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ABSTRACT: Quadrotors provide exclusive performances like vertical landing and taking off, load 
carrying capacity, and possibility of remote control. A pertinent deficiency of them however concerns their 
underactuated configuration, which is one of the inherent characteristics of these robots. A dependency 
between different movements of quadrotor is unavoidable due to this characteristic. To eliminate the 
dependencies between linear and rotational motions and so increase the number of controllable degrees 
of freedom, a novel configuration has been presented for the fully-actuated quadrotor. The rotors have 
the ability to rotate around two perpendicular directions and two degrees of freedom have been added 
to the system. The motion dependencies between linear and angular degrees are omitted. To investigate 
the capability of the fully-actuated quadrotor, the novel configuration is introduced and the capabilities 
of this configuration in eliminating movement dependencies are discussed. To this end, after extracting 
the motion equations governing the fully-actuated quadrotor using Newton-Euler method and applying 
a proportional-derivative controller to the model, the performance of this configuration in eliminating 
the motion dependencies is compared against a conventional underactuated type. It is shown that this 
configuration is capable of eliminating motion dependencies to a great extent within various simulation 
results. Finally, by designing a back-stepping controller and applying different trajectories to the 
proposed fully-actuated quadrotor, its motion capabilities and limitations are thoroughly investigated.
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1- Introduction
The unique performances of quadrotors, including the 

ability of vertical landing and taking off, load carrying 
capacity, and possibility of remote control, have increased 
their applications worldwide. Their applications include 
military missions [1], load transportation [2], mapping to 
supporting rescue operations [3], remote sensing of decks on 
concrete bridges using thermography infrared [4], surveillance 
and inspection [5], imaging the forests [6], and examining 
products with ultrasonic sensors (precision agriculture) [7]. 
Moreover, by connecting the drones to software applications 
on smartphones, these devices c-ould be used for video 
recording and mission planning [8,9]. 

One of the important issues addressed in research on 
quadrotors, is the study of the effects of changing the 
quadrotors configuration on their motional abilities. For 
instance, in [10], drones with rotating wings, that use a 
combination of blade-wing mechanism, are designed to 
benefit from the advantages of fixed-wing drones and 
quadrotors, simultaneously. These drones act like fixed-wing 
drones while the wings are in vertical status. However, with 
a 90-degree rotation of the wings, they will work similar to 
quadrotors.

In [11] and [12], form-changing multi-rotors were 
designed to overcome the limitations imposed to quadrotors 
from the environment. When faced with obstacles, and after 
identifying them, these multi-rotors continue their path by 
changing the form, the size or the angle of arms, so that they 
can avoid any collision with the obstacles. 

In normal quadrotors, which are known as underactuated 
quadrotors, since the number of their control inputs is less 
than their degrees of freedom, it is not possible to control 
all degrees of freedom simultaneously, and some degrees 
of freedom become interdependent [13]. Also, according to 
previous studies, in the case that the number of rotors increases, 
for example in hexarotors, motion dependency remains 
because the rotors are placed in one plane or in the parallel 
planes. One way to overcome this motion dependency, is to 
add one or two degrees of freedom to the rotors, in form of 
rotational ability along one or two axes through servo motor 
actuators and applying constraints to equalize the number of 
control inputs and degrees of freedom [14]. In such case, the 
quadrotor is called a fully-actuated quadrotor. 

For example, an H-shaped quadrotor with all its arms 
capable of simultaneously rotating around their axes, is 
proposed in [15]. Adding these degrees of freedom to the 
rotors, resolves the issue of couplings between rotational and 
translational motions. Since there are 5 control inputs in this 
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quadrotor, the control of angles, height and forward speed 
has been done using a PID controller. Moreover, in [16], a 
quadrotor with each of its rotors capable of rotating along a 
separate direction is proposed, and it is shown that adding a 
fixed wing to the body, reduces the energy consumption and 
increases system efficiency. Another fully-actuated multi-
rotor is called Voliro robot and characterized in [17]. Similar 
to the previous quadrotor, this hexa-rotor has one degree of 
freedom for each rotor, and each rotor is capable of rotating 
about the arm axis. This flying object is used for inspection and 
imaging in complex environments. Another mode considered 
for rotation of the rotors is inward or outward rotation. This 
configuration was first proposed in [18]. It is assumed in 
this drone, that the angles of the rotors are pairwise equal, 
moreover a PID controller is used to control the position and 
angles of this quadrotor. The simulation results show complete 
elimination of motion couplings between the position and roll 
and pitch angles. The last case of fully-actuated quadrotors, 
where each rotor has an additional degree of freedom, is 
introduced in [19]. In this quadrotor, which is the result of a 
doctoral dissertation in MIT, changes in the angle of attack of 
the propellers, made by a mechanism that works similar to the 
swash plates of helicopters using a servo-motor, are proposed 
instead of rotations of the rotors. 

The second group of fully-actuated quadrotors, are those 
with each of their rotors having two additional degrees of 
freedom. One way to increase the number of control inputs in 
quadrotors is to rotate each of the rotors about the quadrotor 
arm itself, inwards or outwards [20]. However, adding these 
two degrees of freedom to each of the rotors, increases the 
total number of control inputs to 12, and then in order to 
reduce this number to 6, the angles of all rotors are assumed to 
be equal along both directions. With this change in quadrotor 
configuration, the couplings between translational and 
rotational motions are also eliminated and the addition of two 
control inputs to the quadrotor, will make it fully-actuated. A 
novel configuration is proposed in [21], where the rotors are 
capable of rotating inwards and outwards, as well as rotating 
parallel to the quadrotor body (along the axis perpendicular 
to the body). A robot named ALIV3 is introduced in [22]. 
By two arms, this quadrotor is capable to rotate two of its 
rotors around two directions, while the other rotors are placed 
on fixed arms. Moreover, a multi-rotor with four rotors is 
presented in [23] where the rotors are pairwise coaxial and 
each two rotors are capable of rotating about two different 
directions; this configuration is controlled using feedback 
linearization.

In this article, the advantages and motion capabilities of 
a fully-actuated quadrotor whose rotors can simultaneously 
rotate along the y-axis connected to the body and the x-axis 
connected to the rotor, are investigated. Despite advantageous 
aspects of performance of a fully-actuated quadrotor which 
are mentioned above, few studies concentrated on control 
design for this uncommon configuration. To this end, in 
section 2, first the coordinate systems (frames) are introduced 
and then the novel quadrotor configuration under study is 
presented and after studying the forces and torques applied 
to this system, and stating the assumptions governing 

the problem, the dynamic equations of this quadrotor are 
derived using Newton-Euler method. Once the dynamic is 
extracted, the next step of design which concerns to study 
the difference between the application of linear and nonlinear 
controllers. First the equations are linearized in section 3 and 
a proportional-derivative controller is designed. In section 
4, a back-stepping nonlinear controller is proposed and 
the controlled system asymptotic stability is guaranteed in 
theory and by simulation. The simulation results performed 
by Simulink software are presented in section 5 for both 
conventional and novel quadrotors. In addition, multiple 
different scenarios are considered for quadrotor trajectory 
tracking, and the capabilities of the proposed configuration 
are shown using the nonlinear controller.

2- Dynamic Modeling
In this section, dynamic governing equations of a fully-

actuated quadrotor are derived using the Newton-Euler 
method. For this purpose, the coordinate systems used in 
dynamic analysis are first introduced and the transformation 
matrices between them are defined; then the proposed 
configuration is discussed in more detail and some Fig.s 
are also demonstrated. Afterwards, the assumptions of the 
problem and description of the forces and torques applied to 
the quadrotor are elaborated and lastly the dynamic equations 
of the quadrotor are derived.

2- 1- Frames
Since the quadrotor rotors may have an angle to the body 

and the body may in turn have an angle to the ground, four 
frames connected to the rotors, i i i io x y z , and one coordinate 
system on the body, oxyz , are chosen. These frames are 
illustrated in Fig. 1.

The transformation matrices from the body frame to base 
frame and from the frames attached to each rotor to the body 
frame, are calculated in Eqs. (1) and (2), respectively [24].
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2- 2- Introducing the proposed configuration
The novel configuration used in this article, is an 

H-shaped quadrotor whose rotors rotate simultaneously and 
with the same angles around two different directions about 
y-axis attached to the body and x-axis connected to the rotor. 
Figs. 2 and 3 in the following illustrate the y-axis of the body 
and the x-axis of the rotors, and the sense of rotation of rotors 
about those axes.
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Fig. 1. Base frame, body frame and frames of the rotors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Base frame, body frame and frames of the rotors.

 
Fig. 2. A fully-actuated quadrotor while the rotors rotate around y-axis of the body frame. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. A fully-actuated quadrotor while the rotors rotate around y-axis of the body frame.
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Servo motors can be used to provide the two degrees of 
freedom on each of the rotors. However, this article proposes 
to add two degrees of freedom to rotors and the structural 
details and mechanism design are not demonstrated. Figs. 
4 and 5 give an overall detailed design of the structure. In 

Fig. 4, a structure for the simultaneous rotation of rotors in 
one direction for H-shaped quadrotor is presented [15]. Fig. 
5 introduces a mechanism for rotating each rotor in two 
perpendicular directions [22].

 
Fig. 3. A fully-actuated quadrotor while the rotors rotate around x-axis of the rotors frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A fully-actuated quadrotor while the rotors rotate around x-axis of the rotors frames.

 
Fig. 4. Quadrotor with H-shaped structure, four rotors tilt synchronously [15] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Quadrotor with H-shaped structure, four rotors tilt synchronously [15]
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2- 3- Assumptions and applied forces and torques
For dynamical analysis of this fully-actuated quadrotor, 

the quadrotor is first divided into five rigid bodies. The 
forces applied to the quadrotor include the thrust, weight, 
air resistance, and hub forces. Moreover, the drag torque, 
gyroscope effect, air resistance, and roll torque are the torques 
applied to the quadrotor frame.

Due to the small linear velocity of the quadrotor, the hub 
force and the roll torque which are generated as a result of the 
difference between the relative velocity of air in the propeller 
blades, are not taken into consideration. Furthermore, the 
forces and torques resulting from air resistance, which 
are exerted on the quadrotor due to its linear and angular 
movements, are neglected. Also, the center of gravity and the 
geometric center of the quadrotor are assumed to coincide. 

The rate of changes in rotor velocities is further assumed 
to be very high, thus the differential dynamic equations 
governing the rotors velocities, are not considered in quadrotor 
equations and it is assumed that the rotors’ angular velocities 
achieve their desired values without any time delays. 

This article deals with the conceptual design of the fully-
actuated quadrotor. The differential equations governing the 
actuators that adjust the angles of the rotors about the y-axis 
attached to the body, the x-axis attached to the rotor, the 
saturation and other limits of these actuators are neglected. 
The symmetrical torques that should be excreted to the rotors 
in order to change their angles, are applied to quadrotor’s 
body as a disturbance.

In addition to the abovementioned parameters, the 
aerodynamic effects of the rotation of rotors, which are 
applied by creating overlaps among the rotors and applying 
a coefficient in the lift force constant, are not taken into 
consideration. It should be noted that this effect would be 
negligible if the rotors are placed at an appropriate distance 
from each other [25].

The thrust force vector, which is generated by the rotors’ 
propeller movements and applied to the quadrotor in upward 
direction and perpendicular to the propeller movement plane 
(along the iz  direction of each rotor), is calculated from Eq. 
(3) in the coordinate system attached to the rotor [26].
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In this equation, Lk  is a positive lift constant, calculated 
based on the theories of blade element and motion size, and 

iω  denotes the rotor’s angular velocity along the iz -axis. 
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where Dk  is a positive parameter representing the drag 
constant. 
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Due to the fact that the amount of angular motion is 
stated in the body frame, when taking the derivative of the 
angular motion, the derivative resulting from the change in 
the direction of the body system should also be considered 
along its derivative in the body frame; this derivative is called 
body gyroscopic effect. This is shown in Eq. (5) [27, 28].
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Since the point that the lift forces are applied to does not coincide with the quadrotor’s center 
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create a torque about quadrotor’s center of gravity. This torque is obtained from the cross 
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to the lift force itself. The equations for calculating this torque separately for each of the rotors, 

are introduced in part 2.4. 
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-axis of each of the rotors), is applied to the quadrotor. The drag torques, stated in the frames 

attached to each of the rotors, are calculated from Eq. (4) [26]. 

iτ 0 0   ,    1,2,3,4
T

D i ik i  = − =                                                                                                                  (4) 

where Dk  is a positive parameter representing the drag constant.  

Due to the fact that the amount of angular motion is stated in the body frame, when taking the 

derivative of the angular motion, the derivative resulting from the change in the direction of the 

body system should also be considered along its derivative in the body frame; this derivative is 

called body gyroscopic effect. This is shown in Eq. (5) [27, 28]. 

( )
˙

Ω Ω ΩB XYZ

d H I I
dt

= +                                                                                                                (5) 

In this equation, Ω  denotes quadrotor’s vector of angular velocity in the body frame, defined 

by Eq. (6). 

 Ω Tp q r=                                                                                                                             (6) 

Moreover, ( )HB XYZ
 represents the angular momentum (whose components are written in the 

body frame), with the value ΩI , where I  is defined in the body frame. 

2.4 Complete model  

 denotes quadrotor’s vector of 
angular velocity in the body frame, defined by Eq. (6).

" " " "
" " " " E OXY Z O X Y Z O X Y Z

B O X Y Z O X Y Z oxyzR R R R

C C S C C S S S S C S C
S C C C S S S C S S S C

S C S C C

           
           
    

   
   = =

− + + 
 + − + 
 − 

                                                       (1) 

', ,
0

i i i i

i i i i i
B
r y i ix

i i i i i

C S S C S
R R R C S

S C S C C
 

    
 

    

 
 = = − 
 − 

                                                                                                   (2) 

 

2
iT 0 0    ,   1,2,3,4

T

L ik i = =                                                                                                                          
(3) 

iτ 0 0   ,    1,2,3,4
T

D i ik i  = − =                                                                                                                  
(4) 

( )
˙

Ω Ω ΩB XYZ

d H I I
dt

= +                                                                                                                (5) 

 Ω Tp q r=                                                                                                                             (6) 

 

( )i

˙

r CG i ia a Ω r Ω Ω rE
BR
 

= +  +   
 

                                                                                              

   (7) 

i ir r
2

0 0
a 0 F 0

i

E B
i B r i

L i

m R R m
k g

    
    = + +    
    −    

                                                                                               (8) 

( )i ir r
2

0 0
F a 0 0

i

TE B
B i i r

L i

R m m R
g k 

    
    = + −    
        

                                                                                           (9) 

ii rH ωiJ=                                                                                                                                   (10) 

 ( ) ( ) ( )ir
H H ω' H

i i i
i i iXYZ x y z

d d
dt dt

= +                                                                                                 (11) 

ir

0
ω Ω 0

0
i

i
BT
r i

i

R





   
   = + +    

        

                                                                                                          (12) 

   (6)

Moreover, ( )HB XYZ


 represents the angular momentum 

(whose components are written in the body frame), with the 
value 

 
 

 

Since the point that the lift forces are applied to does not coincide with the quadrotor’s center 

of gravity (the torques are written about the quadrotor’s center of gravity), each of these forces 

create a torque about quadrotor’s center of gravity. This torque is obtained from the cross 

product of the vector connecting the center of gravity to the point that the lift force is applied, 

to the lift force itself. The equations for calculating this torque separately for each of the rotors, 

are introduced in part 2.4. 

 The drag torque, which is caused by movements of the rotor propellers, about the axis 

perpendicular to the plane of the propeller movement and in its opposite direction (about the iz

-axis of each of the rotors), is applied to the quadrotor. The drag torques, stated in the frames 

attached to each of the rotors, are calculated from Eq. (4) [26]. 

iτ 0 0   ,    1,2,3,4
T

D i ik i  = − =                                                                                                                  (4) 

where Dk  is a positive parameter representing the drag constant.  

Due to the fact that the amount of angular motion is stated in the body frame, when taking the 

derivative of the angular motion, the derivative resulting from the change in the direction of the 

body system should also be considered along its derivative in the body frame; this derivative is 

called body gyroscopic effect. This is shown in Eq. (5) [27, 28]. 

( )
˙

Ω Ω ΩB XYZ

d H I I
dt

= +                                                                                                                (5) 

In this equation, Ω  denotes quadrotor’s vector of angular velocity in the body frame, defined 

by Eq. (6). 

 Ω Tp q r=                                                                                                                             (6) 

Moreover, ( )HB XYZ
 represents the angular momentum (whose components are written in the 

body frame), with the value ΩI , where I  is defined in the body frame. 

2.4 Complete model  

, where I  is defined in the body frame.

2- 4- Complete model 
To derive the kinematic equations, the dynamics of 

the rotors are first investigated. The linear acceleration of 
each rotor’s center of gravity is calculated using the body 
acceleration, as shown in Eq. (7).

" " " "
" " " " E OXY Z O X Y Z O X Y Z

B O X Y Z O X Y Z oxyzR R R R

C C S C C S S S S C S C
S C C C S S S C S S S C

S C S C C

           
           
    

   
   = =

− + + 
 + − + 
 − 

                                                       (1) 

', ,
0

i i i i

i i i i i
B
r y i ix

i i i i i

C S S C S
R R R C S

S C S C C
 

    
 

    

 
 = = − 
 − 

                                                                                                   (2) 

 

2
iT 0 0    ,   1,2,3,4

T

L ik i = =                                                                                                                          
(3) 

iτ 0 0   ,    1,2,3,4
T

D i ik i  = − =                                                                                                                  
(4) 

( )
˙

Ω Ω ΩB XYZ

d H I I
dt

= +                                                                                                                (5) 

 Ω Tp q r=                                                                                                                             (6) 

 

( )i

˙

r CG i ia a Ω r Ω Ω rE
BR
 

= +  +   
 

                                                                                              

   (7) 

i ir r
2

0 0
a 0 F 0

i

E B
i B r i

L i

m R R m
k g

    
    = + +    
    −    

                                                                                               (8) 

( )i ir r
2

0 0
F a 0 0

i

TE B
B i i r

L i

R m m R
g k 

    
    = + −    
        

                                                                                           (9) 

ii rH ωiJ=                                                                                                                                   (10) 

 ( ) ( ) ( )ir
H H ω' H

i i i
i i iXYZ x y z

d d
dt dt

= +                                                                                                 (11) 

ir

0
ω Ω 0

0
i

i
BT
r i

i

R





   
   = + +    

        

                                                                                                          (12) 

   (7)
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a  represents the linear acceleration of the i -th 
rotor, CGa  is the linear acceleration of the body’s center of 
gravity in the base frame, and 
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BR  is the transformation 
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rotor in the body frame.  

The forces applied to each of the rotors, include the lift force, weight, and the force exerted 

from the body to the rotor. Therefore, the linear motion equations of each of the rotors, written 
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Moreover, Lk  denotes the lifting constant and iω  is the angular velocity of the  i -th rotor. 
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Eq. (9). 
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acceleration of each rotor’s center of gravity is calculated using the body acceleration, as shown 

in Eq. (7). 
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where 
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a  represents the linear acceleration of the i -th rotor, CGa  is the linear acceleration of 

the body's center of gravity in the base frame, and 
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and velocity of the body in the body frame, respectively. In addition, E
BR  is the transformation 
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The forces applied to each of the rotors, include the lift force, weight, and the force exerted 

from the body to the rotor. Therefore, the linear motion equations of each of the rotors, written 

in the base frame, are as shown in Eq. (8). 
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In this equation, im  is the mass of the i -th rotor, 
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F  is the force 

applied to the i -th rotor from the body and g  represents the gravity acceleration constant. 

Moreover, Lk  denotes the lifting constant and iω  is the angular velocity of the  i -th rotor. 

Based on Eq. (8), the force applied from the body to the i -th rotor, can be derived as shown in 

Eq. (9). 
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In this equation, the force resulting from the acceleration 
generated in the rotor’s center of mass due to its distance to 
the axis of rotation, which includes vertical and tangential 
components, is neglected, with the assumption that the axis of 
rotation passes through the rotor’s center of mass. 

In order to derive rotational dynamics of the rotor, first the 
derivative of its angular motion must be calculated. Eqs. (10), 
and (11), calculate the angular motion of the i -th rotor and 
its derivative, respectively.  
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 denotes the amplitude of the i
-th rotor’s angular motion, stated in the coordinate system 
attached to the same rotor. Moreover, iJ  is the moment of 
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In this equation, the force resulting from the acceleration generated in the rotor’s center of mass 

due to its distance to the axis of rotation, which includes vertical and tangential components, is 

neglected, with the assumption that the axis of rotation passes through the rotor’s center of 

mass.  

In order to derive rotational dynamics of the rotor, first the derivative of its angular motion must 

be calculated. Eqs. (10), and (11), calculate the angular motion of the i -th rotor and its 

derivative, respectively.   
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In this equation, the force resulting from the acceleration generated in the rotor’s center of mass 

due to its distance to the axis of rotation, which includes vertical and tangential components, is 
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substituting Eq. (10) in Eq. (11), the derivative of the angular 
motion is derived as shown in Eq. (14).ir
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The dynamic equation of the rotational movement of the 
i -th rotor, written in the body coordinate system, is presented 
in Eq. (16).
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In this equation, 

 
 

 

angular velocity of the rotor’s propeller. By substituting Eq. (10) in Eq. (11), the derivative of 

the angular motion is derived as shown in Eq. (14). 
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The dynamic equation of the rotational movement of the i -th rotor, written in the body 

coordinate system, is presented in Eq. (16). 
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In this equation, 
i

B
rτ  is the vector of torques the body exerts on the rotor, and Dk  is the drag 

constant. Moreover, the effect of non-coincidence between the center of mass and the 

connection of the rotors to the body is ignored and the equations are written about the rotor’s 

center of mass. 

Finally, using the aforementioned equations, the linear and angular motion equations of the 

quadrotor are derived as follows. 
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where M  is the total mass of the quadrotor, 
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represents the second derivative of the coordinates of the 
quadrotor in the base frame, and BI  represents the moment 
of inertia of the body in the body frame. It should also be 
noted that Eq. (17) is written with respect to the base frame, 
while Eq. (18) is written in the body one.

3- Linear controller design
In this section, to design a linear controller for the 

proposed new configuration, it is assumed that the impacts of 
the derivatives of angular motion of the rotors are negligible. 
Considering this assumption and simplifying the model, Eqs. 
(17) and (18) can be rewritten as Eqs. (19) and (20).
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(20)

Due to the similarity of the rotation angles of the rotors, 
B
riR  has the same value for all rotors, and thus Eqs. (19) and 

(20) can be written as Eqs. (21) and (22), respectively.
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Defining the virtual control inputs as in Eqs. (23) and 
(24), and simplifying the equations, the linear and angular 
motion equations of the quadrotor are derived as in Eqs. (25) 
and (26).
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Eq. (27) is also derived by linearizing Eq. (26).
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For the sake of designing a proportional-derivative 
controller, the auxiliary control inputs are defined as stated 
in Eqs. (28)-(33).
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4- Non-linear controller design
The performance of the linear and back-stepping controller 

in tracking of a sinusoidal trajectory has been compared for a 
fully-actuated quadrotor [27]. Based on simulation results, it 
is demonstrated that in terms of tracking error and time delay, 
the back-stepping controller is preferable and in this part, a 
back-stepping controller is developed for a sinusoidal input 
of the system.

As mentioned in section 2.3, the complete equations 
governing the fully-actuated quadrotor, are as written in 
Eqs. (17) and (18). In this section, the virtual control inputs 
are defined by Eqs. (23) and (24), similar to section 3, and 
replacing them in Eqs. (17) and (18) will result in final 
dynamic Eq. (25) and (26). 

To design a back-stepping controller, first the differential 
Eq. (25) and (26) must be transformed into state space format. 
Considering state variables 1x  to 12x  as shown in Eqs. (34) 
and (35), the linear and angular dynamic equations of the 
fully-actuated quadrotor are derived as in Eqs. (36) and (37).
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To track the paths along X, first the error variable along 
this direction, the first state variable, is defined as Eq. (38), 
and then the Lyapunov function 1V  for the error variable, 1e
, is defined as Eq. (39).
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The time-derivative of this function is defined in Eq. (40).
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According to Eq. (36), 1x  is equal to 2x . By substituting 
this equation into Eq. (40), the derivative of the Lyapunov 
function, 1V , is calculated as follows:
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 Defining 2x  according to Eq. (42), the derivative of the 
Lyapunov function will be calculated as shown in Eq. (43).
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From Eq. (43), assuming 1α  to be positive, 1V  will be 
negative except for when 1 0e = . Thus, the system will be 
asymptotically stable in 1 0e = .

In the second stage of the back-stepping controller design, 
for linear motion along X direction, a Lyapunov function 
must be defined to stabilize 2x . To this end, first the error 
variable 2e  is calculated from the following Eq. (44).
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( ) ( )2 2
2 1 2 1 2

1 . 
2
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( )2 1 2 1 1 2 2

¨
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 . 

d

V e e e e e e

e e e x x e

= + =
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By comparing 1e  with Eq. (44), Eq. (47) is obtained for 
1e . Substituting this equation and the value of 2x  from Eq. 

(36) into Eq. (46), and simplifying the result, the derivative of 
the Lyapunov function 2V , is obtained as in Eq. (48).
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Defining 1U  according to Eq. (49), the derivative of the 
Lyapunov function is calculated from Eq. (50). If 1α  and 2α  
are negative, then the derivative of the Lyapunov function 
will be negative and the system will become asymptotically 
stable at the origin.
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Similar to the motion along X  direction, the system 
will become asymptotically stable along Y  and Z  axes, by 
defining the control inputs 2U  and 3U  using Eqs. (51) and 
(52), respectively.
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yY v t=                                                                                                                                        (57) 

( )2 2sin x yZ A v v t= +                                                                                                                      (58) 

xX v t=                                                                                                                                        (59) 

(52)

Moreover, using the same procedure, control inputs 4U  
to 6U , can be defined for the angles φ , θ , and ψ  as shown 
in Eqs. (53)-(55).
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5- Simulation results
In this section, the advantages of the proposed 

configuration over conventional quadrotors, which include 
increasing the number of controllable degrees of freedom 

and elimination of couplings between linear and angular 
motions, are determined by performing simulations in 
Simulink environment. Furthermore, motion capabilities of 
the proposed configuration are demonstrated.

5- 1- Quadrotor specifications
The specifications used in the simulations are presented in 

Table 1. However, the height of the rotors has been reduced 
to 0.038 m, the reason of which is explained in section 5.2.

5- 2- Comparison of performance
In this part, the new configuration is compared to the 

conventional quadrotor by applying the proposed linear 
controller. During all simulations, the maximum angular 
velocity of the rotors is supposed equal to 10000 rpm, and 
the maximum angle for aRφ  is assumed to be equal to 80° . 
In order to show the elimination of couplings between linear 
and angular movements in the new configuration, step inputs 
for the angles φ  and θ  are applied separately to the new and 
conventional quadrotors, and the Y and X position diagrams 
in terms of time, are investigated for both configurations, 
respectively. This procedure is also repeated for step inputs 
to locations along X and Y-axes, and the diagrams of angles 
φ  and θ  are then studied. In this section, a proportional-
derivative controller is used.

When designing the linear controller, the coefficients are 
manually selected so that the value of overshoot for tracking 
of angles and positions remains under 17%, and the rise time 
decreases as much as possible. The amount of error was not 
considered precisely during the design of controllers, and 
it was only intended to have an acceptable value at the end 
of the first 20 seconds of the simulation. These coefficients 
are presented in Tables 2 and 3, for conventional and new 
configurations, respectively.

In this section, since the values of aRθ , aRφ , 
¨

aRθ
, and 

¨

aRφ  are small and moments of inertia of the rotors 
are also insignificant compared to the moment of inertia of 
the quadrotor’s body, the impacts of rotors’ disturbances, 
generated during the linear controller design due to the 
performed simplifications, are negligible and thus have no 
significant effect on the results.

5- 3- Tracking a step function for the angle φ
Fig. 6(a) illustrates the angle φ  with respect to time, 

while Fig. 6(b) shows Y with respect to time, for both old and 
new configurations.

As shown in Fig. 6, the diagrams of φ  with respect to 
time for both configurations are overlaid on each other. The 
reason for this matter is that dynamic equations of angular 
motion for both configurations, are identical after defining 
virtual control inputs. In the conventional configuration 
with deviation of quadrotor along the x-axis attached to 
the quadrotor, the angle φ , the lift forces of the rotors gain 
components along the Y-axis of the reference coordinate 
system, and this results in the acceleration of the quadrotor 
and its movement along this axis. However, in the newly 
proposed configuration, considering the increase in the 
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Table 1. Characteristics of the quadrotor used in simulation.Table 1. Characteristics of the quadrotor used in simulation. 

Unit Value Symbol Characteristics 

 kg   0.5216   M  Total mass 

 2.kg m   0.003331   xxI  Moment of inertia of 

quadrotor around x 

 2.kg m   0.003652   yyI  Moment of inertia of 

quadrotor around y 

 2.kg m   0.006621   zzI  Moment of inertia of 

quadrotor around z 
 .kg m   61.503 10−   Lk  Lift coefficient 

 2.kg m   83.341 10−   Dk  Drag coefficient 

 m   0.0827   h  Height 

 m   0.106   L  Arm length 

 m   0.098   b  Distance between arms/2 

 2.kg m   62.013 10− xxJ yyJ    و   
Moment of inertia of 

each rotor around x and 

y 

 2.kg m   51.077 10−   zzJ  
Moment of inertia of 

each rotor around z 

 kg   0.034   m  Mass of each rotor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Control gains used for underactuated quadrotor.Table 2: Control gains used for underactuated quadrotor. 

 Dk  Pk Control gains 

 1−  0.14−   
 1−  0.14−  θ 

 0.88−  0.001−  X 
 0.85−  0.001−  Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Control gains used for fully-actuated quadrotor.
 

Table 3: Control gains used for fully-actuated quadrotor. 

 Dk  Pk Control gains 

 2.1−  0.14−   
 2.1−  0.14−  θ 

 2−  0.15−  X 
 2−  0.15−  Y 
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(b)                                                     (a) 

Fig. 6. Motion tracking around   (a) and along Y (b) for conventional and new configurations for step 

references, while the other axis have no input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Motion tracking around φ  (a) and along Y (b) for conventional and new configurations for step references, 
while the other axis have no input.

 
(b)                                                     (a) 

Fig. 7. Diagrams of angular velocities for underactuated and fully-actuated quadrotors and diagrams of 

angles of the rotors for the fully-actuated quadrotor to follow a step in   while the other degrees have 

zero references. (a) Angular velocities versus time, (b) Rotors angles for the new configuration versus 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Diagrams of angular velocities for underactuated and fully-actuated quadrotors and diagrams of angles of the 
rotors for the fully-actuated quadrotor to follow a step in φ  while the other degrees have zero references. (a) Angular 

velocities versus time, (b) Rotors angles for the new configuration versus time.

number of control inputs, apart from applying a step input 
for the abovementioned angle, a zero input is applied to other 
degrees of freedom, including the position along the Y-axis. 
Thus, in this quadrotor, the position along the Y-axis remains 
at the origin. To this end, the rotors must rotate in a way so 
that their lift forces does not generate any components along 
the Y-axis with the rotation of the body and changes in the φ  
angle of the quadrotor, as illustrated in Fig. 7(b). It is seen 
from this Fig. that all rotors rotate along the x-axis attached 
to the rotors, in exactly the same motion as the angle φ , but 
with opposite directions, in order to maintain their lift force 
component along the Y-axis equal to zero.

The angular velocities of rotors 1 and 2 with respect to 
time are shown in Fig. 7(a) for both configurations. The 
angular velocities of rotors 3 and 4, are equal to those of 
rotors 1 and 2, but in opposite directions.

It can be seen from Fig. 7(a) that for the conventional 
quadrotor, the angular velocities of rotors 1 and 2 are slightly 
different at the beginning in order to create the torque 
necessary for changing the angle φ , and eventually become 
equal to each other. However, in the quadrotor with the new 
configuration, after the angular velocity of φ  reaches its 
desired value, the angular velocities of the two rotors remain 
different from each other. The reason for this is that due to the 
rotation of rotors in the opposite direction of the quadrotor 
about the x-axis, their lift forces gain a component along the 
y-axis and this force creates a torque along the x-axis due 
to the height of the rotors to the center of gravity. Thus, the 
angular velocities of rotors 1 and 2 must remain different in 
order to overcome this torque. 

Another issue observed from this plot, is the higher 
angular velocity of rotors in the conventional quadrotor, 
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(b )                                                     (a ) 

 

Fig. 8. Diagrams of angular and linear positions along θ  and X for underactuated and fully-actuated 

quadrotors for following a step in θ  while the other degrees have zero references. (a) Angular position of  

θ  versus time, (b) Linear position of X versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Diagrams of angular and linear positions along θ  and X for underactuated and fully-actuated quadrotors 
for following a step in θ  while the other degrees have zero references. (a) Angular position of θ  versus time, (b) 

Linear position of X versus time.

which causes it to consume more energy. This is due to the 
reduction of vertical component of the rotors’ lift forces in 
this configuration, resulting from the quadrotor body rotation 
and the need for increasing angular velocity of the rotors and 
higher energy consumption to overcome the weight force. In 
the new configuration, since the rotors rotate relative to the 
body in a way that the direction of their lift forces does not 
change, there will be no need to increase the created lift force 
and thus it will experience lower energy consumption.

5- 4- Tracking a step reference for the angle φ
The diagram of the angle θ  versus time is shown in Fig. 

8(a), while Fig. 8(b) presents the changes in X direction, for 

both new and conventional quadrotors.
The results in this part are similar to tracking a step for 

the angle φ , with the difference that when the conventional 
quadrotor rotates about the direction of θ , its position 
changes along the X-axis, while for the quadrotor with the 
new configuration, movement along the X-axis is prevented 
by the rotation of rotors in opposite directions along the y-axis 
attached to the body, as demonstrated in Fig. 9(b).

Fig. 9(a) shows the plots of angular velocities for rotors 1 
and 3 in both quadrotors. The results shown in sub-plot (a) of 
this Fig., are analyzed similar to Fig. 7(a), with the difference 
that this time, the rotations are made about the y-axis.

 
(b)                                                     (a) 

 

Fig. 9. Diagrams of angular velocities for underactuated and fully-actuated quadrotors and plots of angles 

of the rotors for the fully-actuated quadrotor to follow a step in θ  while the other degrees have zero 

references. (a) Angular velocities versus time, (b) Rotors angles for the new configuration versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Diagrams of angular velocities for underactuated and fully-actuated quadrotors and plots of angles of the rotors 
for the fully-actuated quadrotor to follow a step in φ  while the other degrees have zero references. (a) Angular velocities 

versus time, (b) Rotors angles for the new configuration versus time.
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5- 5- Tracking a step reference for the X position
The diagrams of position along the X-axis and the angle 

θ  with respect to time are plotted in Fig. 10(a) and (b), 
respectively. From the subplot (a) of this Fig., the step input 
response for the position along the X-axis is more convenient 
than the results for the conventional quadrotor due to direct 
control of this output. In the conventional quadrotor, in order 
to control the motion along the X-axis, first a reference must 
be defined for the angle θ . The ability of the system to track 
the step reference for this position is limited to the ability of the 
controller of the angle θ  in tracking the reference trajectory 
calculated for this angle. In this configuration, the response 
of the system to the input along the X-axis is significantly 
different from the response of the proposed configuration, 
due to the use of proportional-derivative controller and the 
limitations of this controller in tracking different reference 
functions.

In subplot (b) of Fig. 10, θ  is plotted with respect to 
time, where the value of θ  is much higher for the fully-
actuated quadrotor, compared to the conventional quadrotor. 
The reason for this is the heights of the rotors from center 
of gravity in this configuration. The existence of this height 
causes the angle aRθ , i.e., the lift force component generated 
along the x-axis of the quadrotor, to generate a torque about 
the y-axis attached to the body, due to the rotation of the 
rotors about this axis. Since the angles of all rotors, aRφ , and 

aRθ , are equal, this torque will have the same direction for 
all rotors. Therefore, it is necessary to compensate for this 
effect by creating a difference in rotors’ angular velocities, 
which in turn creates differences in the torques generated by 
the vertical components of their lift forces about the y-axis 
attached to the body. Due to the constraints on the rotor 
speed, this difference is not fully applied at the beginning of 
the motion, Fig. 11(a), and as a result the quadrotor deviates 
around the y-axis attached to the body. The higher the height 
of the rotors relative to the center of gravity, the bigger this 
deviation will become. Therefore, performance of the fully-
actuated quadrotor in separating linear and angular motions, 

is greatly affected by the height of the rotors relative to the 
center of gravity. For this reason, the height of the rotors 
has been reduced to 0.038 m. Of course, this issue can be 
resolved by eliminating the speed constraints or reducing the 
reference input for the position along the x-axis by 2 meters. 
Moreover, changing the control coefficients of the controller 
of the position along the X axis, can reduce this deviation.  

Fig. 11(a) and (b) show the speeds of rotors 1 and 
3 for both quadrotors, and the angles of rotors in the new 
configuration with respect to time, respectively. It can be 
seen from subplot (a) of this Figure that during the first 1 
second of the movement, the summation of rotor speeds is 
higher for the new quadrotor configuration. The main reason 
of this issue, is the reduction of the vertical component of 
the lift force due to the quadrotor deviation along the angle 
θ  and the increase of rotor speed to overcome the weight. 
Moreover, it can be seen that the speeds of rotors 1 and 3 
are significantly different at the beginning of their movement. 
This is due to the need to overcome the torque resulting from 
the horizontal component of lift forces around the angleθ . 
As explained earlier, this torque is generated due to the height 
of rotors relative to the center of gravity. Also, it can be seen 
from subplot (b) that the angles of all rotors, are always equal 
to zero along the x-axis attached to the rotor; while the angle 
along the y-axis attached to the body is not equal to zero at 
the beginning and converges to zero over time. The reason 
for this issue is the need for the rotors to be angled at the 
beginning of their movement in order to create a lift force 
component along the X-axis and to accelerate the quadrotor 
along this axis. Eventually, and after achieving the desired 
tracking error along the X-axis, the rotors’ are no longer 
required to rotate and the angle along the y-axis attached to 
the body gradually tends to zero.

To demonstrate the effects of rotors’ height relative to the 
center of gravity in the fully-actuated quadrotor, step tracking 
curve for position of X is again presented in Fig. 12(a) and (b) 
for conventional and fully-actuated quadrotors, considering 
zero height for the rotors. It is clear from this Fig. that the 

  
(b)                                                     (a) 

 

Fig. 10. Diagrams of angular and linear positions along θ  and X for underactuated and fully-actuated 

quadrotors for following a step in X  while the other degrees have zero references. (a) Linear position of 

X versus time, (b) Angular position of  θ  versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Diagrams of angular and linear positions along   and X for underactuated and fully-actuated quadrotors for 
following a step in θ  while the other degrees have zero references. (a) Linear position of X versus time, (b) Angular 

position of θ   versus time.
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diagram of the angle θ  with respect to time is approximately 
zero for the fully-actuated quadrotor. The reason for the slight 
deviation of this angle in the fully-actuated quadrotor, is the 
torque applied from the rotors to the body, which results from 
the change in size and direction of angular motion.

Fig. 12(b) shows that the angle θ  for the conventional 
quadrotor is much larger than its counterpart in the new 
configuration. As stated before, to move the quadrotor along 
the X-axis, the quadrotor needs to accelerate along this axis, 
so a force has to be applied to it in this direction. In the 
conventional quadrotor, this was achieved by the rotation of 
the quadrotor along the θ  axis and generation of a lift force 

component along the X-axis; while in the new configuration, 
rotation of the rotors along the y-axis and creation of a lift 
force component along the X-axis, instead of rotation of the 
whole body, satisfies this maneuver. Therefore, there is no 
need for the rotation of the body in the new configuration.

5- 6- Tracking a step reference for the Y position
The diagrams of the positions along the Y-axis and the 

angle of φ  with respect to time, are presented in Fig. 13(a) 
and (b), respectively.

The results of the diagrams shown in this Fig., are similar 
to step function tracking for position along the X-axis, except 

  
(b) (a) 

Fig. 11. Diagrams of angular velocities for underactuated and fully-actuated quadrotors and plots of 

angles of the rotors for the fully-actuated quadrotor to follow a step in X  while the other degrees have 

zero references. (a) Angular velocities versus time, (b) Rotors angles for the new configuration versus 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Diagrams of angular velocities for underactuated and fully-actuated quadrotors and plots of angles of 
the rotors for the fully-actuated quadrotor to follow a step in X  while the other degrees have zero references. 

(a) Angular velocities versus time, (b) Rotors angles for the new configuration versus time.

  
(b)                                                     (a) 

Fig. 12: Diagrams of angular and linear positions along X and θ  for underactuated and fully-actuated 

quadrotors for following a step in X  while the other degrees have zero references. (a) Linear position of 

X versus time, (b) Angular position of  θ  versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Diagrams of angular and linear positions along X and θ  for underactuated and fully-actuated quadrotors 
for following a step in cX while the other degrees have zero references. (a) Linear position of X versus time, (b) An-

gular position of θ  versus time.
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that in this case to track a step function along the Y-axis, the 
body and the rotors are required to deviate along the x-axis, 
the angle φ , for both conventional and new quadrotor 
configurations. Moreover, for reasons similar to the what was 
mentioned in the motion analysis along the X-axis, changes 
in the angle φ  in the new configuration are higher than their 
counterparts in the conventional quadrotor, and similarly in 
this case, a reduction in the heights of rotors with respect to 
center of gravity, will reduce the deviation of the angle φ . 

Fig. 14(a) and (b) present the speed diagrams of rotors 
1 and 3 for both quadrotors and the rotor angles for the new 
configuration, with respect to time, respectively. The results 
obtained from this section are analyzed similar to those 
obtained for reference tracking along the X-axis.

5- 7- Tracking performance of the new configuration for 
different paths

In this part, four 3-dimensional reference trajectories are 
given to the quadrotor with the new configuration. Reference 
input functions are presented for locations along the X, Y 
and Z axes with respect to time. The reference values of 
the angles are assumed as either step or zero inputs. Further 
details are provided below for each path. The simulations are 
performed within the Simulink environment by applying a 
back-stepping nonlinear controller. The control gains applied 
for all paths are in accordance with Table 4, and the maximum 
speed allowed for the rotors is also equal to 12000 rpm.

Similar to the previous part, the effects of rotor 
disturbances are not considered in the design of nonlinear 
controller and does not create any significant impact on the 

   
(b)                                                     (a) 

Fig. 13. Diagrams of angular and linear positions along Y and   for underactuated and fully-actuated 

quadrotors for following a step in Y  while the other degrees have zero references. (a) Linear position of 

Y versus time, (b) Angular position of   versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Diagrams of angular and linear positions along Y and φ  for underactuated and fully-actuated quadro-
tors for following a step in φ  while the other degrees have zero references. (a) Linear position of Y versus time, 

(b) Angular position of   versus time.

  
(b)                                                     (a) 

Fig. 14: Diagrams of angular velocities for underactuated and fully-actuated quadrotors and plots of 

angles of the rotors for the fully-actuated quadrotor to follow a step in Y  while the other degrees have 

zero references. (a) Angular velocities versus time, (b) Rotors angles for the new configuration versus 

time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Diagrams of angular velocities for underactuated and fully-actuated quadrotors and plots of angles of the 
rotors for the fully-actuated quadrotor to follow a step in Y while the other degrees have zero references. (a) Angular 

velocities versus time, (b) Rotors angles for the new configuration versus time.
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results, due to the small values of aRθ , aRφ , 
¨

aRθ , and 
¨

aRφ
, and the very small values of the moments of inertia of the 
rotors compared to the moment of inertia of the quadrotor’s 
body.

First path
The functions X, Y, and Z with respect to time are 

presented in Eqs. (56)-(58).
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xX v t=                                                                                                                                        (56) 

yY v t=                                                                                                                                        (57) 

( )2 2sin x yZ A v v t= +                                                                                                                      (58) 

xX v t=                                                                                                                                        (59) 

(56)
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(58)

In these equations, xv , yv , and A  are equal to 0.5 and 
the arbitrary values of the angles for this path are assumed to 
be equal to zero. 

Fig. 15(a) and (b) present the diagram of the paths 
traveled by the quadrotor and the angles with respect to time, 
respectively. The diagram of angular velocity and the angles 
of the rotor are also plotted in Fig. 16(a) and (b).

As can be seen from these Fig.s, the quadrotor has tracked 
the related trajectory, however the angles φ  and θ  suffer 
from a slight deviation. The reason for this is that the angular 
velocities of the rotors are limited and on the other hand, 
their values are required to be higher at the beginning of the 
motion in order to maintain the angles at zero. In other words, 
the angular velocities of the rotors are smaller than the values 
required to maintain the angles at zero at the beginning of 
the motion. Therefore, the angles deviate from zero at the 

beginning; but over time and with the application of the next 
control inputs, they return to equilibrium. The angles of all 
rotors, aRφ , and aRθ , slightly rotate at the beginning but tend 
to zero after a while. The reason for this is the definition of 
motion along the X and Y axes as a constant velocity and 
the lack of accelerations along these two axes. Therefore, 
to prevent the rotation of the quadrotor along φ  and θ , 
the rotors slightly rotate at the beginning of the motion so 
that the lift component generated along the X and Y axes, 
accelerates the quadrotor along them. After a short time and 
when the quadrotor reaches its desired speed along these two 
axes, the rotors return to their previous state, the zero angle. 
If the friction due to air resistance is taken into consideration, 
there exists wind flow, or the motion is defined as accelerated 
in one of the X or Y axes, then the pattern for the diagram 
of these angles will change. The third point is demonstrated 
for the next path. Another important point is that the greater 
the curvature of the path, and the larger the amplitude or the 
frequency, the greater the deviation of the angles φ  and θ  
from zero will become.

Second path
The general pattern of this path is similar to the first 

one, except that in this path the motion along the Y-axis is 
sinusoidal while the motion along the X and Z axes are linear. 
The equations for this motion are expressed as follows.
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xX v t=                                                                                                                                        (56) 

yY v t=                                                                                                                                        (57) 

( )2 2sin x yZ A v v t= +                                                                                                                      (58) 

xX v t=                                                                                                                                        (59) (59)

( )2 2sin x zY A v v t= +                                                                                                                       (60) 

zZ v t=                                                                                                                                            
(61) 

 

(60)
( )2 2sin x zY A v v t= +                                                                                                                       (60) 

zZ v t=                                                                                                                                            
(61) 

 

(61)

  
(b)                                                     (a) 

Fig. 15. Diagrams of the 1st tracked path and the angles of the fully-actuated quadrotor using a back-

stepping controller (a) Angular velocities versus time, (b) Fully-actuated quadrotor angles versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Diagrams of the 1st tracked path and the angles of the fully-actuated quadrotor using a back-stepping 
controller (a) Angular velocities versus time, (b) Fully-actuated quadrotor angles versus time.
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where the values of xv , zv , and A are assumed equal 
to 0.5. The tracking path and angles of the quadrotor with 
respect to time are presented in Fig. 17(a) and (b). The 
analysis of these diagrams is similar to the previous case. The 
tracking is performed well and the angles slightly deviated 
from their desired values at the beginning of the motion, due 
to the limitations of the rotors’ speed.

In this path, due to the sinusoidal nature of the Y function 
with respect to time, as seen in Fig. 18(b), the trajectory of 

aRφ  with respect to time, becomes sinusoidal, and unlike 
the previous path, does not converge to zero after a while. 
Whereas, the trajectory of aRθ  with respect to time gradually 

tends to zero due to the linear equation of the motion along 
the X axis.

Third path
The kinetic equations of the third path along the Y, X, 

and Z axes are similar to the first path. These are presented 
in Eqs. (56)-(58). The reference values for the angles φ  and 
θ  along this path, are 45° , while the arbitrary value of ψ  
is assumed equal to zero. The path and angles trajectories are 
presented in Fig. 19(a) and (b), respectively, while Fig. 20(a) 
and (b) present the angular velocities and angles of the rotors 
with respect to time.

  
(b)                                                     (a) 

Fig. 16. Diagrams of the 1st tracked path of the new configuration using a back-stepping controller (a) 

Angular velocities versus time, (b) Fully-actuated quadrotor angles versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Diagrams of the 1st tracked path of the new configuration using a back-stepping controller (a) Angular 
velocities versus time, (b) Fully-actuated quadrotor angles versus time.

  
(b)                                                     (a) 

 

Fig. 17. Diagrams of the tracked path and the angles of the fully-actuated quadrotor by a back-stepping 

controller (a) 2nd tracked path versus time, (b) Fully-actuated quadrotor angles versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Diagrams of the tracked path and the angles of the fully-actuated quadrotor by a back-stepping controller (a) 2nd 
tracked path versus time, (b) Fully-actuated quadrotor angles versus time.
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(b)                                                     (a) 

Fig. 18: Diagrams of the 2nd tracked path of the new configuration using a back-stepping controller (a) 

Angular velocities versus time, (b) Fully-actuated quadrotor angles versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Diagrams of the 2nd tracked path of the new configuration using a back-stepping controller (a) 
Angular velocities versus time, (b) Fully-actuated quadrotor angles versus time.

  
(b)                                                     (a) 

 

Fig. 19: Diagrams of the tracked path and the angles of the fully-actuated quadrotor by a back-stepping 

controller (a) 3rd tracked path versus time, (b) New quadrotor angles versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19: Diagrams of the tracked path and the angles of the fully-actuated quadrotor by a back-stepping controller 
(a) 3rd tracked path versus time, (b) New quadrotor angles versus time.

As observed in these Fig.s, the path tracking is satisfactory, 
however tracking the angles is accompanied by errors and 
oscillations. The value of this error for the angle ψ  is 2.3 
degrees and it is equal to 4 and 8 percent for the angles φ  
and θ , respectively. This is due to the limitations on the rotor 
speeds, the disturbances resulting from the torque applied by 
the rotors to the body and the priority of following the X and 
Y locations over the angles while transforming virtual control 
inputs to rotors’ speeds and angles. As seen from Fig. 20(a), 
one of the rotors always operates in saturation and thus the 
quadrotor is not capable of stabilizing its angles. It should 

be noted that the limitation observed in this configuration is 
a limitation of actuators rather than a structural (kinematic) 
constraint.

Fourth path
This path is similar to the second path, however the 

arbitrary values of φ  and θ  are assumed as a step function 
with the value of 45° . The equations of X, Y, and Z are 
presented in Eqs. (59) – (61). The subplots (a) and (b) of Figs. 
(21) and (22), present the diagrams of the paths, quadrotor 
angles, rotor speeds and rotor angles, respectively.
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(b)                                                     (a) 

Fig. 20. Diagrams of the 3rd tracked path of the new configuration using a back-stepping controller (a) 

Angular velocities versus time, (b) Fully-actuated quadrotor angles versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Diagrams of the 3rd tracked path of the new configuration using a back-stepping controller (a) Angular 
velocities versus time, (b) Fully-actuated quadrotor angles versus time.

  
(b)                                                     (a) 

 

Fig. 21: Diagrams of the tracked path and the angles of the fully-actuated quadrotor by a back-stepping 

controller (a) 4th tracked path versus time, (b) New quadrotor angles versus time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21. Diagrams of the tracked path and the angles of the fully-actuated quadrotor by a back-stepping controller 
(a) 4th tracked path versus time, (b) New quadrotor angles versus time.

The analyzes of this path are similar to the analyzes 
presented for the third path. The path is still well-tracked, 
while the tracking of the angles is weak and along with 
oscillations. The error value for the angle ψ  is equal to 3 
degrees, and equal to 7 and 5 percent for the angles φ  and θ , 
respectively. As explained, the reason for this is the saturation 
of a number of actuators and the disturbances resulting from 
the torque applied to the body by the rotors. It is observed 
that due to the imbalance of the quadrotor angles’ diagram, 
the pattern of rotor angles is no longer sinusoidal and is 
accompanied by oscillations.

6- Conclusions and future works
In this article, first a quadrotor with a new configuration 

was introduced. The aim of proposing this novel configuration 
was to increase the number of controllable degrees of 
freedom from 4 to 6 and to eliminate the motion couplings. 
The introduced configuration was such that all rotors were 
able to rotate simultaneously and with equal values, along the 
two directions of the x-axes attached to the rotors and the y 
axis attached to the quadrotor’s body. 

The equations governing this configuration were extracted 
after some simplifying assumptions using the Newton-Euler 
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method. A controller was then designed for this quadrotor. 
To determine the motion capabilities of this quadrotor, a 
proportional-derivative controller was first designed to control 
the positions and angles, after linearization about the origin. 
In the next step, a nonlinear controller was designed using the 
back-stepping method, and the stability of the system under 
the designed controller was proved by designing a Lyapunov 
function. 

In the final section, the simulation results obtained 
from Simulink software environment were presented and 
analyzed. For this purpose, first the kinetic capabilities 
of the conventional quadrotor were compared to the new 
configuration. Angular speed saturation for the actuators 
was considered on 10000 rpm and tilting angle of the rotors 
around body frame’s X axis on 80° . The results showed 
that the new configuration is capable of eliminating motion 
couplings between linear and angular motions in tracking a 
step function for the angles φ  and θ . The linear controller is 
manually tuned for that the tracking overshoot remains beyond 
17% and the rise time reduces as well. It was found during 
the tracking of the step function for X and Y positions that 
the ability of the new configuration to eliminate the motion 
coupling between positions and angles, strongly depends on 
the height of the rotors relative to the quadrotor’s center of 
gravity, and the reduction of height in this configuration, 
significantly increases this ability. In the rest of this section, 
four reference paths which are usual for aerial motions were 
separately applied to determine the abilities and limitations 
of the motions of the quadrotor with the new configuration. 
Since a linear controller for this system is not trustable, a 
nonlinear back-stepping controller is applied for trajectory 

tracking. The results showed that, due to the limitations on 
the actuators, the motion couplings between the degrees of 
freedom were not completely eliminated and the quadrotor 
was not able to perfectly track the reference values for the 
angles. However, tracking of the complex trajectories was 
acceptable and if the nonlinear controller is used, the new 
proposed configuration for the quadrotor is capable of 
overcoming motion couplings and controlling all 6 degrees 
of freedom. 

In future works, various maneuvers will be applied into the 
fully-actuated quadrotor and the capabilities and limitations 
of this quadrotor can be more precisely identified. Also due 
to necessary characteristics of quadrotors during formation 
flight, this quadrotor will be investigated for leader – follower 
formation for load transportation.
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Fig. 22. Diagrams of the 4th tracked path of the new configuration using a back-stepping controller (a) Angular velocities 
versus time, (b) Fully-actuated quadrotor angles versus time.



Y. Aslani Darandashi et al., AUT J. Mech. Eng., 7(1) (2023) 19-40, DOI: 10.22060/ajme.2022.21384.6034

40

360-371.
[5] M. Becker, R.C.B Sampaio, S. Bouabdallah, V. Perrot, R. 

Siegwart, In flight collision avoidance for a Mini-UAV 
robot based on onboard sensors, Journal of the Brazilian 
society of mechanical sciences and engineering, 2(12) 
2012.

[6] J. Zhang, J. Hu, J. Lian, Z. Fan, X. Ouyang, W. Ye, 
Seeing the forest from drones: Testing the potential 
of lightweight drones as a tool for long-term forest 
monitoring, Biological Conservation, 198 (2016) 60-69.

[7] A. Hernandez, H. Murcia, C. Copot, R. De Keyser, 
Towards the development of a smart flying sensor: 
illustration in the field of precision agriculture, Sensors, 
15(7) (2015) 16688-16709.

[8] Z. Lu, F. Nagata, K. Watanabe, M.K. Habib, iOS 
application for quadrotor remote control, Artificial Life 
and Robotics, 22 (2017) 374-379.

[9] Z. Lu, F. Nagata, K. Watanabe, Mission planning of 
iOS application for a quadrotor UAV, Artificial Life and 
Robotics, 23 (2018) 428-433.

[10]  E. Cetinsoy, S. Dikyar, C. Hancer, K. Oner, E. 
Sirimoglu, M. Unel, M. Aksit, Design and construction 
of a novel quad tilt-wing UAV, Mechatronics, 22(6) 
(2012) 723-745.

[11] ] M. Zhao, T. Anzai, F. Shi, X. Chen, K. Okada, M. 
Inaba, Design, modeling, and control of an aerial robot 
dragon: A dual-rotor-embedded multilink robot with the 
ability of multi-degree-of-freedom aerial transformation, 
IEEE Robotics and Automation Letters, 3(2) (2018) 
1176-1183.

[12] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, D. 
Scaramuzza, The foldable drone: A morphing quadrotor 
that can squeeze and fly, IEEE Robotics and Automation 
Letters, 4(2) (2019) 209-216.

[13] M. Navabi, A. Davoodi, H. Mirzaei, Trajectory 
tracking of under-actuated quadcopter using Lyapunov-
based optimum adaptive controller, Proceedings of the 
Institution of Mechanical Engineers, Part G: Journal of 
Aerospace Engineering, 236(1) (2022) 202-215.

[14] H. Jokar, R. Vatankhah, Adaptive fuzzy global fast 
terminal sliding mode control of an over-actuated flying 
robot, Journal of the Brazilian society of mechanical 
sciences and engineering, 42 (2020) 1-18.

[15] A. Alkamachi, E. Ercelebi, Modelling and control of 
H-shaped racing quadcopter with tilting propellers, Facta 
Universitatis, Series: Mechanical Engineering, 15(2) 
(2017) 201-215.

[16] Y. Nakamura, A. Arakawa, K. Watanabe, I. Nagai, An 
improvement of flight performance in the level flight 
of tilted quadrotors by attaching a fixed-wing, Artificial 
Life and Robotics, 24 (2019) 396-403.

[17]  M. Kamel, S. Verling, O. Elkhatib, C. Sprecher, P. 
Wulkop, Z. Taylor, R. Siegwart, I. Gilitschenski, Voliro: 
An omnidirectional hexacopter with tiltable rotors, 
arXiv, 2018.

[18] S. Badr, O. Mehrez, A. Kabeel, A novel modification 
for a quadrotor design, International Conference on 
Unmanned Aircraft Systems (ICUAS), 2016, pp. 702-
710.

[19] M. Cutler, J.P. How, Analysis and control of a variable-
pitch quadrotor for agile flight, Journal of Dynamic 
Systems, Measurement, and Control,  137(10) (2015).

[20] F. Senkul, E. Altug, Modeling and control of a novel 
tiltRoll rotor quadrotor UAV, International Conference 
on Unmanned Aircraft Systems (ICUAS), 2013, pp. 
1071-1076.

[21]  M. Elfeky, M. Elshafei, A.W.A. Saif, M.F. Al-Malki, 
Quadrotor helicopter with tilting rotors: Modeling and 
simulation, World congress on computer and information 
technology (WCCIT), 2013, pp. 1-5.

[22] N.D.S Fernandes, Design and construction of a multi-
rotor with various degrees of freedom, M.Sc. Thesis, 
Lisbon University, 2011.

[23]  X. Xu, K. Watanabe, I. Nagai, Feedback linearization 
control for a tandem rotor UAV robot equipped with 
two 2-DOF tiltable coaxial-rotors, Artificial Life and 
Robotics, 26 (2020) 259-268.

[24] M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot 
Modeling and Control, Hoboken, NJ: John Wiley & 
Sons, 2006.

[25] G. Nandakumar, T. Ranganathan, B.A. Arjun, A. 
Thondiyath, Design and analysis of a novel quadrotor 
system-VOOPS, IEEE International Conference on 
Robotics and Automation (ICRA), 2015, pp. 1692-1697.

[26] Y. Naidoo, R. Stopforth, G. Bright, Quad-Rotor 
unmanned aerial vehicle helicopter modelling & control, 
International Journal of Advanced Robotic Systems, 8(4) 
(2011).

[27] Y. Aslani Darandashi, Modification of the multi-rotors 
mechanical structure and design of a suitable controller 
for increase of stability & maneuverability, M.Sc thesis, 
Amirkabir University of Technology, 2020.

HOW TO CITE THIS ARTICLE
Y. Aslani Darandashi, R. Fesharakifard, A. Ohadi, Investigation on performance 
improvement of a fully-actuated quadrotor, AUT J. Mech Eng., 7(1) (2023) 19-40.

DOI: 10.22060/ajme.2022.21384.6034

http://10.22060/ajme.2022.21384.6034

