for the defined 

probability regions. As an example, the initial probability map 
with the parameters mentioned in Table 2 is shown in Fig. 
4. In this case, two areas are assumed to be high-probability 
regions, where cells with warmer colors are more likely to 
contain the target.

As a means of illustrating the algorithm’s capabilities, two 
predefined scenarios have been designed as follows:

Scenario I: Search a free obstacle region with two 
different high-probability areas for the presence of the target.

Scenario II: Search for a static target in a region with 
obstacles and a narrow safe corridor.

In both scenarios, all UAVs are assumed to be aware of 
the details of the mission environment, including the precise 
locations of obstacles and the probable regions of the targets. 
This information is used to create an initial probability map 
for the MTS algorithm. We considered a sample of long 
endurance surveillance-class of UAVs as a case study to 
simulate and prove our proposed algorithm. UAVs in this 
category typically have limited agility and maneuverability. 
By assuming a UAV with performance characteristics 

Table 1. The performance parameters of the UAVsTable 1. The performance parameters of the UAVs 

Parameter Value Unit  
V  57 m/s 

Maximum bank angle ( )   33 deg 
 

 

 
 

Table 2.  The parameters of the initial probability map 

Region ka  kb  kc  kd   
1 15 15 1 0.7 
2 15 5 3 0.3 
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Fig. 4. Three-dimensional view for a discretized initial probability map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Three-dimensional view for a discretized initial probability map
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outlined in Table 1, we can calculate the minimum turn radius 
based on Eq. (15) as follows:

2

min 2

1 57 1.2       500 m
cos(33) 9.81 1.2 1

load factor R= → = 
−

 (21) 

 

 

 

 

 

(21)

Based on Eq. (21), the minimum turn radius of 500 m is 
considered for all UAVs in both scenarios. In addition, we 
assumed that all UAVs are equipped with the same sensors, 
and the radius of the detection sensor disk is equal to 250 m.

6- 1- Evaluation of the MTS in the formation flight algorithm 
to consider the priority of the search based on scenario I

This scenario considered a search mission in an obstacle-
free region with two different high-probability areas for the 
presence of the target. Ideally, the UAVs should thoroughly 
search all areas with a likelihood of containing the target, 
giving priority to those with higher probabilities. The 
scenario does not include a stop condition for finding the 

target; instead, a planner horizon of 5N =  is set, meaning the 
search process stops after planning five path segments. Three 
homogeneous fixed-wing UAVs started the search mission 
from the start locations in an initial symmetrical formation  
(

0
90LFψ = ° ). The parameters ,  ,  ,  ,  K H q Pξ  and the maximum 

iteration of the algorithm are set according to Table 3 for this 
specific scenario. Fig. 5 and Fig. 6 depict the search paths 
and several evaluation graphs to examine the performance 
of the proposed method. Fig. 5 shows how the algorithm 
constructs the search path by prioritizing high-probability 
areas. UAVs are depicted searching first for areas with a high 
probability, and then for areas with a low probability. Fig. 6 
(a) demonstrates that the algorithm planned the formation of 
the UAVs to cover the maximum ground area along the entire 
search path, in the absence of any obstacles. Figs. 6 (b), 6 (c), 
and 6 (d) demonstrate the algorithm’s capability to maintain 
UAVs in a planned formation. It is shown in the entire search 
of Dubin paths that followers maintain a safe distance from 
the leader (

LFdε ), and minimal deviation from 90LFψ = ° and 
0LFθ = ° .

Table 3. The setting parameters of the search algorithm for scenario ITable 3. The setting parameters of the search algorithm for scenario I 

Parameter Value  
K  50  
H  20  
  0.1  
q  0.1  
P  10  
N  5  

Number of iterations 30  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The UAVs search paths for scenario I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The UAVs search paths for scenario I
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Fig. 6 (e) presents a statistical graph showing the overall 
cost of each Dubin path segment, where each box represents 
the range of changes in this parameter over all iterations of 
the ant colony algorithm. Fig. 6 (f) indicates the convergence 
trend of the optimization process. It is evident from all parts 
of the path that the proposed algorithm converges to final 

values within fewer than 17 iterations. In summary, this 
scenario shows that the proposed algorithm provides a fast 
path planning approach that is both effective and flexible in 
handling search missions by prioritizing search regions and 
ensuring maximum coverage. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Fig. 6. The evaluation graphs for scenario I 

 

 

 

       
                     

 

 

 

 

 

 

 

 

  
  
  
  
 
  
  
  
  
  
  
  
 

   

   

 

   

   

 

       
         

   

   

 

   

   

 

              
              
              

              
              

Fig. 6. The evaluation graphs for scenario I
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6- 2- Evaluation of the reconfiguration formation flight 
capability for MTS in the presence of static obstacles based 
on scenario II

To assess the effectiveness of the proposed algorithm for 
searching in the presence of obstacles, a scenario for searching 
in an environment with known strict static obstacles has 
been designed. In this scenario, the algorithm controlled the 
formation of the UAVs in free-obstacle regions by changing 
the azimuth of the followers to plan a safe search path. In a 
similar way to the previous scenario, three fixed-wing UAVs 
started their search missions from the start locations in a 
symmetrical formation (

0
90LFψ = ° ). The assumption is that 

the survivor (target) is in the center of the high-probability 
region, and once one of the UAVs locates it, the search 
will end. The parameters ,  ,  ,  ,  K H q Pξ  and the maximum 
iteration of the algorithm for this scenario are set according 
to Table 4.

Fig. 7 and Fig. 8 show the planned search paths and 
evaluation graphs for scenario II, respectively. The black 
cells in Fig. 7 represent the regions occupied by static 
obstacles. This figure shows the capability of the algorithm 
to find a safe search path toward the target. Fig. 8 (a) shows 
that the algorithm can find a safe path through the narrow 
corridor between the obstacles by changing the formation of 
the UAVs. To avoid collisions with obstacles along certain 
parts of the planned path, the UAVs incurred penalties 
affecting their search bandwidth. An analysis of Figs. 8 (b), 
8 (c), and 8 (d) reveal that the algorithm has been successful 
in maintaining the formation of the UAVs with minimal 
deviation. The statistical graph in Fig. 8 (e) exhibited the 
variance of the search cost for each segment of the Dubins 
path during all iterations of the algorithm. In some path 
segments, it is evident that all iterations have converged to a 
limited cost ( J ) due to the limitation of free-obstacle space. 

 
Fig. 7. The UAVs search paths for scenario II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The UAVs search paths for scenario II

Table 4. The setting parameters of the search algorithm for scenario IITable 4. The setting parameters of the search algorithm for scenario II 

Parameter Value  
K  80  
H  30  
  0.2  
q  0.1  
P  20  
N  5  

Number of iterations 40  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A. Motamedi et al., AUT J. Mech. Eng., 7(3) (2023) 297-316, DOI: 10.22060/ajme.2024.22615.6069

310

Fig. 8 (f) shows the convergence trend of the optimization 
process for all segments of the search path. It is clear that 
the use of problem-specific heuristic functions has been 
highly beneficial in achieving a fast search algorithm. The 
evaluation of the obtained results proves that the proposed 
algorithm is capable of finding safe search paths for a group 
of UAVs among strict obstacles.

6- 3- The Monte-Carlo simulation
The continuous ACO and proposed MTS have a stochastic 

nature, and since the convergence of different statistical 
analyses can confirm the effectiveness and performance of 
our proposed methods, Monte-Carlo simulation experiments 
were conducted for both search scenarios. This is done by 
running each scenario 20 times to ensure robustness in the 
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Fig. 8. The evaluation graphs for scenario II 

 

 

 

 

 

     
                     

 

 

 

 

 

 

 

 

  
  
  
  
 
  
  
  
  
  
  
  
 

   

 

   

 

 

        
         

 

   

 

 

              
              
              
              

              
              
              

Fig. 8. The evaluation graphs for scenario II
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results. To evaluate the results of this test, a statistical diagram 
is drawn to show the variance of the average search cost for 
all path segments ( J ) in each run. It is shown in Fig. 9 that 
the algorithm consistently has converged on paths with nearly 
identical costs across multiple runs of fixed scenarios.

6- 4- Comparison of the MTS-ACOR in the formation flight 
with another optimization algorithm

Using heuristic information in MTS problems can lead 
to a significant improvement in the search results. It has 
been proven in [28, 30, 32, 44] for the MTS problem that 
the ACO and ACOR are superior to some other optimization 
methods, such as cross-entropy optimization, bayesian 
optimization algorithm, and genetic algorithm when heuristic 
information is available. To assess the efficacy of the 
proposed MTS problem in the configuration of a formation 
flight with heuristic information, in this section, we replaced 
the optimization method of our search algorithm (Algorithm 
1) with the Particle Swarm Optimization (PSO) method [50] 
and executed the algorithm for scenario II under the same 
conditions. The parameters for the PSO algorithm were 
initialized using the values in Table 4 for the proposed MTS 
problem. The comparative outcomes based on the objective 
function calculated using Eq. (9) are shown in Fig. 10. The 
presented graphs for all the path segments of scenario II show 

that the proposed algorithm by utilizing ACOR and heuristic 
information has achieved the optimal values in significantly 
fewer iterations and less computation time than PSO. 
The comparison results indicate that the developed MTS 
algorithm is more advantageous than a conventional meta-
heuristic optimization algorithm for searching a target in the 
configuration of symmetrical formation flight of multiple 
UAVs. 

6- 5- Discussion
The simulation and comparison presented in the previous 

sections demonstrate that the MTS-ACOR algorithm 
effectively plans minimum-time search paths for multiple 
fixed-wing UAVs with adaptive formation. Despite the 
efficiency of the developed algorithm, there may be 
challenges that must be considered for implementing the 
proposed algorithm in real-world scenarios as follows:

The proposed algorithm relies on stable communication 
links and reliable target detection sensors that continuously 
observe the earth’s surface. Any faults or uncertainties in 
these components could impact the algorithm’s performance. 
Redundancy in sensors and communication links or utilizing 
the algorithm’s capability to remove faulty agents from the 
formation can mitigate this issue. 

 
Fig. 9. The result of Monte-Carlo simulation experiments  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The result of Monte-Carlo simulation experiments 

Table 5. The setting parameters of the PSO search algorithm for scenario IITable 5. The setting parameters of the PSO search algorithm for scenario II 

Parameter Value  
Swarm Size (population) 80  

Iterations  40  
Inertia weight  1  

Inertia weight damping ratio 0.99  
Personal learning coefficient  1.9  
Global learning coefficient  2  
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(a) Path Segment 1 

 
(b) Path Segment 2 

 
(c) Path Segment 3 

 
(d) Path Segment 4 

 
(e) Path Segment 5 

 
(f) Path Segment 6 

 
(g) Path Segment 7 

 

                
         

   
    
   

 
    
   

                
         

   

 

 

    
   

                
         

 

    

    
   

                
         

 

    

 

    
   

                
         

   

  

    
   

                
         

   
   

 

 

    
   

                
         

 

   

 

    
   

Fig. 10. Comparison of the MTS in the formation flight by utilizing ACOR and PSO
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Atmospheric disturbances are inherent in real 
environments. Ground-based equipment, such as cup 
anemometers and more sophisticated remote sensing 
techniques, is commonly utilized to detect hazards and no-fly 
areas with adverse turbulences before a mission commences. 
By using this information, the proposed algorithm will be 
able to identify these regions as no-fly areas (similar to static 
obstacles) that UAVs should avoid. However, the existence 
of undefined and unknown hazardous turbulent regions, 
especially in mountainous environments, may pose a threat 
to the safety of the UAVs and the search mission. Therefore, 
equipping UAVs with real-time onboard detection systems 
and integrating wind estimation methods with the MTS-
ACOR algorithm can be a challenge for search in real-world 
scenarios.

In most search and rescue operations, such as searching 
for survivors after natural disasters or searching for missing 
persons in remote forests or wilderness areas, the search 
environment, including obstacles and targets, is either 
stationary or the rate of change is significantly lower than the 
speed of UAVs. Our proposed algorithm also considers this 
assumption for the environment and developed an efficient 
MTS search method for searching in the configuration of 
adaptive formation of multiple fixed-wing UAVs. In special 
cases where obstacles or targets have a higher speed than 
UAVs, UAVs may need sensors to detect dynamic obstacles, 
and the algorithm may need to consider the dynamics of the 
target in updating the target probability map. The integration 
of all these complex factors into the proposed MTS-ACOR 
algorithm could lead to an improvement in search accuracy, 
but it would also increase computational time and require 
UAVs with powerful processor units. It could be a potential 
challenge for the designer to balance complexity, cost, and 
accuracy to develop a practical solution applicable to various 
UAV platforms.

7- Conclusions 
In this study, we addressed the challenge of minimizing 

search time for a reconfigurable symmetric leader-follower 
formation of fixed-wing UAVs. Our proposed algorithm 
utilized continuous ant colony optimization to determine 
optimal search paths and flight formations for multiple UAVs, 
maximizing instantaneous coverage. By optimizing both the 
position of waypoints and the azimuth angle of followers 
relative to the leader, we were able to achieve efficient 
minimum-time search paths. The use of adaptive azimuth 
angles for followers has made algorithms more efficient in 
planning search paths in environments with strict obstacles. 
The proposed algorithm for planning each segment of the 
search path has used heuristic information, based on the 
initial information from the environment and the knowledge 
gained from observations and data made by UAVs, to 
generate solution archives during the optimization process. A 
comparison between our approach and a conventional meta-
heuristic optimization algorithm (PSO) has demonstrated 
the effectiveness of this approach in achieving a fast search 
algorithm.

This study also introduced an approach for using an 
analytical Dubins method (with low computational time) to 
plan a safe and feasible minimum-time search path for the 
leader. Additionally, it integrated a leader-follower formation 
strategy with the main algorithm to accurately plan flight paths 
for the followers based on several key imperative constraints. 
The simulations and statistical analysis of different scenarios 
have confirmed the accuracy of the proposed algorithm in 
adapting and maintaining the formation of the UAVs to find 
the search paths in the shortest time in an environment with 
static obstacles.

In future work, this study can be developed for dynamic 
environments with multiple dynamic survivors. Moreover, the 
planner can be more flexible in adjusting to complex three-
dimensional environments by extending the algorithm to the 
asymmetrical formation of UAVs. In this regard, adding other 
optimization factors, such as the velocity of the UAVs, as well 
as uncertainty factors related to target detection sensors and 
communication links, would be an interesting research line.

Nomenclature 
Nomenclature 

A Solution archive 
b  Belief map 
CB  Coverage bandwidth 
Conf  Confidence area 
d  Distance between two UAV 
D  Detection of the target 
D  Non-detection of the target 

ka , kb , kc , and kd   The modeling parameters for probability regions. 
ET  Expected value of target detection time 
g  Gravitational acceleration 
G  Probability density function (Gaussian function) 
H  The population size of new solutions  
J  Objective function 
N  The number of decision variables 

x yN N  The size of the grid map 
Obs  Obstacle 
p  The percentage of the initial solutions in the archive 
P  Probability distribution function (PDF) 
q  Selection pressure parameter 
Q  The number of target presence regions  
r  Location of the UAV 

minR  Minimum level turn radius 

sR  The radius of the detection sensor disk 
s  Decision variables 
T  Maximum horizon time 
v  Target existence probability in each cell  
V  Airspeed 
w  Weight of solution S 
,x y  UAV’s horizontal position in the body frame 
,X Y  The frames’ first and second axes 

z  Sensor measurements 
Greek symbols  
  Flight path angle 
  Elevation angle 
  Mean 
  Parameter to control the convergence speed of ACOR 
  Standard deviation 
  Heading angle of the UAV 
  Maximum bank angle 
  Azimuth angle 
Subscript  
F  Follower 
I  Inertial frame 
K  Archive size 
l  Local frame 
L  Leader 



A. Motamedi et al., AUT J. Mech. Eng., 7(3) (2023) 297-316, DOI: 10.22060/ajme.2024.22615.6069

314

References
[1] S.-P. Yong, Y.-C. Yeong, Human object detection in 

forest with deep learning based on drone’s vision, in:  
2018 4th International Conference on Computer and 
Information Sciences (ICCOINS), IEEE, 2018, pp. 
1-5.

[2] X. Yu, C. Li, G.G. Yen, A knee-guided differential 
evolution algorithm for unmanned aerial vehicle 
path planning in disaster management, Applied Soft 
Computing, 98 (2021) 106857.

[3] I. Martinez-Alpiste, G. Golcarenarenji, Q. Wang, 
J.M. Alcaraz-Calero, Search and rescue operation 
using UAVs: A case study, Expert Systems with 
Applications, 178 (2021) 114937.

[4] C. Zhang, W. Zhou, W. Qin, W. Tang, A novel UAV 
path planning approach: Heuristic crossing search 
and rescue optimization algorithm, Expert Systems 
with Applications, 215 (2023) 119243.

[5] H. Khalil, S.U. Rahman, I. Ullah, I. Khan, A.J. 
Alghadhban, M.H. Al-Adhaileh, G. Ali, M. ElAffendi, 
A UAV-Swarm-Communication Model Using a 
Machine-Learning Approach for Search-and-Rescue 
Applications, Drones, 6(12) (2022) 372.

[6] X. Dong, G. Hu, Time-varying formation control for 
general linear multi-agent systems with switching 
directed topologies, Automatica, 73 (2016) 47-55.

[7] J. Seo, Y. Kim, S. Kim, A. Tsourdos, Collision 
avoidance strategies for unmanned aerial vehicles in 
formation flight, IEEE Transactions on aerospace and 
electronic systems, 53(6) (2017) 2718-2734.

[8] S. Ueno, S.J. Kwon, Optimal reconfiguration of UAVs 
in formation flight, in:  SICE Annual Conference 
2007, IEEE, 2007, pp. 2611-2614.

[9] J. Hu, M. Wang, C. Zhao, Q. Pan, C. Du, Formation 
control and collision avoidance for multi-UAV 
systems based on Voronoi partition, Science China 
Technological Sciences, 63(1) (2020) 65-72.

[10] A. Bożko, L. Ambroziak, E. Pawluszewicz, Genetic 
algorithm for parameters tuning of two stage 
switching controller for UAV autonomous formation 
flight, in:  Conference on Automation, Springer, 
2021, pp. 154-165.

[11] S. Shao, Y. Peng, C. He, Y. Du, Efficient path 
planning for UAV formation via comprehensively 
improved particle swarm optimization, ISA 
transactions, 97 (2020) 415-430.

[12] Y. Yang, Y. Zhang, Q. Feng, L. Yang, H. Zhang, UAV 

formation optimization model based on ant colony 
algorithm and particle swarm optimization algorithm, 
in:  2023 IEEE 3rd International Conference on 
Power, Electronics and Computer Applications 
(ICPECA), IEEE, 2023, pp. 869-875.

[13]  X. Dong, Y. Li, C. Lu, G. Hu, Q. Li, Z. Ren, Time-
varying formation tracking for UAV swarm systems 
with switching directed topologies, IEEE transactions 
on neural networks and learning systems, 30(12) 
(2018) 3674-3685.

[14] H. Liu, Q. Meng, F. Peng, F.L. Lewis, Heterogeneous 
formation control of multiple UAVs with limited-input 
leader via reinforcement learning, Neurocomputing, 
412 (2020) 63-71.

[15] Y. Lin, M. Wang, X. Zhou, G. Ding, S. Mao, 
Dynamic spectrum interaction of UAV flight 
formation communication with priority: A deep 
reinforcement learning approach, IEEE Transactions 
on Cognitive Communications and Networking, 6(3) 
(2020) 892-903.

[16] B. Li, J. Zhang, L. Dai, K.L. Teo, S. Wang, A hybrid 
offline optimization method for reconfiguration 
of multi-UAV formations, IEEE Transactions on 
Aerospace and Electronic Systems, 57(1) (2020) 
506-520.

[17] K. Harikumar, J. Senthilnath, S. Sundaram, Multi-
UAV oxyrrhis marina-inspired search and dynamic 
formation control for forest firefighting, IEEE 
Transactions on Automation Science and Engineering, 
16(2) (2018) 863-873.

[18]  Q.-y. Chen, Y.-f. Lu, G.-w. Jia, Y. Li, B.-j. Zhu, 
J.-c. Lin, Path planning for UAVs formation 
reconfiguration based on Dubins trajectory, Journal 
of Central South University, 25(11) (2018) 2664-
2676.

[19] D. Brown, L. Sun, Dynamic exhaustive mobile 
target search using unmanned aerial vehicles, IEEE 
Transactions on Aerospace and Electronic Systems, 
55(6) (2019) 3413-3423.

[20] P. Lanillos, S.K. Gan, E. Besada-Portas, G. 
Pajares, S. Sukkarieh, Multi-UAV target search 
using decentralized gradient-based negotiation with 
expected observation, Information Sciences, 282 
(2014) 92-110.

[21] M. Morin, I. Abi-Zeid, C.-G. Quimper, Ant 
colony optimization for path planning in search and 
rescue operations, European Journal of Operational 
Research, 305(1) (2023) 53-63.

[22] P. Yao, H. Wang, H. Ji, Gaussian mixture model and 
receding horizon control for multiple UAV search 
in complex environment, Nonlinear Dynamics, 88 
(2017) 903-919.

[23] G. Hoffmann, S. Waslander, C. Tomlin, Distributed 
cooperative search using information-theoretic costs 
for particle filters, with quadrotor applications, in:  
AIAA Guidance, Navigation, and Control Conference 
and Exhibit, 2006, pp. 6576.

[24] S.W. Cho, H.J. Park, H. Lee, D.H. Shim, S.-Y. Kim, 

Nomenclature 

A Solution archive 
b  Belief map 
CB  Coverage bandwidth 
Conf  Confidence area 
d  Distance between two UAV 
D  Detection of the target 
D  Non-detection of the target 

ka , kb , kc , and kd   The modeling parameters for probability regions. 
ET  Expected value of target detection time 
g  Gravitational acceleration 
G  Probability density function (Gaussian function) 
H  The population size of new solutions  
J  Objective function 
N  The number of decision variables 

x yN N  The size of the grid map 
Obs  Obstacle 
p  The percentage of the initial solutions in the archive 
P  Probability distribution function (PDF) 
q  Selection pressure parameter 
Q  The number of target presence regions  
r  Location of the UAV 

minR  Minimum level turn radius 

sR  The radius of the detection sensor disk 
s  Decision variables 
T  Maximum horizon time 
v  Target existence probability in each cell  
V  Airspeed 
w  Weight of solution S 
,x y  UAV’s horizontal position in the body frame 
,X Y  The frames’ first and second axes 

z  Sensor measurements 
Greek symbols  
  Flight path angle 
  Elevation angle 
  Mean 
  Parameter to control the convergence speed of ACOR 
  Standard deviation 
  Heading angle of the UAV 
  Maximum bank angle 
  Azimuth angle 
Subscript  
F  Follower 
I  Inertial frame 
K  Archive size 
l  Local frame 
L  Leader 

  u or U  UAV 
Superscript  
t  Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A. Motamedi et al., AUT J. Mech. Eng., 7(3) (2023) 297-316, DOI: 10.22060/ajme.2024.22615.6069

315

Coverage path planning for multiple unmanned aerial 
vehicles in maritime search and rescue operations, 
Computers & Industrial Engineering, 161 (2021) 
107612.

[25] C. Gao, Z. Zhen, H. Gong, A self-organized search 
and attack algorithm for multiple unmanned aerial 
vehicles, Aerospace Science and Technology, 54 
(2016) 229-240.

[26] M. Raap, M. Preuß, S. Meyer-Nieberg, Moving 
target search optimization–a literature review, 
Computers & Operations Research, 105 (2019) 132-
140.

[27] Z. Zhen, Y. Chen, L. Wen, B. Han, An intelligent 
cooperative mission planning scheme of UAV swarm 
in uncertain dynamic environment, Aerospace 
Science and Technology, 100 (2020) 105826.

[28] S. Perez-Carabaza, E. Besada-Portas, J.A. Lopez-
Orozco, J.M. de la Cruz, Ant colony optimization 
for multi-UAV minimum time search in uncertain 
domains, Applied Soft Computing, 62 (2018) 789-
806.

[29] R. Darsini, N. Ganvkar, K. Gurunathan, R.K. Dash, 
Minimum Time Search Methods for Unmanned Aerial 
Vehicles, in:  Smart Computing Techniques and 
Applications: Proceedings of the Fourth International 
Conference on Smart Computing and Informatics, 
Volume 1, Springer, 2021, pp. 681-691.

[30] S. Pérez-Carabaza, J. Scherer, B. Rinner, J.A. 
López-Orozco, E. Besada-Portas, UAV trajectory 
optimization for Minimum Time Search with 
communication constraints and collision avoidance, 
Engineering Applications of Artificial Intelligence, 
85 (2019) 357-371.

[31] P. Lanillos, E. Besada-Portas, G. Pajares, J.J. 
Ruz, Minimum time search for lost targets using 
cross entropy optimization, in:  2012 IEEE/RSJ 
International Conference on Intelligent Robots and 
Systems, IEEE, 2012, pp. 602-609.

[32] S. Pérez-Carabaza, E. Besada-Portas, J.A. Lopez-
Orozco, G. Pajares, Minimum time search in real-
world scenarios using multiple UAVs with onboard 
orientable cameras, Journal of Sensors, 2019 (2019).

[33] ] K. Socha, M. Dorigo, Ant colony optimization for 
continuous domains, European journal of operational 
research, 185(3) (2008) 1155-1173.

[34] A. Babaei, M. Mortazavi, Three-dimensional 
curvature-constrained trajectory planning based on 
in-flight waypoints, Journal of Aircraft, 47(4) (2010) 
1391-1398.

[35] A. Motamedi, A. Naghash, Design of Multi-Input 
Multi-Output Controller for an Unmanned Aerial 
Vehicle by Eigenstructure Assignment Method, 
Journal of Aerospace Science and Technology, 14(1) 
(2021) 117-127.

[36] P. Zipfel, Modeling and Simulation of Aerospace 
Vehicle Dynamics–Third edition, in, 2014.

[37] J. Liu, S. Anavatti, M. Garratt, H.A. Abbass, 
Modified continuous ant colony optimisation for 
multiple unmanned ground vehicle path planning, 
Expert Systems with Applications, 196 (2022) 
116605.

[38] W. Yue, Y. Xi, X. Guan, A new searching approach 
using improved multi-ant colony scheme for multi-
UAVs in unknown environments, Ieee Access, 7 
(2019) 161094-161102.

[39] M. Zhang, J. Song, L. Huang, C. Zhang, Distributed 
cooperative search with collision avoidance for a 
team of unmanned aerial vehicles using gradient 
optimization, Journal of Aerospace Engineering, 
30(1) (2017) 04016064.

[40] X. Hu, Y. Liu, G. Wang, Optimal search for moving 
targets with sensing capabilities using multiple UAVs, 
Journal of Systems Engineering and Electronics, 
28(3) (2017) 526-535.

[41] L. Li, X. Zhang, W. Yue, Z. Liu, Cooperative 
search for dynamic targets by multiple UAVs with 
communication data losses, ISA transactions, 114 
(2021) 230-241.

[42] K.-K. Oh, M.-C. Park, H.-S. Ahn, A survey of multi-
agent formation control, Automatica, 53 (2015) 424-
440.

[43] T. Soleymani, F. Saghafi, Behavior-based 
acceleration commanded formation flight control, in:  
ICCAS 2010, IEEE, 2010, pp. 1340-1345.

[44] S. Perez-Carabaza, J. Bermudez-Ortega, E. Besada-
Portas, J.A. Lopez-Orozco, J.M. de la Cruz, A multi-
uav minimum time search planner based on aco 
r, in:  Proceedings of the genetic and evolutionary 
computation conference, 2017, pp. 35-42.

[45] M. Dorigo, G. Di Caro, Ant colony optimization: 
a new meta-heuristic, in:  Proceedings of the 1999 
congress on evolutionary computation-CEC99 (Cat. 
No. 99TH8406), IEEE, 1999, pp. 1470-1477.

[46] Q. Wang, J. Li, L. Yang, Z. Yang, P. Li, G. Xia, 
Distributed Multi-Mobile Robot Path Planning 
and Obstacle Avoidance Based on ACO–DWA in 
Unknown Complex Terrain, Electronics, 11(14) 
(2022) 2144.

[47] J.B. Escario, J.F. Jimenez, J.M. Giron-Sierra, Ant 
colony extended: experiments on the travelling 
salesman problem, Expert Systems with Applications, 
42(1) (2015) 390-410.

[48] L.E. Dubins, On curves of minimal length with a 
constraint on average curvature, and with prescribed 
initial and terminal positions and tangents, American 
Journal of mathematics, 79(3) (1957) 497-516.

[49] J. Roskam, C.-T.E. Lan, Airplane aerodynamics and 
performance, DARcorporation, 1997.

[50] J. Kennedy, Swarm intelligence, in:  Handbook of 
nature-inspired and innovative computing: integrating 
classical models with emerging technologies, 
Springer, 2006, pp. 187-219.



A. Motamedi et al., AUT J. Mech. Eng., 7(3) (2023) 297-316, DOI: 10.22060/ajme.2024.22615.6069

316

HOW TO CITE THIS ARTICLE
A. Motamedi, M. Sabzehparvar , M. Mortazavi , Minimum Time Search Path Planning for 
Multiple Fixed-Wing Unmanned Aerial Vehicles with Adaptive Formation, AUT J. Mech Eng., 
7(3) (2023) 297-316.

DOI: 10.22060/ajme.2024.22615.6069

https://dx.doi.org/10.22060/ajme.2024.22615.6069

