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by a shear flow based on changing the normal vector. The initial cross-section was assumed to be a
regular polygon with 1000 sides instead of a circle or ellipsoid, and also this model was independent
of the initial polygon shape. Changing the normal vector and the length of each side of the droplet was
a function of the velocity gradient. To calculate the velocity gradient over each side of the shape, the
equations of tangential and normal stress, the conservation of mass equation, and the absence of mass

transfer equation between two phases were solved simultaneously. By knowing the velocity gradient,  Keywords:
normal vectors and the length of each side are calculated; therefore, the new shape can be plotted by
drawing sides one after another. The results displayed that the time of the break-up, which this model

predicts, coincides with the experimental results. On the other hand, the predicted shape of the droplet at

Break-up
Viscous droplet

the break-up has logically coincided with the experimental results in the middle range of the Capillary Shear flow

number ratio (1.4 -2.6 critical Capillary number). The drop’s dimensions show less than 30% deviation ~ Velocity gradient

and its rotation less than 20%. Additionally, the dimension of the end bubble also shows a deviation of =~ Normal vector

less than 40%.

1- Introduction

One of the challenging issues in investigating high viscous
emulsions is the deformation and breakup of a viscous droplet
in a viscous matrix. Therefore, different study methods have
been developed to overcome such challenges.

Analytical methods explore the initial regular shape of
droplets, i.e., sphere and ellipsoid. At the same time, the
experimental results display the deformation of the droplet
to an irregular shape and its following break-up. Moreover,
most of the analytical methods had been extended based on
the average of parameters on the droplet surface[1-4]. Some
others had been structured by capillary number, viscosity
ratio, and volume fraction of droplets[5-10]. Numerical
models encompass the volume of the fluid scheme and the
average of viscosity and density as parameters for the Navier-
Stokes equation to solve it numerically[11]. The other study
examined the alteration of a droplet’s shape and its break up
in turbulent flow. A level set and volume of fluid method was
employed to investigate two-phase cross flow. Additionally,
the study evaluated the impact of nozzle geometry on the
trajectory and breakup of the spray[12].

One of the most crucial areas of research in two-phase
materials is the utilization of velocity gradient to analyze
droplets by means of stream function. This method involves
studying how the droplet shape changes with respect to the
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shear rate of the matrix. In this model, the droplet’s shape
is plotted as a function of time to better understand its
behavior[13].

The present model represents the deformation and
breakup of a single droplet with p, viscosity in a matrix with
u_, viscosity, constant interfacial tension coefficient, and a
low Reynolds number. The gravity effect is also neglected.
It is assumed that the initial shape of the cross-section of the
droplet is a regular polygon instead of a circle. At the same
time, each side has a unique normal vector perpendicular to
its beginning. The matrix shear flow field evolves the normal
vector of each point at the surface of the droplet. In other
words, every point at each time has a unique normal vector
that will be deformed at a later time by the function of the
velocity gradient. On the other hand, the length of all sides
also would be changed under shear flow as a function of the
velocity gradient. The advantage of this model compared to
other previous methods is that there is no meshing in this
method and in each time step a new shape is drawn based on
the shape in the previous time.

2- Model development

The initial shape of the droplet is considered to be a disc
with 1000 sides in a two-dimension polygon cross-section
with a fixed thickness of 1 that could be deformed (Fig.1).
Therefore, the normal vectors at all points over the droplet and
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Fig. 1. Scheme of initial shape of droplet

the length of all sides (lateral area of each side) are precisely
defined. Eq. (1) displays the deformation rate of the normal
vector by velocity gradient tensor. Eq. (2) also verifies the
rate of the change of the length of any side (lateral area of
each side) by the velocity gradient[14].
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By reducing the time step, the solution of Eq. (1) and
(2) becomes more accurate to the point where there is no
significant change in the solution of these equations by
reducing the time step. The calculated optimal time step is
0.1 seconds. To calculate n and S at any time, the solution
must be done step by step from time zero to t. For example,
to calculate the third second, it is necessary to take 30-time
steps of 0.1 second.

The stress balance equations should be solved over and
inside the side interface to determine the velocity gradient.
It should be noted that in the previous study, the equation of
stress balance was presented for the same viscosity of droplet
and matrix over the entire droplet surface[3].

There are two types of forces, namely the interfacial force
and shape relaxation force, that resist drop elongation. It is
assumed that in Eq. (3) and (4) the shape relaxation of the
drop is ignored and the term of dissipation of stress from bulk
to the vicinity of the interface is also negligible.

Eq. (3) displays the stress of the matrix exerted over the
droplet and tensor (4) shows the stress inside the droplet
surface. To calculate four components of the velocity gradient
tensor (L) of each side at the interface, four Eqs (5-8) should
be solved simultaneously.
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Eq (5) is the tangential part balance of the shear stress of
the interface, and Eq (6) is the normal part of the mentioned
shear stress. The left side of equation 6 shows the difference
between the normal part of the shear stress (force) inside and
outside the droplet. The right side of equation 6 shows the
pressure difference caused by the shear stress, which causes
the droplet to breakup. Eq (7) is relevant to the assumption of
conservation of mass, whereas Eq (8) explains that the mass
transfer phenomenon did not occur at the interface[15].
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By solving 4 Egs. (5 — 8) simultaneously for each side of
the droplet 4 unknown components of L are calculated at any
time. All four components of the velocity gradient tensor are
the function of known variables, i.e., normal vector, interfacial
tension coefficient, viscosities of droplet and matrix, lateral
area of each sector, curvature, and the shear rate of matrix.
Eqs (7) and (8) represent L asa function of L , and L
as a function of L, and L. respectively. Thus, L, and L,
should be determined by Eqs (9) and (14), respectively, and
afterward, L  and Lyy would be calculated.
Eq (9) encompasses three terms, namely, the shear rate of
the matrix, the droplet surface, and the curvature (curvature
of three consecutive points) of the droplet, respectively.
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Equation (14) includes two terms: the shear rate of the
matrix including the viscosity difference of two phases, and
the velocity gradient L, including the normal vector and
droplet viscosity.
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For three consecutive points of (x_.y, ).(x,y), and
(X,.,»Y..,)> the curvature is calculated at each time by Eq (11)

[16]. As shown in Illustration 1, the volume of each sector
(area of the cross-section with the fixed thickness of 1)
considering two points on each side and the central point of
the droplet, which is the mean of coordinates of all points at
the previous time (Eq 13), was calculated by Eq (12)[17].
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3- Plotting droplet shape

Knowing the velocity gradient, the lateral areas of the

sectors could be calculated by Eq (2), which is equal to the
numerical value of the length of the sides. The starting point
at any time is assumed to be known, so the coordinates of the
second point would be calculated by solving Eqs (17) and
(18). The coordinates of other points would be determined
this way, one after another. These plotted points would
be the initial shape of the next time. Normal vectors are
perpendicular to the surface; therefore, by 90 degree rotation,
the tangential vectors (T) would be calculated. That means
when knowing the first rotated normal vector, the second
point would be calculated, and by knowing the second
rotated normal vector, the third point would be obtained; this
will continue to 999" rotated normal vector. Fig. 4 shows
the flowchart of calculating droplet surface points until the
break-up time.
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Fig. 2. Changing the lateral area of the drop according to the time step from 0.5 to 0.01

x107%

4.4

4.2

perimeter(m)
w w
> %9 ~

=

time(second)

Fig. 3. Changing the lateral area of the drop according to the number of sides of the drop from 500 to 2000

As can be seen, Eqs (1) and (2) are solved using
\/ (X =X+ (i =) = |S,~t| (17) the forward Euler method. Therefore, it is necessary to
determine the convergence interval of the time step (At). The
convergence interval of the time step is between 0.5 - 0.01.
t e Y t To determine the optimal time step, the equations are solved
Vit 7 Vi =1 (x”l i ) (18) with 4 different time steps and the results are presented in Fig
2. As can be seen, the time steps of 0.01 and 0.1 have very
T ) small differences. Therefore, the optimal time step (in terms
{ x:| _ [COS@ —sm 9}{’@} (19) of accuracy and speed of solution) is considered to be 0.1. In
T, sing  cos@ || n, the same way, the optimal number of sides is 1000 sides due
to the very small difference between all three numbers (500,
1000, and 2000). The convergence interval of the number of
[ T jtl drop sides is between 500-2000. Theoretically, there is no

-1 ¥y

(20) limit to the droplet size in this method. The shear rate of the
matrix may be either lower or higher than the rate required to
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Knowing the parameters and initial shape of the droplet

]

Knowing the normal vector at the initial time

Calculating velocity gradient at present by Eq (9) and Eq (14)

L |

Calculating the normal vectors of the next time step Eq (1)

Calculating the lateral area of sectors of the next time step Eq

!

Calculating the curvature of the next time step

!

Calculating points and plotting the droplet

Occurring the break-up

Fig. 4. Flowchart to plot the shape of droplet

break up the droplet. The ratio of droplet viscosity to matrix
can be less or greater than 1.

4- Results

Fig. 4 shows four series of parameters for calculating
velocity gradients and coordinates of points used from the
previous study; Figs 25 and 26 depict the experimental results
of droplet deformation[18, 19]. Each series with different
Reynolds and Capillary numbers was used to compare the
results of the simulation of the model versus experimental
results more precisely. Figs 5, 10, 15, and 20, show the
droplet shape deformation during the time until the break-up
for all four series respectively.

A new parameter is recommended to predict the break-up
time more accurately. The parameter is called the shape factor
and is obtained by Eq. (21), which expresses the maximum
change of the slope ratio of every side of the droplet at present
to the previous time.

Figs. 6, 11, 16, and 21 display the shape factor parameter
at every time for four series, respectively; the peak of each
figure also indicates the time at which the droplet has
deformed into a thread containing the ends bulb. In other
words, at the time when the shape factor has got a maximum
number, the changing of the slope of sides between the

thread and bulb will change the most. Figs. 7, 12, 17, and
22 specify the ratio of the elongated shape of the droplet to
the initial radius that increases continuously. This increase
has grown over time because of decreasing thread diameter
and the consequent decrease in the resistance of droplets.
Concerning Fig. 27, the results of thread diameter (criteria
of elongation droplet) by the simulated and experimental
methods for series 1 are in line with less than a five percent
deviation. In series 2,3, and 4, the viscosity of the droplet and
viscosity of the matrix was lower than in series 1, which made
the ratio of shape relaxation to shear force greater and the
deviation greater than that of series 1. By comparing series
2,3 and 4, it is clear that when the Capillary number got near
the critical Capillary number (1.1Cac), the force of shape
relaxation became more effective. As shown, the deviation
is more significant. As could be predicted, by increasing the
Capillary number to 1.98 and then 2.6, the simulation and
experimental results of the thread diameter became less
deviated. One of the most important terms that change by the
deformation of the droplet is the rate of the lateral area of the
droplet over time. Then, as it is evident in Fgs 8, 13, 18, and
23, the slope of the lateral area changes and grows gradually
until the break-up. Likewise, these Illustrations show that the
dominant mechanism of droplet deformation of series 1-3 is
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Table 1. 4 series of parameters used for simulation

um(Pa.s) na(Pa.s) I'(mN/m) 7, ) ro(mm) Ca Re

Series 1 7 43 10.7 2.17 0.48 1.40Ca, <0.01
Series 2 0.86 0.43 43 9 0.42 1.98Cac >0.2
Series 3 0.86 0.43 43 5.2 0.95 2.60Cac >0.3

Series 4 0.86 0.43 43 3.8 0.55 1.10Cac >0.1
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Fig. 5. Simulation of deformation of viscous droplet under the shear flow of viscous matrix from zero to
16th second (series 1).
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1 1

S N S

time(s)

Fig. 6. Change of the shape factor vs time (series 1)

thread elongation ratio(e/2r0)

time(s)

Fig. 7. Thread elongation ratio from zero to 16th second (series 1).

elongating end pinching. This mechanism means shear flow
force overcomes interfacial tension, and the droplet length
increases until the breakup. In other words, it means that the
lateral area of the droplet would constantly increase at each
time, even after the formation of the dumbbell, and then the
formation of the bulb, until it breaks up (These times are the
peaks of Figs. 6, 11, 16, 21 respectively). Therefore as it is
clarified in Fig 28, the value of bulb diameter for simulated
results of series 1-3 is greater than that of the experimental
results, whereas, for series 4, this value for the experimental
result is greater than that of the simulated result. This confirms
that for series 1-3 shape relaxation term is negligible, but for a
lower Capillary number, the contribution of shape relaxation

becomes more effective.

SF, = Maxzmum(m) 21)

i

In Figs 9, 14, 19, and 24, changes in the velocity gradients
at any points of the droplet by the scale of —t to m radian
(the starting point for drawing the shape is at —t radian)
are remarked at the time of the break-up, respectively. As
expected, L and L . have lower values than L  and L,
Also, as can be seen in these graphs, there are four plateau
regions of the velocity gradient, which indicate the presence

267



S.Heydarpoor and M.H.N.Famili, AUT J. Mech. Eng., 7(3) (2023) 261-282, DOI: 10.22060/ajme.2024.22348.6061

lateral area ratio

time(s)

Fig. 8. Change of the lateral area of droplet from zero to 16th second (series 1).
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Fig. 9. Velocity gradient of each point of the droplet at 15.6 second (series 1).
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Fig. 11. Changes of the shape factor vs time (series 2).
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Fig. 12. Thread elongation ratio from zero to Sth second (series 2).
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Fig. 13. Changes of the lateral area of the droplet from zero to Sh second (series2).
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Fig. 15. Simulation of deformation of viscous droplet under the shear flow of viscous matrix from zero to
9th second (series 3).
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Fig. 16. Changes of the shape factor vs time (series 3).
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Fig. 17. Thread elongation ratio from zero to 9th second (series 3).
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Fig. 18. Changes of the lateral area of droplet from zero to 9th second (series 3).
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Fig. 19. Velocity gradient of each point of the droplet at 8.8 second (series 3).
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Fig. 21. Changes of the shape factor vs time (series 4).
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Thread elongation ratio from zero to 13th second (series 4).
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Fig. 23. Changes of the lateral area of droplet from zero to 13th second (series 4).
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Fig. 25. Experimental result of deformation of the droplet under shear in the matrix (series 1) Reproduced
with the permission of Marks.[18]

of two bulbs.

The velocity gradient tensor is assumed to be constant
along each side, so knowing L at each side (point) of the
droplet, the velocities (u,V ) could be calculated.

One important reason for using the velocity gradient on
the drop instead of the shear rate is that the velocity gradient
is not a symmetric tensor. This means that the term related to
solid body rotation, along with the pure elongation term, is
present in the velocity gradient tensor. As a result, both the
physical phenomena of rotation and drop stretching can be
observed in the slope of the model. This eliminates the need
to calculate the rotation phenomenon separately.

5- Conclusion

The proposed model for predicting droplet deformation
and breakup is based on the deformation of normal vectors of
the lateral surface of the droplet. Thus, solving the Equations
at the interface of droplet and matrix instead of solving the
equations over the total volume of matrix and droplet has
made the proposed model faster than other control volume
methods. On the other side, this model is independent of
the initial shape of the droplet. One of the most important
applications of this model is calculating the velocity profile
over and around the droplet at each time by knowing the
velocity gradient without needing the solution of velocity
equations such as Navier-Stokes equations.

By comparing Figs. 6, 11, 16, and 21 (shape factor
parameter) with Figs. 25- 26 (experimental results of the
droplet break-up), it is clear that the time of break-up for
four series of simulation and experimental results are in
line with the second accuracy. However, as is clarified
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in Table 2(summary of Figs 27, 28), at a lower Reynolds
number (series 1), the thread diameter calculated by the
model coincides accurately with the experimental results.
Table 3 shows, the simulation and experimental results of
the stretched droplet Length/Diameter ratio and the Bulb/
Thread volume ratio are compared. Near the critical capillary
number, due to the change of the failure mechanism from end
pinching to middle pinching, the final bubble/droplet volume
ratio and the droplet length/diameter ratio in the simulation
show a greater deviation from the experimental results (series
4). By growing the Reynolds number at the lower Capillary
number and viscosity of the matrix (series 4), the radius of
the thread and the bulb size at the break-up time display more
deviation. This deviation is because the proportion of shape
relaxation force is increased while shear force is decreased by
decreasing viscosities.

The dominant mechanism for this Capillary range near the
critical is the necking mechanism. It means that from initial
times the droplet shape becomes dumbbell-like (not thread),
and at the time of break-up, two new droplets with equal size
are gained.

Therefore, by increasing the Capillary number, the shapes
coincide more accurately. The results of series 1 were more
consistent with experimental data than those of series 2 and
3 because of the more significant proportion of shear flow
force. This is because the higher Capillary number responds
better by growing the Reynolds number.

Finally, the presented model for plotting and calculating
the break-up of viscous droplets in a viscous matrix is helpful
for the middle range of the Capillary number (1.40 Ca -
2.60 Ca ) and the lower range of the Reynolds number. Our
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Fig. 26. (a) Experimental result of deformation of the droplet under shear in the matrix (series 2). (b) Experimental

result of deformation of the droplet under shear in the matrix (series 3). ). (¢) Experimental result of deformation

of the droplet under shear in the matrix (series 4).Reproduced with permission from Chin. J. Chem. Eng ,15 (1),
(2007). Copyright 2007 Elsevier.[19]
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Fig. 27. Comparing the thread diameters predicted by model vs experimental results at break-up.
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Fig. 28. Comparing the bulb diameters predicted by model vs experimental results at break-up.

Table 2. Comparison of simulated droplet dimensions and experimental results at break-up

Thread Thread Bulb Bulb

Diameter Diameter Length Length do(mm) Ca Re

(model)mm (Experimental)mm (model)mm (Experimental)mm
Series I~ 0.0415 0.0430 0.7800 0.7000 0.96 1.40Cac <0.01
Series 2 0.0550 0.0700 0.5700 0.4500 0.84 1.98Ca. >0.2
Series 3 0.0630 0.0730 0.8800 0.7500 1.9 2.60Cac >0.3
Series 4 0.0400 0.0720 0.7900 1.0000 1.1 1.10Ca, >0.1

analysis shows that the drop’s dimensions deviate by less
than 30% and its rotation by less than 20% when compared to
experimental results. Moreover, the end bubble’s dimension
shows a deviation of less than 40%. These findings
demonstrate the high level of accuracy and consistency of our
methodology, making it a valuable tool for future research
and experimentation. The dominant mechanism predicted
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by this model is the elongating end pinching break-up. The
advantage of this model compared to previous methods is
the faster calculation speed due to equation checking on the
interface.

It is suggested to implement the presented model in three
dimensions and study different materials for the experimental
section in future research.
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Table 3. Comparison of the parameters of Length/Diameter and Bulb/Thread volume of simulated
droplet and experimental results at break-up

Thread Thread Bulb Bulb Bulb/Thread Bulb/Thread
Length/Diameter  Length/Diameter Length/Diameter  Length/Diameter volume ratio volume ratio
(model) (Experimental) (model) (Experimental) (model) (Experimental)
Series I 409 389 2.7 2.85 0.073 0.081
Series 2 618 482 4.1 3.8 0.058 0.071
Series 3~ 825 643 34 2.9 0.055 0.083
Series 4 675 250 4.8 32 0.07 0.16
Nomenclature : u, : the viscosity of the droplet
e : length of thread at every time u_ : the viscosity of the matrix | = Ha
. 7 7/ . . . . Fim
Ca : Capillary number (Cqg = 222 m ) I' : the interfacial tension coefficient
r K : the curvature at the interface of the droplet (the
d, : initial diameter of the droplet curvature of three consecutive points)
L: velocity gradient tensor at the droplet interface G, ... stress tensor over the interface
m : the slope of each side of the droplet at time t 6. stress tensor inside the interface
n : the normal vector of each point at the droplet interface G naentiaL - tangential stress balance at the interface
Q : shear rate term of xy component of the calculated Gormar: NOrmal stress balance at the interface
velocity gradient (L, )
r,: initial radius of the droplet References .
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