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Abstract 

The present study developed a model to deform a viscous droplet in a viscous matrix by a shear flow based 

on changing the normal vector. The initial cross-section was assumed to be a regular polygon with 1000 

sides instead of a circle or ellipsoid, and also this model was independent of the initial polygon shape. 

Changing the normal vector and the length of each side of the droplet was a function of the velocity gradient. 

To calculate the velocity gradient over each side of the shape, the equations of tangential and normal stress, 

the conservation of mass equation, and the absence of mass transfer equation between two phases were 

solved simultaneously. By knowing the velocity gradient, normal vectors and the length of each side are 

calculated; therefore, the new shape can be plotted by drawing sides one after another. The results displayed 

that the time of the break-up, which this model predicts, coincides with the experimental results. On the 

other hand, the predicted shape of the droplet at the break-up has logically coincided with the experimental 

results in the middle range of the Capillary number ratio (1.4 -2.6 critical Capillary number). The drop's 

dimensions show less than 30% deviation and its rotation less than 20%. Additionally, the dimension of the 

end bubble also shows a deviation of less than 40%. 

Keywords: Break-up, viscous droplet, shear flow, velocity gradient, normal vector. 

1-Introduction 

One of the challenging issues in investigating high viscous emulsions is the deformation and break-up of a 

viscous droplet in a viscous matrix. Therefore, different study methods have been developed to overcome 

such challenges.  

Analytical methods explore the initial regular shape of droplets, i.e., sphere and ellipsoid. At the same time, 

the experimental results display the deformation of the droplet to an irregular shape and its following break-
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up. Moreover, most of the analytical methods had been extended based on the average of parameters on the 

droplet surface[1-4]. Some others had been structured by capillary number, viscosity ratio, and volume 

fraction of droplets[5-10]. Numerical models encompass the volume of the fluid scheme and the average 

of viscosity and density as parameters for the Navier-Stokes equation to solve it numerically[11]. The other 

study examined the alteration of a droplet's shape and its break up in turbulent flow. A level set and volume 

of fluid method was employed to investigate two-phase cross flow. Additionally, the study evaluated the 

impact of nozzle geometry on the trajectory and breakup of the spray[12]. 

One of the most crucial areas of research in two-phase materials is the utilization of velocity gradient to 

analyze droplets by means of stream function. This method involves studying how the droplet shape 

changes with respect to the shear rate of the matrix. In this model, the droplet's shape is plotted as a function 

of time to better understand its behavior[13]. 

 

The present model represents the deformation and break up of a single droplet with µd viscosity in a matrix 

with µm viscosity, constant interfacial tension coefficient, and a low Reynolds number. The gravity effect 

is also neglected. It is assumed that the initial shape of the cross-section of the droplet is a regular polygon 

instead of a circle. At the same time, each side has a unique normal vector perpendicular to its beginning. 

The matrix shear flow field evolves the normal vector of each point at the surface of droplet. In other words, 

every point at each time has a unique normal vector that will be deformed at a later time by the function of 

the velocity gradient. On the other hand, the length of all sides also would be changed under shear flow as 

a function of the velocity gradient. The advantage of this model compared to other previous methods is that 

there is no meshing in this method and in each time step a new shape is drawn based on the shape in the 

previous time. 

2-Model development 

The initial shape of droplet is considered to be a disc with 1000 sides in a two-dimension polygon cross-

section with a fixed thickness of 1 that could be deformed (Fig.1). Therefore, the normal vectors at all points 
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over the droplet and the length of all sides (lateral area of each side) are precisely defined. Eq. (1) displays 

the deformation rate of normal vector by velocity gradient tensor. Eq. (2) also verifies the rate of the change 

of the length of any side (lateral area of each side) by the velocity gradient[14]. 
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By reducing the time step, the solution of Eq. (1) and (2) becomes more accurate to the point where there 

is no significant change in the solution of these equations by reducing the time step. The calculated optimal 

time step is 0.1 seconds. To calculate n and S at any time, the solution must be done step by step from time 

zero to t. For example, to calculate the third second, it is necessary to take 30-time steps of 0.1 second. 

The stress balance equations should be solved over and inside the side interface to determine the velocity 

gradient. It should be noted that in the previous study, the equation of stress balance was presented for the 

same viscosity of droplet and matrix over the entire droplet surface[3]. 

There are two types of forces, namely the interfacial force and shape relaxation force, that resist drop 

elongation. It is assumed that in Eq. (3) and (4) the shape relaxation of the drop is ignored and the term of 

dissipation of stress from bulk to the vicinity of the interface is also negligible. 

Eq. (3) displays the stress of the matrix exerted over the droplet and tensor (4) shows the stress inside the 

droplet surface. To calculate four components of the velocity gradient tensor (L) of each side at the 

interface, four Eqs (5-8) should be solved simultaneously. 

sector 

side 

Lateral area 

Fig. 1. Scheme of initial shape of droplet 
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Eq (5) is the tangential part balance of the shear stress of the interface, and Eq (6) is the normal part of the 

mentioned shear stress. The left side of equation 6 shows the difference between the normal part of the 

shear stress (force) inside and outside the droplet. The right side of equation 6 shows the pressure difference 

caused by the shear stress, which causes the droplet to break-up. Eq (7) is relevant to the assumption of 

conservation of mass, whereas Eq (8) explains that the mass transfer phenomenon did not occur at the 

interface[15]. 
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By solving 4 Eqs. (5 – 8) simultaneously for each sides of the droplet 4 unknown components of L are 

calculated at any time. All four components of velocity gradient tensor are the function of known variables, 

i.e., normal vector, interfacial tension coefficient, viscosities of droplet and matrix, lateral area of each 

sector, curvature, and the shear rate of matrix. Eqs (7) and (8) represent Lyy as a function of Lxx, and Lxx as 
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a function of Lxy and Lyx, respectively. Thus, Lxy and Lyx should be determined by Eqs (9) and (14), 

respectively, and afterward, Lxx and Lyy would be calculated. 

Eq (9) encompasses three terms, namely, the shear rate of matrix, the droplet surface, and the curvature 

(curvature of three consecutive points) of the droplet, respectively. 
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Equation (14) includes two terms: the shear rate of the matrix including the viscosity difference of two 

phases, and the velocity gradient Lxy including of the normal vector and droplet viscosity. 
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For three consecutive points of (xi-1,yi-1),(xi,yi), and (xi+1,yi+1), the curvature is calculated at each time by Eq 

(11)[16]. As it is shown in Illustration 1, the volume of each sector (area of the cross-section with the fixed 

thickness of 1) considering two points on each side and the central point of the droplet, which is the mean 

of coordinates of all points at the previous time (Eq 13), was calculated by Eq (12)[17]. 
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3- Plotting droplet shape 

Knowing the velocity gradient, the lateral areas of the sectors could be calculated by Eq (2), which is equal 

to the numerical value of the length of the sides. The starting point at any time is assumed to be known, so 

the coordinates of second point would be calculated by solving Eqs (17) and (18). The coordinates of other 

points would be determined this way, one after another. These plotted points would be the initial shape of 

the next time. Normal vectors are perpendicular to the surface; therefore, by 90 degree rotation, the 

tangential vectors (T) would be calculated. That means when knowing the first rotated normal vector, the 

second point would be calculated, and by knowing the second rotated normal vector, the third point would 

be obtained; this will continue to 999th rotated normal vector. Fig. 4 shows the flowchart of calculating 

droplet surface points until the break-up time. 
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As can be seen, Eqs (1) and (2) are solved using the forward Euler method. Therefore, it is necessary to 

determine the convergence interval of the time step (Δt). The convergence interval of time step is between 

Fig. 2. Changing the lateral area of the drop according to 
the time step from 0.5 to 0.01 

Fig. 3. Changing the lateral area of the drop according to the 
number of sides of the drop from 500 to 2000 
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0.5 - 0.01. To determine the optimal time step, the equations are solved with 4 different time steps and the 

results are presented in Fig 2. As can be seen, the time steps of 0.01 and 0.1 have very small difference. 

Therefore, the optimal time step (in terms of accuracy and speed of solution) is considered to be 0.1. In 

the same way, the optimal number of sides is 1000 sides due to the very small difference between all three 

numbers (500, 1000 and 2000). The convergence interval of number of drop sides is between 500-2000. 

Theoretically, there is no limit to the droplet size in this method. The shear rate of the matrix may be either 

lower or higher than the rate required to break up the droplet. The ratio of droplet viscosity to matrix can 

be less or greater than 1. 

        

                                                       

                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

4- Results 

Fig. 4 shows four series of parameters for calculating velocity gradients and coordinates of points used from 

the previous study; Figs 25 and 26 depict the experimental results of droplet deformation[18, 19]. Each 

series with different Reynolds and Capillary numbers were used to compare the results of the simulation of 

Knowing the parameters and initial shape of the droplet 

Knowing the normal vector at the initial time 

Calculating velocity gradient at present by Eq (9) and Eq (14) 

Calculating the normal vectors of the next time step Eq (1) 

Calculating the lateral area of sectors of the next time step Eq 

(2) 

Calculating the curvature of the next time step 

Calculating points and plotting the droplet  

Occurring the break-up 

Fig. 4. Flowchart to plot the shape of droplet 
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the model versus experimental results more precisely. Figs 5, 10, 15, and 20, show the droplet shape 

deformation during the time until the break-up for all four series respectively.  

A new parameter is recommended to predict the break-up time more accurately. The parameter is called 

the shape factor and is obtained by Eq. (21), which expresses the maximum change of the slope ratio of 

every side of the droplet at present to the previous time.  

Figs. 6, 11, 16, and 21 display the shape factor parameter at every time for four series, respectively; the 

peak of each figure also indicates the time at which the droplet has deformed into a thread containing the 

ends bulb. In other words, at the time when the shape factor has got a maximum number, the changing of 

the slope of sides between the thread and bulb will change the most. Figs. 7, 12, 17, and 22 specify the ratio 

of the elongated shape of the droplet to the initial radius that increases continuously. This increase has 

grown over time because of decreasing thread diameter and the consequent decrease in the resistance of 

droplets. Concerning Fig. 27, the results of thread diameter (criteria of elongation droplet) by the simulated 

and experimental methods for series 1 are in line with less than a five percent deviation. In series 2,3, and 

4, the viscosity of the droplet and viscosity of the matrix was lower than in series 1, which made the ratio 

of shape relaxation to shear force greater and the deviation greater than that of series 1. By comparing series 

2,3 and 4, it is clear that when the Capillary number got near the critical Capillary number (1.1Cac), the 

force of shape relaxation became more effective. As shown, the deviation is more significant. As could be 

predicted, by increasing the Capillary number to 1.98 and then 2.6, the simulation and experimental results 

of the thread diameter became less deviated. One of the most important terms that changes by the 

deformation of the droplet are the rate of the lateral area of the droplet over time. Then, as it is evident in 

Fgs 8, 13, 18, and 23, the slope of the lateral area change grows gradually until the break-up. Likewise, 

these Illustrations show that the dominant mechanism of droplet deformation of series 1-3 is elongating end 

pinching. This mechanism means shear flow force overcomes interfacial tension, and the droplet length 

increases until the break-up. In other words, it means that the lateral area of the droplet would constantly 

increase at each time, even after the formation of the dumbbell, then the formation of the bulb, until it 

breaks up (These times are the peaks of Figs. 6, 11, 16, 21 respectively). Therefore as it is clarified in Fig 
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28, the value of bulb diameter for simulated results of series 1-3 is greater than that of the experimental 

results, whereas, for series 4, this value for the experimental result is greater than that of the simulated 

result. This confirms that for series 1-3 shape relaxation term is negligible, but for a lower Capillary number, 

the contribution of shape relaxation becomes more effective.  

1
( )

t

i
t t

i

m
SF Maximum

m 
            (21) 

In Figs 9, 14, 19, and 24, changes in the velocity gradients at any points of the droplet by the scale of –π to 

π radian (the starting point for drawing the shape is at –π radian) are remarked at the time of the break-up, 

respectively. As expected, Lxx and Lyy have lower values than Lxy and Lyx. Also, as can be seen in these 

graphs, there are four plateau regions of the velocity gradient, which indicate the presence of two bulbs. 

 The velocity gradient tensor is assumed to be constant along each side, so knowing L at each side (point) 

of the droplet, the velocities (u, v ) could be calculated. 

Table 1 – 4 series of parameters used for simulation 

 µm(Pa.s) µd(Pa.s) Γ(mN/m) 
.

 (s-1) r0(mm) Ca Re 

Series 1 7 4.3 10.7 2.17 0.48 1.40Cac <0.01 

Series 2 0.86 0.43 4.3 9 0.42 1.98Cac >0.2 

Series 3 0.86 0.43 4.3 5.2 0.95 2.60Cac >0.3 

Series 4 0.86 0.43 4.3 3.8 0.55 1.10Cac >0.1 

 

One important reason for using the velocity gradient on the drop instead of the shear rate is that the velocity 

gradient is not a symmetric tensor. This means that the term related to solid body rotation, along with the 

pure elongation term, is present in the velocity gradient tensor. As a result, both the physical phenomena of 

rotation and drop stretching can be observed in the slope of the model. This eliminates the need to calculate 

the rotation phenomenon separately. 
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Fig. 5. Simulation of deformation of viscous droplet under the shear flow of viscous matrix from zero to 16 th second 
(series 1). 

Fig. 6. Change of the shape factor vs time (series 1) 
Fig. 7.  Thread elongation ratio from zero to 16th second 

(series 1). 
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Fig. 10.  - Simulation of deformation of viscous droplet under the shear flow of viscous matrix from zero to 

5th second (series 2). 

Fig. 9. Velocity gradient of each point of the droplet at 15.6 
second (series 1). 

Fig. 8.  Change of the lateral area of droplet from zero to 16th 
second (series 1). 
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Fig. 11. Changes of the shape factor vs time (series 2). 

 

Fig. 12. Thread elongation ratio from zero to 5th second 
(series 2). 

Fig. 13. Changes of the lateral area of the droplet from zero to 
5h second (series2). 

Fig. 14. Velocity gradient of each point of the droplet at 
4.1 second (series 2). 
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Fig. 15. Simulation of deformation of viscous droplet under the shear flow of viscous 
matrix from zero to 9th second (series 3). 

Fig. 16. Changes of the shape factor vs time (series 3). Fig. 17. Thread elongation ratio from zero to 9th second (series 3). 
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Fig. 20. Simulation of deformation of viscous droplet under the shear flow of viscous matrix from 
zero to 13th second (series 4). 

Fig. 18. Changes of the lateral area of droplet from zero 
to 9th  second (series 3). 

Fig. 19. Velocity gradient of each point of the droplet at 
8.8 second (series 3). 
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5- Conclusion 

The proposed model for predicting droplet deformation and break-up is based on the deformation of normal 

vectors of the lateral surface of the droplet. Thus, solving the Equations at the interface of droplet and 

matrix instead of solving the equations over the total volume of matrix and droplet has made the proposed 

model faster than other control volume methods. On the other side, this model is independent of the initial 

shape of the droplet. One of the most important applications of this model is calculating the velocity profile 

over and around the droplet at each time by knowing the velocity gradient without needing the solution of 

velocity equations such as Navier-Stokes equations. 

 

Fig. 21. Changes of the shape factor vs time (series 4). 

 

Fig. 22. Thread elongation ratio from zero to 13th second 
(series 4). 

Fig. 23. Changes of the lateral area of droplet from zero to 13th  
second (series 4). 

Fig. 24. Velocity gradient of each point of the droplet at 
12.2  second (series 4). 
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By 

comparing Figs. 6, 11, 16, and 21 (shape factor parameter) with Figs. 25- 26 (experimental results of the 

Fig. 27. Comparing the thread diameters predicted by 

model vs experimental results at break-up. 
Fig. 28. Comparing the bulb diameters predicted by 

model vs experimental results at break-up. 

Fig. 25. Experimental result of deformation of the droplet under shear in the matrix (series 1) Reproduced with the 
permission of Marks.[18]  

Fig. 26. (a) Experimental result of deformation of the droplet under shear in the matrix (series 2). (b) Experimental result of 
deformation of the droplet under shear in the matrix (series 3). ). (c) Experimental result of deformation of the droplet under shear 
in the matrix (series 4).Reproduced with permission from Chin. J. Chem. Eng ,15 (1), (2007). Copyright 2007 Elsevier.[19]  
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droplet break-up), it is clear that the time of break-up for four series of simulation and experimental results 

are in line with the second accuracy. However, as is clarified in Table 2(summary of Figs 27, 28), at a lower 

Reynolds number (series 1), the thread diameter calculated by the model coincides accurately with the 

experimental results. Table 3 shows, the simulation and experimental results of the stretched droplet 

Length/Diameter ratio and the Bulb/Thread volume ratio are compared. Near the critical capillary 

number, due to the change of the failure mechanism from end pinching to middle pinching, the final 

bubble/droplet volume ratio and the droplet length/diameter ratio in the simulation show a greater deviation 

from the experimental results (series 4). By growing the Reynolds number at the lower Capillary number 

and viscosity of the matrix (series 4), the radius of the thread and the bulb size at the break-up time display 

more deviation. This deviation is because the proportion of shape relaxation force is increased while shear 

force is decreased by decreasing viscosities.  

The dominant mechanism for this Capillary range near the critical is the necking mechanism. It means that 

from initial times the droplet shape becomes dumbbell-like (not thread), and at the time of break-up, two 

new droplets with equal size are gained. 

Therefore, by increasing the Capillary number, the shapes coincide more accurately. The results of series 1 

were more consistent with experimental data than those of series 2 and 3 because of the more significant 

proportion of shear flow force. This is because the higher Capillary number responds better by growing the 

Reynolds number. 

Finally, the presented model for plotting and calculating the break-up of viscous droplets in a viscous matrix 

is helpful for the middle range of the Capillary number (1.40 Cac-2.60 Cac) and the lower range of the 

Reynolds number .Our analysis shows that the drop's dimensions deviate by less than 30% and its rotation 

by less than 20% when compared to experimental results. Moreover, the end bubble's dimension shows a 

deviation of less than 40%. These findings demonstrate the high level of accuracy and consistency of our 

methodology, making it a valuable tool for future research and experimentation. The dominant mechanism 
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predicted by this model is the elongating end pinching break-up. The advantage of this model compared to 

previous methods is the faster calculation speed due to equation checking on the interface.  

It is suggested to implement the presented model in three dimensions and study different materials for the 

experimental section in future research. 

 

Table 2 – Comparison of simulated droplet dimensions and experimental results at break-up 

 

Thread 
Diameter 

(model)m

m 

Thread 
Diameter 

(experimental)m

m 

Bulb 
Length 

(model)m

m 

Bulb 
Length 

(experimental)m

m 

d0(mm) Ca Re 

Serie
s 1 

0.0415 0.0430 0.7800 0.7000 0.96 1.40Cac 
<0.0
1 

Serie

s 2 
0.0550 0.0700 0.5700 0.4500 0.84 1.98Cac >0.2 

Serie

s 3 
0.0630 0.0730 0.8800 0.7500 1.9 2.60Cac >0.3 

Serie

s 4 
0.0400 0.0720 0.7900 1.0000 1.1 1.10Cac >0.1 

 

Table 3 –Comparison the parameters of Length/Diameter and Bulb/Thread volume of simulated droplet and 

experimental results at break-up 

 

Thread 

Length/Diamet
er(model) 

Thread 
Length/Diamet

er 

(experimental) 

Bulb 
Length/Dia

meter 

(model) 

Bulb 

Length/Dia

meter 
(experiment

al) 

Bulb/Threa
d volume 

ratio 

(model) 

Bulb/Thread 

volume ratio 
(experimental) 

Serie

s 1 
409 389 2.7 2.85 0.073 0.081 

Serie

s 2 
618 482 4.1 3.8 0.058 0.071 

Serie

s 3 
825 643 3.4 2.9 0.055 0.083 

Serie

s 4 
675 250 4.8 3.2 0.07 0.16 

Nomenclature : 

e : length of thread at every time 
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Ca : Capillary number (

.

0 mmr
Ca

 



) 

d0 : initial diameter of the droplet 

L: velocity gradient tensor at the droplet interface 

m : the slope of each side of the droplet at time t 

n : the normal vector of each point at the droplet interface 

Q : shear rate term of xy component of the calculated velocity gradient (Lxy ) 

r0 : initial radius of the droplet 

S : lateral area of each side of the droplet 

T : the tangential vector of each point at the droplet interface 

Vi : the volume of every sector of the droplet 

u  : x-direction velocity at the interface of the droplet 

v  : y-direction velocity at the interface of the droplet 

( , )U u v


   

Superscript 

t : time 

Subscript: 

i : the points of the droplet  

( , )t t

cent centx y : the coordinate of the center point of the droplet at time t 

Greek symbols: 

Δt : time step 

.

mxy

.

myx

0

0

 
 

 
  

.

m
γ : shear rate tensor of matrix 

µd : the viscosity of the droplet 

µm : the viscosity of the matrix 

d

m





  

Γ : the interfacial tension coefficient 

 :  the curvature at the interface of the droplet (the curvature of three consecutive points) 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



20 
 

σover: stress tensor over the interface 

σd: stress tensor inside the interface 

σTANGENTIAL : tangential stress balance at the interface 

σNORMAL: normal stress balance at the interface 
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