
AUT Journal of Mechanical Engineering

AUT J. Mech. Eng., 7(2) (2023) 155-174
DOI: 10.22060/ajme.2023.22109.6054

Large Eddy Simulation and Proper Orthogonal Decomposition Analysis of Two-phase 
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ABSTRACT: This paper presents the Large-Eddy-Simulation (LES) of two-phase turbulent thermo-
magnetic convection of ferrofluid (water- 3 4Fe O ) within a cubic cavity. The current two-phase 
model considers Brownian, thermophoresis, magnetophoresis, and eddy diffusions in the dispersion 
of ferromagnetic particles. Two parallel electrical wires influence ferrofluid flow. The numerical 
computations are performed by utilizing the finite volume method for three different magnetic numbers 
(i.e. =0mnf  , 10=1.4 10mnf ×  and 10=5.6 10mnf ×  ). For all numerical calculations, particle volume fraction and 
Rayleigh are held constant at 0.04 and 810  , respectively. Based on the heat transfer analysis, a magnetic 
field with a strength of 10=5.6 10mnf ×  enhances the Nusselt number by 16.67%. Observed increases in heat 
transfer can probably be attributed to the Kelvin force induced by the magnetic field, which affects the 
coherent structures of the flow. Using the Proper Orthogonal Decomposition (POD) method, coherent 
structures are extracted from velocity and pressure fluctuations. Further, the time coefficients of the first 
three modes are extracted for the pressure fluctuation. According to the results, the applied magnetic 
field reduces the cumulative energy of modes and increases the number of modes required to reconstruct 
a given amount of flow. The coherent structures also change from plane to spanwise roll structures with 
increasing magnetic numbers. The energy content of the first three modes decreases from 98.7% to 73% 
as the magnetic field increases from =0mnf  to  10=1.4 10mnf ×  .
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1- Introduction
Magnetic nanofluids (ferrofluid) is a colloid of 

ferromagnetic nanoparticles such as iron, nickel, cobalt, and 
some of their alloys that are stably dispersed in a carrier liquid 
such as water, engine oil, or diester. Due to their ability to be 
strongly magnetized by imposing magnetic fields, ferrofluids 
are characteristically different from other types of nanofluids. 
An applied magnetic field can therefore manipulate ferrofluid 
fluid dynamics and heat transfer rates appropriately. There 
has been significant interest in magnetic nanofluids due to 
their unique properties and potential applications, such as heat 
transfer and thermal management, biomedical engineering, 
energy harvesting and storage, microfluidics, and so on [1].

The dynamics of ferrofluids under a magnetic field are 
formulated first by Rosensweig [2]. An analysis of the laminar 
forced convection of ferrofluid in a rectangular channel was 
performed by Aminfar et al [3, 4]. According to their results, 
the magnetic field increases the Nusselt number and friction 
coefficient. Sheikholeslami and Seyednezhad [5] simulated 
the natural convection of 

3 4Fe O / ethylene glycol ferrofluid in 
a porous enclosure. It was shown that the rate of heat transport 
increases with an increase in magnetic field intensity. A study 
conducted by Mohammadpourfard et al. [6] examined the 

effect of magnetic fields on 
3 4Fe O -water magnetic nanofluid 

hydrodynamics and heat transfer specifications. They found 
that magnetic fields intensify the heat transfer coefficient. 
Ashwin Kumar et al. [7] investigated the effect of a magnetic 
field on the velocity and thermal boundary layers of magnetic 
nanofluids over vertical plates. According to their findings, 
flow and heat transfer characteristics are affected by the 
magnetic field. In addition, the nanoparticle volume fraction 
was found to have a significant impact on the wall friction 
and heat transfer rate. The effect of a non-uniform magnetic 
field on a ferrofluid flow in a T-junction was studied by 
Gerdroodbary et al. [8]. According to their findings, applying 
a magnetic field increases the average heat transfer coefficient 
by over 64%. Furthermore, the local heat transfer rate (near the 
magnetic field) was increased by more than 200%. Khosravi 
et al. [9] studied a magnetic nanofluid forced convection in 
the presence of a magnetic field. Based on their findings, 
Nusselt number and pressure drop increase as nanoparticle 
volume fraction and magnetic field intensity increase. 
The effect of a permanent magnet on the thermomagnetic 
convection of a ferrofluid inside a cavity was reported by 
Szabo et al. [10]. They identified a condition under which 
free convection changes to a thermomagnetic one. Javed et al. 
[11] numerically investigated magnetohydrodynamic impacts 
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on ferrofluid natural convection inside a square cavity with an 
obstacle. They found that the rate of convection increases with 
increasing Rayleigh number and decreases with increasing 
Hartmann number. The thermomagnetic convection of a 
ferrofluid inside a vertical annular enclosure was studied 
experimentally and numerically by Wrobel et al. [12]. It was 
shown that depending upon the intensity and direction of the 
magnetic field, the rate of convection can be strengthened 
or weakened. Lee and Kim [13] numerically determined the 
role of a magnetic field in ferrofluid heat transfer in cavities 
containing heat sources with various shapes. According to 
their simulations, a magnetic field produces vortices that 
enhance convection heat transfer. The study conducted by 
Yekani Motlagh et al. [14] investigated natural convection in 
a titled porous semi-annulus enclosure filled with a ferrofluid. 
The study demonstrated that increasing the inclination angle 
of the enclosure leads to a suppression of the heat transfer rate. 
A numerical analysis of ferrofluid convection inside a curved 
pipe under a spatially varying magnetic field was presented by 
Soltanipour et al. [15]. It was found that an applied magnetic 
field increases heat transfer by approximately 30%.

In a study performed by Banik et al. [16], the focus was 
on thermomagnetic convection and entropy production in a 
cubical cavity filled with ferrofluid. The cavity included a 
cylindrical heat source positioned at its center. The findings 
of the study revealed that an increase in the strength of the 
magnetic field resulted in a higher rate of heat transfer. 
Additionally, the study observed a corresponding increase in 
entropy generation, indicating a higher degree of irreversibility 
in the system. In a study conducted by Ayoubi et al. [17], the 
influence of the strength and position of a magnetic field on 
the heat transfer rate in an enclosure was investigated. The 
researchers showed that by placing the magnetic source at 
the bottom right of the enclosure, a maximum heat transfer 
enhancement of 11.5% could be achieved. Iftikhar et al. 
[18] numerically investigated natural convection within a 
U-shaped cavity filled with water-based ferroparticles under 
the influence of magneto-hydrodynamic (MHD) effects. 
The results of their study demonstrated that the presence of 
ferroparticles in the base fluid (water) led to an augmentation 
in the heat transfer rate within the enclosure. Conversely, a 
reversed trend was observed when the Hartmann number was 
increased.

Shi et al. [19] conducted a study to examine the 
convective heat transfer and particle distribution within a 
square cavity when subjected to a magneto-static field. The 
researchers observed that the introduction of a magnetic 
field yielded an increase in the Nusselt number, indicating 
enhanced convective heat transfer. Furthermore, they noted 
an associated rise in entropy generation due to the presence 
of the magnetic field. Under uniform magnetic fields, Dixit 
and Pattamatta [20] examined ferrofluid natural convection 
in a cubical enclosure. Research results suggested that the 
direction of a magnetic field can help or suppress natural 
convection flow.

Nanofluid turbulent convection within enclosures has 
received very little attention. Goodarzi et al.  [21] performed 

the two-phase mixture modeling of nanofluid mixed 
convection inside a rectangular shallow enclosure. Increasing 
the nanofluid volume fraction increased the convection rate 
for prescribed values of Grashof and Richardson numbers. 
Magnetic nanofluid convection under the magnetic and 
buoyancy forces was investigated by Abdi et al. [22]. Using 
the v2-f turbulence model, they found that as Rayleigh 
and magnetic numbers increased, the heat transfer rate 
intensified. Lattice Boltzmann (LB) modeling of nanofluid 
turbulent free convection was carried out by Sajjadi et 
al. [23]. Specifically, they found that the particle volume 
fraction has an augmentative effect on the Nusselt number. 
Mixed convective heat transfer for pure water and nanofluid 
in a cubic enclosure containing a rotating adiabatic cylinder 
was studied by Kareem and Gao [24]. Using a standard k-ε 
turbulence model, they demonstrated that the rate of heat 
transfer for nanofluids is considerably higher than that of 
pure water. Cao et al. [25] investigated the mixed convection 
of Cu-water nanofluid between two rotating cylinders 
embedded in a porous medium. The temperature difference 
between the cylinders triggered free convection, while the 
rotation of the cylinders resulted in the generation of forced 
convection. Numerical outcomes indicated that natural 
convection can be attenuated by the rotation of cylinders. 
Ghodsinezhad et al. [26] studied the turbulent free convection 
of Al2O3–water nanofluid in a rectangular enclosure. The 
results showed that the convective heat transfer coefficient 
reaches its maximum at a nanoparticle volume fraction of 
0.1%. The transient turbulent free convection of different 
water-based nanofluids in a square enclosure was studied 
by Patel et al. [27]. According to their numerical findings, 
alumina nanofluid demonstrates superior heat transfer 
performance compared to other fluids. Recently, Harish and 
Sivakumar [28] investigated the turbulent free convection of 
nanofluids in a cubic enclosure. To account for Brownian and 
thermophoresis diffusions of nanoparticles, they modified the 
two-phase mixture model. Finite volume simulation coupled 
with k-ε turbulence model showed that particle fluxes due to 
Brownian motion enhances convection heat transfer. Harish 
and Sivakumar [29] examined turbulent mixed convection in 
vented cubic enclosures for different water-based nanofluids. 
According to their results, thermophoresis and Brownian 
diffusion have a greater impact on nanoparticle dispersion in 
assisting flow conditions. 

In turbulent flows, the determination of coherent 
structures is crucially important since they play a main role 
in the transport phenomena. The control of turbulence and 
thereby momentum, heat, and mass transfer phenomena 
requires the knowledge of coherent structures. The Proper 
Orthogonal Decomposition (POD) is a robust decomposition 
technique employed to identify the energetic modes that 
exhibit correlations within the physical flow field. POD finds 
widespread application in various thermo-fluidic problems 
[30, 31].

In Mahapatra’s study [32] the structure of buoyancy-
driven flow in an enclosure with two discrete heat sources 
operating alternately was investigated. The Proper Orthogonal 
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Decomposition (POD) technique was employed to analyze 
the energy content in different modes and identify the 
corresponding coherent flow structures for various Rayleigh 
numbers. The results showed that the first three POD modes 
accounted for approximately 97% of the total energy content 
in the flow.

Podvin et al. [33] numerically analyzed the turbulent 
airflow in a cubic cavity and extracted the coherent structures 
using the POD method. Their research illustrated that about 
60% of the total flow energy belongs to the first 10 modes. 
Additionally, they found that as the Rayleigh number grows, 
the size and orientation of coherence structures change 
considerably. Yekani Motlagh and Taghizadeh [34] extracted 
coherent structures in a porous cubic cavity using the POD 
method. They showed that increasing porosity alerts the 
shape and orientation of coherent structures.

The literature survey indicates that the existing research 
regarding the nanofluid turbulent convection in enclosures 
is mostly based on the Reynolds-averaged Navier-Stokes 
(RANS) equations and single-phase formulation. RANS-
based models, such as the k-ε and k-ω models, primarily focus 
on predicting the averaged flow properties and turbulence 
quantities, such as mean velocity and turbulent kinetic 
energy. However, these models do not capture the intricate 
characteristics of individual eddies and flow structures in 
detail. Instead, they provide a representation of the overall 
behavior of the flow, enabling efficient simulations while 
sacrificing the resolution of small-scale turbulent features. 
The application of non-uniform fields undoubtedly influences 
the turbulent flow structures and can lead to alert in flow and 
heat transfer characteristics. Therefore, it becomes necessary 

to model such flows in a manner that is capable of capturing 
turbulent eddies such as LES or DNS. Additionally, the 
extraction of coherent structures is of crucial importance 
for flow control purposes. These coherent structures play a 
significant role in the overall flow behavior and understanding 
their dynamics can provide valuable insights for optimizing 
flow control strategies. To the authors’ best knowledge, 
there is not any study regarding the LES/POD analysis 
of nanofluids. Therefore, in this paper, the Large-Eddy- 
Simulation of turbulent thermomagnetic convection of 

3 4Fe O
-water ferrofluid in a cubic cavity is performed by a modified 
two-phase model. The effect of the external magnetic field on 
the form and energy of coherent structures is determined at 
different magnetic numbers.

2- Problem statement
A schematic of a cubic cavity having a side length of 

0.025m is displayed in Fig. 1. The cavity is filled with 
3 4Fe O

/water magnetic nanofluid with the mean particle volume 
fraction of 0.04mφ = . The hot and cold walls of the enclosure 
are at 311hT =  K and 309cT =  K while the top and bottom 
boundaries are assumed to be perfectly insulated. In addition, 
the front and back surfaces of the cavity are treated as periodic 
or cyclic boundary conditions. Turbulent thermomagnetic 
convection results from buoyancy and magnetic forces which 
is investigated numerically via a two-phase model. Gravity 
acts in the negative y-direction. As depicted in Fig. 1, the 
magnetic nanofluid is subjected to the magnetic fields induced 
by two parallel electrical wires aligned in the z-direction. The 
normal distance between each electrical wire and adjacent 
wall is set to 0.005md = . 

 

Fig. 1 Representation of the problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Representation of the problem
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The components and magnitude of the magnetic field 
intensity vector are given by [35]:
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where ( , )i ia b  refers to the coordinates of the i-th wire and 
I is the electrical current. 

Langevin approximation is used to compute the 
magnetization of magnetic nanofluid [36]:
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stands for the magnetic moment of ferromagnetic 
nanoparticles [2].

2- 1- Governing equations
Ferrofluid flow in the cavity is supposed to be three-

dimensional, unsteady, incompressible, two-phase, and 
turbulent. Impacts of viscous dissipation, thermal radiation, 
and compression work are neglected from the energy 
equation. The Boussinesq approach is utilized to approximate 

the density variation in the buoyant force. The differential 
equations describing the ferrofluid motion are as follows [35-
37]:
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where V, p, and T refer to velocity, pressure, and 
temperature, respectively. Also, 7

0 4 10 T.m/Aµ π −= ×  represents 
the permeability of the vacuum, 

tµ  denotes the turbulent 
viscosity, ˆ gn  is the unit vector of gravitational acceleration, .t nf

t
t

c
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=  stands for the turbulent thermal conductivity, and 
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∂
V H  in the momentum and energy 
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caloric effect [36]. The volume fraction of nanoparticles (φ ) 
refers to the ratio of the volume occupied by the nanoparticles 
to the total volume of the system. The first, second, third, and 
fourth terms on the right-hand side of Eq. (8) denote the flux 
of particles due to Brownian, thermophoresis, turbulent eddy 
diffusion, and magnetophoresis effects, respectively [37-39]. 

In this study, the thermophoresis, Brownian, and turbulent 
eddy diffusion factors are given by[37]: 

 

2 22 ( ) ( )
i

x i
i i

y bIH
x a y b

 −−
=  − + − 

                       

(1) 

2 22 ( ) ( )
i

y i
i i

x aIH
x a y b

 −
=  − + − 

                                                                                                

(2) 

2 2
x yH H H= +                                                                                                                               

(3) 

( )sM M L =                                                                                                                                    
(4) 

 

.( ) 0nf =V                                                                                                                                    

(5) 

0

. ( )

ˆ. ( ) ( )

nf nf t

nf c g

D p
Dt

M g T T

  

 

 = − + +  + 

 − −

V V

H n
                                             (6) 

 

,

0

( ) . ( )

. ( ) ( ) .

( . ( ))

p nf nf t

p p p B t T B

DTc k k T
Dt

c D D D T D L T

MT
T



    



=  +  −

  +  +  −   −  





H
H

V H

                           (7) 

.( ) .( )

.( ) .( . ( ) ( ))

B T

t B

D D D T
Dt

D D L

 

  

=   +  +

  −  H
H

                                                         (8)  

 

0.26 , ,
2 3

f f tB
T B t

f p f p nf t

k k TD D D
k k T d Sc

  
 

  
= = =   +   

)9(     

 

2
t nf ssL S =       (10)                                                   

 

(9)

where pd  represents the diameter of the nanoparticle and its 
value is 4nm. Moreover, 231.38065 10 J/KBk −= ×  is the Boltzmann 
constant and 1tSc =  indicates the turbulent Schmidt number.

2- 2- Smagorinsky model
The well-known Smagorinsky turbulence model is used in 

this study. In the Smagorinsky model, the turbulent viscosity 
is obtained from [40]:
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∂ ∂  is the rate-of-strain tensor 
and ssL  is the mixing length of subgrid scales. Also, 
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where 1/3( )x y z∀ = ∆ ∆ ∆  is the volume of the computational 
mesh, κ  is the von Karman constant and d denotes the 
distance to the nearest wall.

2- 3- Nondimensionalization
The following bold variables are employed in the 

nondimensionalization process [41, 42]:1/3min( , )ss sL d C= (11)          
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Accordingly, the final nondimensional version of 

governing equations becomes as 

1/3min( , )ss sL d C= (11)          
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The important non-dimensional numbers in Eq. (12-
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Boundary and initial conditions to be imposed in Eq. (12-

14) are as follows:
Cold wall:

1/3min( , )ss sL d C= (11)          

2

2 2

0 0

0 0

( , ), , ,

, , , , ,

, / , /

f

f f

c

f h c

B B T T
m

v t x y pL
L L v

T TL ML
H v M T T

D D D D






= =

−
=  = =

−

= =

H

H VV

B T

t (x, y) p = =

= M T

D D



 ==

 

 

.(( ) ) 0nf

f




=V                

(12) 

 

( )( ) .

( ) ˆ( ) .
( )

nf tnf

f f

nf
g

f

D
Dt

Ramnf
Pr

 
 




 +
= − +  + 

 

 −

V V

H H n

 p

T
                   (13) 

 

,

,

( ) 1 1. ( ( ) ( )( ))
( )

1 1 1( )( )( ) ( ) . ( ) ( ) .

( ) ( ) ( . ( ))

p nf p nftnf

p f f t f p f

t f

f nf t BT

T

c ckD
c D Pr k Pr c

Sc L
Le Pr Sc R

mnf Ec

 
 

   
 



 
= + − 

  
 

+ + − 
 


− + 



H
H

V H

B t T B

T T
t

D D D T D T

MT
T

 

    
                   

 (14) 

1 [ .( . ( )( )

1( ) .( . . ( ) ( ) ]

t f

t f nf

BT

D Sc
D Sc Sc

L
R

 
 

 

 
=  

 
 
  
 

H
H

  



B t

T B

D D
t

D T D

  )) ++   ++

  )))) −− 

(15) 

 

0, . ( )T

B

D L
D

    
= = = = − +

   
p T HV T
x x x H x

 
 

1, 0, . ( )T

B

D L
D

    
= = = = − +

   
p T HT V
x x x H x

 
 Hot wall:

1/3min( , )ss sL d C= (11)          

2

2 2

0 0

0 0

( , ), , ,

, , , , ,

, / , /

f

f f

c

f h c

B B T T
m

v t x y pL
L L v

T TL ML
H v M T T

D D D D






= =

−
=  = =

−

= =

H

H VV

B T

t (x, y) p = =

= M T

D D



 ==

 

 

.(( ) ) 0nf

f




=V                

(12) 

 

( )( ) .

( ) ˆ( ) .
( )

nf tnf

f f

nf
g

f

D
Dt

Ramnf
Pr

 
 




 +
= − +  + 

 

 −

V V

H H n

 p

T
                   (13) 

 

,

,

( ) 1 1. ( ( ) ( )( ))
( )

1 1 1( )( )( ) ( ) . ( ) ( ) .

( ) ( ) ( . ( ))

p nf p nftnf

p f f t f p f

t f

f nf t BT

T

c ckD
c D Pr k Pr c

Sc L
Le Pr Sc R

mnf Ec

 
 

   
 



 
= + − 

  
 

+ + − 
 


− + 



H
H

V H

B t T B

T T
t

D D D T D T

MT
T

 

    
                   

 (14) 

1 [ .( . ( )( )

1( ) .( . . ( ) ( ) ]

t f

t f nf

BT

D Sc
D Sc Sc

L
R

 
 

 

 
=  

 
 
  
 

H
H

  



B t

T B

D D
t

D T D

  )) ++   ++

  )))) −− 

(15) 

 

0, . ( )T

B

D L
D

    
= = = = − +

   
p T HV T
x x x H x

 
 

1, 0, . ( )T

B

D L
D

    
= = = = − +

   
p T HT V
x x x H x

 
 

Upper and bottom walls:

0, . ( )L   
= = =
  
p HV
x y H y

 
 

 

 

nf
Avg

f

k
Nu d d

k


= −

T y z
x

(16)        

(1 )nf f p   = − +                                                                                                              (17) 

( ) (1 )( ) ( )p nf p f p pc c c    = − +          (18) 

( ) (1 )( ) ( )nf f p    = − +          (19) 

2 2 ( )
2 2 ( )

p f p f
nf f

p f p f

k k k k
k k

k k k k



+ − −
=

+ + −
          

(20) 

0.3 1.031 34.87( )

f
nf

p

f

d
d




−

=
−

          

(21) 

* *1 ( , ) ( , )ij i ju t u t d x
N 

 = C X X 
(21) 

(22) =CA λA 

*

1
( ) ( , )

N

ij ki j
i

F t
=

=λ X A X 
(23) 

1

N

i
i

E
=

=λ   
                                                                   (24) 

/n n E=ξ λ (25) 

1
/

N

n i
i

E
=

=ξ λ 
(26) 

 

 

 

 

 

As mentioned earlier, on the back and front surfaces, 
periodic boundary conditions are applied. The initial 
conditions for the problem are as follows:
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Moreover, the average Nusselt number on the hot and 
cold walls can be calculated as:
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2- 4- Thermophysical properties of ferrofluid
Density, specific heat, volumetric expansion coefficient, 

thermal conductivity, and viscosity of ferrofluid are computed 
as follows [43-45]:
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In Eq. (17-21) the subscripts ‘p’, ‘f’, and ‘nf’ stand for 
the properties of the nanoparticle, base fluid (water), and 
nanofluid, respectively. Table 2 presents the thermophysical 
properties of both phases used in this work.

2- 5- Computational methodology and mesh independence  
The open-source and the finite volume-based code 

(OpenFOAM 2.3.1) is used to solve the governing equations. 
New solvers are developed in OpenFOAM to model the two-
phase thermomagnetic convection of ferrofluid. Transient 
simulations are performed by the PISO algorithm. The Central 
difference and upwind schemes are employed to discretize 
the diffusion and convection terms with the second-order 
Crank-Nicolson for temporal discretization [46]. An iterative 
approach is utilized to solve the algebraic equations. The mesh 

Table 2. Thermophysical properties of water and magnetite [4] Table 2. Thermophysical properties of water and magnetite [4]  

phase (nm)d 6 kg10 ( )
m.s

 − 5 110 ( )
K

 − 
J( )

kg.Kpc 
W( )

m.K
k 3

kg( )
m

 

Water 0.384 695 36.2 4178 0.628 993 

3 4Fe O 4 - 1.3 670 6 5200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Grid independence study at 8Ra=10 , 0.04m =  and 10mnf=5.67 10  
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Fig. 2. Grid independence study at 8Ra=10  , 0.04mφ =  and 10mnf=5.67 10×  
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independence study is performed for 8Ra=10 , 0.04mφ =  and 
10mnf=5.67 10× . The average Nusselt number is obtained for six 

different meshes with grid points of 100 100 50× × , 125 125 67× ×
, 150 150 75× × , 175 175 87× × , 200 200 100× × , and 225 225 113× ×
. As shown in Fig. 2, the results become grid-independent 
for grid resolution of 200 200 100× ×  and therefore, this mesh 
is used for all computations. Non-uniform grid layouts are 
used in the x and y-directions. It should be mentioned that the 
normal distances between the first cell centers and the wall 
in the viscous unit are . / 0.4y y u vτ

+∆ = ∆ ≈  and . / 0.2x x u vτ
+∆ = ∆ ≈

. Also a grid growth factor of 1.16 is applied both in the x 
and y directions. However, a uniform grid is employed in 
the z-direction where the corresponding grid spacing in the 
viscous unit is . / 1.1z z u vτ

+∆ = ∆ ≈ .

2- 6-  Proper Orthogonal Decomposition 
To investigate the impact of a non-uniform magnetic field 

on turbulent flow, it is essential to analyze coherent structures. 
Identifying coherent structures in complex flows is crucial 
for understanding the underlying physics. Various methods 
can be used for identification, such as the Q criterion, λ2 
criterion [47], or coherent vortex extraction [48]. One widely 
used method is the proper orthogonal decomposition (POD) 
[49], which is a linear decomposition technique. It provides 
a set of optimal spatial empirical eigenfunctions that are 
orthonormal. The POD captures the maximum amount of 
energy possible for a given number of modes. This unique 
characteristic of the POD allows us to not only gain insights 
into different fluid structures present in a collection of events 
but also sort them based on their average energy content when 
the eigenfunctions are projected onto the original database.

The POD method seeks spatial basis functions that 
capture the most energetic components of a dynamic system. 
In the context of a numerical simulation, we have recorded 
N snapshots of the three-dimensional velocity and pressure 
fluctuation field. The POD technique then decomposes the 
fluctuating velocity into a collection of spatial modes, each 
associated with temporal coefficients. These spatial modes 
represent the dominant patterns or structures in the velocity 
field, while the temporal coefficients describe how these 
modes vary over time.

In the present numerical work, the Proper Orthogonal 
Decomposition algorithm has been utilized.  At every time 
step, the velocity fluctuations can be obtained by subtracting 
the average velocity from the instantaneous velocity. The 
inner product in the Hilbert space is given by
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where , 1, 2,...,i j N=  represents the number of Snapshots, 
X


 denotes the dimensionless position vector, and dΩ  is 
a volume element. Eigenvalues and eigenvectors can be 
obtained by the Singular Value Decomposition (SVD) of the 
C-tensor.
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In Eq. (22), λ is the eigenvalue and A is the corresponding 
eigenvector. Eigenmodes of POD are then obtained using the 
velocity fluctuations field and eigenvectors:
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where k represents the eigenmode number. The total 
energy of the fluctuations is determined from the sum of 
eigenvalues:
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where N is the mode number.
In addition, the energy ratio of the n-th mode to the total 

energy (or relative energy) is obtained from

0, . ( )L   
= = =
  
p HV
x y H y

 
 

 

 

nf
Avg

f

k
Nu d d

k


= −

T y z
x

(16)        

(1 )nf f p   = − +                                                                                                              (17) 

( ) (1 )( ) ( )p nf p f p pc c c    = − +          (18) 

( ) (1 )( ) ( )nf f p    = − +          (19) 

2 2 ( )
2 2 ( )

p f p f
nf f

p f p f

k k k k
k k

k k k k



+ − −
=

+ + −
          

(20) 

0.3 1.031 34.87( )

f
nf

p

f

d
d




−

=
−

          

(21) 

* *1 ( , ) ( , )ij i ju t u t d x
N 

 = C X X 
(21) 

(22) =CA λA 

*

1
( ) ( , )

N

ij ki j
i

F t
=

=λ X A X 
(23) 

1

N

i
i

E
=

=λ   
                                                                   (24) 

/n n E=ξ λ (25) 

1
/

N

n i
i

E
=

=ξ λ 
(26) 

 

 

 

 

 

(26)

Also, the sum of the cumulative energy of the first N 
mode is calculated from
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2- 7- Validation
In the present work, a new solver is developed in 

openFoam open source code for two-phase, turbulent free 
convection magnetic nanofluid flow under the effect of 
the nonuniform magnetic field. To the best of the author’s 
knowledge, there are no experimental or numerical results that 
include all the cases in the literature, therefore, in this section, 
the validation of each part of the developed code is discussed 
separately. For validation of different parts of the developed 
code, several comparisons are conducted with the available 
literature. For validation of the two-phase modeling part of 
the developed code, the average Nusselt number values for 
two-phase free convection of 

2 3Al O /Water nanofluid within 
a square enclosure are compared in Fig. 3 (a) (for 0.03Aveφ =
, 4.623Pr = , 33nmpd =  and 5 63.37 10 1.68 10Ra× ≤ ≤ × ). 
Acceptable accordance is seen between the reported data in 
[50, 51] and present predictions. 

Furthermore, to check the validity of the non-uniform 
magnetic field effect modeling part of the code, current 
numerical results are compared with the ones reported by 
Song and Tagawa [52] for thermomagnetic convection of 
gaseous oxygen gas within a square cavity for 2TrB =  and
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/ 0.6mx L = . Comparison of temperature field is illustrated 
in Fig. 3 (b). It is evidence that the current code has good 
agreement with the results of [52]. 

Moreover, in Fig. 3 (c), (d), and (e) the distribution of 
the time-averaged vertical velocity (d) The distribution of 
temperature along the horizontal midline (e) the Comparison 
of RMS fluctuations of horizontal velocity near the hot wall. 

 
 

(b) (a) 

  
(d) (c) 

 
(e) 

Fig. 3: (a) The mean Nusselt number as a function of Ra [50, 51] (b) Comparison of 
temperature fields [52] (c) The distribution of the time-averaged vertical velocity [53, 54] (d) 
The distribution of temperature along the horozintal midline [53, 54] (e) Comparison of root 
mean square (RMS) of fluctuations of horizontal velocity near the hot wall [53, 54].  
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(e) Comparison of root mean square (RMS) of fluctuations of horizontal velocity near the hot wall [53, 54]. 
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Ampofo et al. [53] conducted experimental investigations, 
while Kumar et al. [54] performed numerical studies on 
turbulent free convection in a cubic enclosure under specific 
conditions ( 91.58 10Ra = × and 0.71Pr = ). These studies 
involved making further comparisons. It can be seen that 
time-averaged vertical velocity and temperature profiles 
at the horizontal midline and also RMS fluctuations of 
horizontal velocity near the hot wall are in good agreement 
with published results. Finally, to verify the extraction of 
coherent structures and their energy, present outcomes are 
compared with the DNS results of Puragliesi et al. [55]. The 
comparison is plotted in Fig. 4. The current results are seen 
to agree quite well with the ones reported by Puragliesi et al. 
[55]. 

3- Results and Discussion
The primary objective of the present work is to conduct 

a Large-Eddy Simulation (LES) of two-phase turbulent 
thermo-magnetic convection of a ferrofluid inside a cubic 
cavity. The study focuses on investigating various aspects, 
including the mean Nusselt number and coherent structures 
of the first three modes for x-velocity, y-velocity, and pressure 
fluctuations. Additionally, non-dimensional relative energy 
and cumulative relative energy analyses are performed 
for each mode under different magnetic number values, 
specifically 0mnf = , 101.4 10×  and 105.6 10× . It is worth noting 
that the numerical computations consistently maintain the 
particle volume fraction and Rayleigh values at 0.04 and 810 , 
respectively, throughout the study. 

Table 3 presents the mean Nusselt number values 
corresponding to different magnetic numbers. The results 

indicate that the presence of a magnetic field leads to an 
increase in heat transfer. Specifically, at magnetic numbers of 

101.4 10×  and 105.6 10× , an increase of 8.71% and 16.67% in the 
Nusselt number is observed, respectively. This enhancement 
in heat transfer is likely attributed to the influence of the 
Kelvin force resulting from the non-uniform magnetic field, 
which also impacts the coherent structures of the turbulent 
flow. Consequently, the subsequent sections of the article 
will delve into the changes induced in the coherent structures 
through the application of the magnetic field. The variables 
analyzed using this approach include velocity fluctuations in 
the x-direction (u’), velocity fluctuations in the y-direction 
(v’), and pressure fluctuations (p’). 

3- 1- Decomposition of orthogonal modes of x-velocity 
fluctuations

We first apply the algorithm for separating orthogonal 
modes for the velocity fluctuation in the x-direction (u′ ), 
which can be obtained by subtracting the average velocity 
from the instantaneous velocity. It is necessary to show 
that the results are independent of time and the number of 
snapshots. As illustrated in Fig. 5, as the number of snapshots 
grows, the value of relative energy or energy ratio of the 
first mode (
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) decreases and after 76 snapshots it 
approximately remains constant. Therefore, in this study, 76 
snapshots are used in all cases.

In all cases, the runs lasted for 300 seconds. Data is saved 
every 4 seconds to apply POD method. As a result, the POD 
method has been applied to 75 snapshots. 

Fig. 6 shows the cumulative and relative energies of 
modes for different magnetic numbers.
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Fig. 4: Comparison of the current results with the reported data of Puragliesi et al. [55](a) 
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Table 3. Average Nu number (Nuave) on walls of the cavity at 810Ra =  ,  and different magnetic numbers ( 0.04mφ = )

Table 3: Average Nu number (Nuave) on walls of the cavity at 810Ra = , 0.04m = and different 
magnetic numbers ( mnf ) 

mnf 0 101.4 10 105.6 10 

AvgNu 24.11 26.21 28.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Non-dimensional relative energy or energy ratio for the first mode as a function of the 
number of snapshots at Rayleigh 810Ra = , 0.04m = and 105.6 10mnf =  . 
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Fig. 6: The relative energy or energy ratio of modes for different magnetic numbers (a) cumulative 
(b) individual (for x-velocity fluctuations) 

Fig. 7 shows the first three modes for different magnetic numbers extracted by the POD algorithm. 
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Since by applying the magnetic field new eddies with high 
energy are created in the flow, and they play a positive role 
in the heat transfer process. To study the shape of these new 
structures, the shape of modes containing energy is drawn 
and analyzed.

Fig. 7 shows the first three modes for different magnetic 
numbers extracted by the POD algorithm. According to Fig. 
7, the first mode for 0mnf =  has a plane structure (parallel 
to the xz-plane) with an energy ratio of 93% which covers 
the areas close to the bottom and top walls of the enclosure. 
Buoyancy forces are responsible for these structures. Due to 
the high relative energy of the first mode, the hydrodynamics 
of the flow is almost affected by the first mode. The second 
mode for 0mnf = , contains only 5% of the relative energy 
of the flow which is much lower than that of the first mode. 

 First Mode Second Mode Third Mode 

0mnf =

 

   

101.4 10mnf = 

 

   

105.6 10mnf = 

 

   

Fig. 7: Coherent structures of the first three modes for different magnetic numbers  for x-velocity 
fluctuations 

 

 

 

 

 

 

 

 

Fig. 7. Coherent structures of the first three modes for different magnetic numbers  for x-velocity fluctuations

According to Fig. 6 (a), the cumulative energy is 
reduced by increasing the magnetic number. It is found that 
the number of modes required to reconstruct 98% of the 
flow energy is 2, 8, and 10 for 0mnf = , 101.4 10mnf = × and 

105.6 10mnf = × , respectively. Hence, the dynamics can be 
completely understood from the analysis of these modes. 
Similar conclusions have also been drawn by Feng et al. [56] 
where they observed that the first few modes dominate the 
global flow field. From the results, employing the magnetic 
field increases the number of turbulent scales and coherent 
structures. As seen in Fig. 6 (b), as the magnetic number 
increases the relative energy of the first mode reduces 
while that of the other modes increases. Therefore, it can be 
concluded that the increase in heat transfer due to the increase 
in the magnetic number which can be seen in Table 4 can be 
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Fig. 8: 2D representation of coherent structures for the first three modes in the vertical mid-plane 
of the enclosure at different magnetic numbers for x-velocity fluctuations. 

 

 

 

 

 

 

 

 

 

 

Fig. 8. 2D representation of coherent structures for the first three modes in the vertical mid-plane of the enclosure at 
different magnetic numbers for x-velocity fluctuations.
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According to Fig. 7, it is observed that in the second mode, 
the plane coherent structures are still formed in the cavity. 
However, these structures are not as large as the first mode. 
This is the main reason for the decrease in the relative energy 
of the second mode compared to the first mode. Additionally, 
there are some other small coherent structures near the plane 
structures. The relative energy of the third mode is only 
about 0.9%. As shown, the structures of the third mode are 
small, complex, and irregular. Consequently, the third mode 
does not have any appreciable effect on the turbulence 
mechanism. For 101.4 10mnf = × , the relative energy values ​​of 
the first, second, and third modes are 60%, 21%, and 6%, 
respectively. With exerting magnetic field, the energy of the 
first mode is decreased significantly, but for other modes, the 
relative energy becomes higher than that of 0mnf = . It can be 
seen that for 101.4 10mnf = × , in addition to plane structures, 
the span-wise roll structures are formed near the magnetic 
sources because of magnetic body forces. For 105.6 10mnf = ×
, the relative energy of the first mode is 39% which is lower 
than of corresponding value for 101.4 10mnf = × .  It can be 
observed that by employing a strong magnetic field, the plane 
structures of buoyancy forces disappear and only the span-
wise roll structures due to Kelvin’s body forces are created.  
It can be concluded that the applied magnetic field reduces 
the relative energy of the first mode. On the other hand, the 
energies of other modes are increased by the applied magnetic 
field. 

For better representation, 2D plots of coherent structures 
of the first three modes in the vertical mid-plane of the 
enclosure and at various magnetic numbers are illustrated in 

Fig. 8. As seen in Fig. 8, in the absence of magnetic field (
0mnf = ), the flow pattern is composed of plane structures 

arising from buoyant effects. For a moderate magnetic field 
( 101.4 10mnf = × ), on the other hand, coherent structures 
are a combination of plane and span-wise roll structures. 
However, at high magnetic fields, the coherent structures are 
governed by span-wise roll ones as a result of the vigorous 
magnetic forces.  It is observed that the first three modes 
(leading modes) play a dominant role in the sweeping and 
ejection of large-scale structures as stated in {Feng, 2011 
#13}. In contrast, the remaining POD modes are weaker as 
each of them represents less than 2% of the total turbulent 
kinetic energy. If the magnetic number is increased, the first 
four modes would capture less kinetic energy. The reason is 
that more small-scale turbulent structures appear in the flow 
field with increasing magnetic number, and these fine scale 
structures also have a contribution to the energy content, 
which means that the relative contribution of the large-scale 
structures decreases.

3- 2- Decomposition of orthogonal modes of y-velocity 
fluctuations

Fig. 9 illustrates the cumulative and individual energies of 
modes for different magnetic numbers.

The general trends are similar to those presented for the 
x-velocity fluctuations. Once again, it can be observed that 
the applied magnetic field decreases the cumulative energy. 
Besides, the applied magnetic field declines the relative 
energy of the first mode but enhances that of other modes. 
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Fig. 9: The relative energy of modes for different magnetic numbers (a) cumulative (b) 
individual (for y-velocity fluctuations) 
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Fig. 10:  Coherent structures of the first three modes for different magnetic numbers for y-
velocity fluctuations 

 

 

 

 

 

 

 

 

 

Fig. 10. Coherent structures of the first three modes for different magnetic numbers for y-velocity fluctuations
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(b) (a) 

Fig. 11: The relative energy of modes for different magnetic numbers (a) cumulative (b) 
individual (for pressure fluctuations) 
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Fig. 11. The relative energy of modes for different magnetic numbers (a) cumulative (b) individual (for pressure 
fluctuations)

Fig. 10 depicts the first three modes for various magnetic 
numbers. For buoyant flow ( 0mnf = ), it is found that the 
relative energies of the first, second, and third modes are 
about 89, 9, and 0.7%, respectively. As shown, the coherent 
structure of the first mode of buoyant flow has a plane shape 
(parallel to the yz-plane) which is located near the vertical 
walls. By employing a magnetic field with an intensity 
of 101.4 10mnf = × , the relative energy of the first mode is 
decreased to 59% whereas, the energies of the second and 
third modes are increased to 19%, and 9%, respectively. For 

101.4 10mnf = × , both plane and span-wise roll structures exist 
as a result of buoyancy and magnetic forces, respectively. 
For the highest magnetic field intensity i.e. 105.6 10mnf = ×  
the values of the first, second, and third modes are found to 
be 44%, 17%, and 12%, respectively.  In this case, the flow 
structures that are span-wise rolls are completely controlled 
by magnetic forces. It is seen, that with increasing the mode 
number the structures get a more irregular shape. 

3- 3- Decomposition of orthogonal modes of pressure 
fluctuations

Fig. 11 (a) and Fig. 11 (b) show the cumulative and relative 
energy of modes, respectively. Similar to what was seen for 
x and y-velocity fluctuations, the relative energy value of the 
first mode decreases by the magnetic field. On the contrary, 
the relative energy values ​​of higher modes are increased by 
increasing magnetic numbers.

Fig. 12 shows the influence of the magnetic field on the 
first three modes. Generally, the structures are quite similar 
for 0mnf =  and 101.4 10mnf = × . In the case of 101.4 10mnf = ×
, both plane and roll structures exist simultaneously. The 
plane structures diminish at 105.6 10mnf = ×  due to dominant 
magnetic forces thereby coherent structures are governed by 
the magnetic field. 

Fig. 13 shows the time coefficients of the first, second, 

and third modes at different magnetic numbers. As seen, 
regardless of the magnetic number, the values ​​of the time 
coefficients of the first mode are higher than that of the other 
modes, implying the dominance of the first mode in the 
turbulence structures. It is worth noting that regardless of the 
mode number, the values of time coefficients increase with 
enhancing magnetic number.  

 
4- Conclusion

To conduct a numerical study of coherent structures in 
turbulent flows, it is crucial to employ a method capable 
of resolving flow eddies within the computational domain. 
The chosen method should be able to accurately capture and 
represent the intricate details of these eddies. Understanding 
the impact of various parameters on turbulence and its 
structures requires effective visualization of the coherent 
structures. By visualizing these structures, researchers can 
gain insights into the characteristics and behavior of turbulent 
flow, allowing for a deeper understanding of the underlying 
dynamics. In this study, the turbulent flow of free convection 
in a magnetic nanofluid subjected to a non-uniform magnetic 
field was modeled using a large eddy simulation. An important 
aspect of this work was to explore, for the first time, the 
influence of the Kelvin force resulting from the magnetic field 
on the coherent structures present in this type of turbulent 
flow. To achieve this, the proper orthogonal decomposition 
(POD) method was employed to reveal and analyze these 
coherent structures. By utilizing the POD technique, the flow 
was decomposed into a set of empirical eigenfunctions that 
are linearly independent, providing insights into the spatial 
coherent structures of the flow. This approach allowed for a 
deeper understanding of the behavior and characteristics of 
the coherent structures in the turbulent flow of the magnetic 
nanofluid under the influence of the non-uniform magnetic 
field.
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Fig. 12: Coherent structures of the first three modes for different magnetic numbers for pressure 
fluctuations 

 

 

 

 

 

 

 

Fig. 12. Coherent structures of the first three modes for different magnetic numbers for pressure fluctuations
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Fig. 13: The time coefficients of the first three modes of pressure fluctuations for different 
magnetic numbers (a) 0mnf =  (b) 101.4 10mnf =   (c) 105.6 10mnf =   
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The main outcomes of the present work can be summarized 
as:

In Rayleigh number 810 and a volume fraction of 4%, 
increasing the magnetic number from 0 to 10=1.4 10mnf ×  and

10=5.6 10mnf ×  results in an increase of 8.71%  and 16.67%, 
respectively.

With an increase in the magnetic number from 0 to 
10=1.4 10mnf ×  and 10=5.6 10mnf × , the number of coherent 

structures associated with the oscillatory component of 
velocity fluctuation in the x-direction increases from 2 to 8 
and 10, respectively.

The relative energy of the first mode is declined by 
increasing the magnetic number. 

The relative energy of the higher modes grows as the 
magnetic number is enhanced.

The cumulative energies of modes decrease as the 
magnetic number increases.

The coherent structures are converted from the plane-
shaped to the span-wise roll structures at high magnetic 
numbers.

Irrespective of the mode number, the time coefficients are 
increased by increasing the magnetic number.

Understanding the nature of coherent structures and 
their response to the applied magnetic field can provide 
insights for controlling the main flow dynamics. The findings 
highlight the potential for improved heat transfer through the 
manipulation of coherent structures in two-phase turbulent 
thermo-magnetic convection.
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A Eigenvector, [-] p Pressure, [Pa] 

BD            ]1-s 2Brownian diffusivity, [m Pr Prandtl number, [-] 

TD           ]1-s 2Thermophoresis diffusivity, [m 
 

Ra Rayleigh number, [-] 

tD ]1-s 2Eddy diffusivity, [m Sc  Schmidt number, [-] 

pd Diameter of particles, [nm] T Temperature, [K] 

Ec Ecker number, [-] V ]1-Velocity vector, [m s 

H           ]1-Intensity of magnetic field, [A m Greek 
symbols 

 

L Side length of cavity, [m] 
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