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ABSTRACT: Vibrational analysis of beams has been an important subject for many years. Despite 
the wide applications of curved beams, especially laminated composite curved beams, less attention 
has been paid to this subject. In this study, the transient response of the laminated composite curved 
beam due to a moving force with constant velocity for different boundary conditions has been obtained. 
By employing Hamilton’s principle, the equations of motion along with the corresponding boundary 
conditions of the beam are determined. The finite element method is employed to solve these equations. 
Using the eigenvalue technique, the vibrational characteristics of the beam are calculated. Results for 
the free and forced vibration of the beam have been compared against available data in the literature and 
the three-dimensional model in ANSYS. The effects of different parameters such as the geometry of 
the beam, fibers orientation, and boundary conditions on the transient response of the beam have been 
investigated. It has been shown that beam with cross-ply layups has lower values of transient deflection 
compared to the angle-ply layups. Also, the anti-symmetric cross-ply beam has more deflection with 
respect to the symmetric one.
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1- Introduction
The dynamic response of structures under moving loads 

is crucial during their operation life. Elements in structures 
are known to be a bar, rods, columns, or beams which can be 
recognized by their loading conditions. Beam’s application 
in industries such as aerospace, submarine, automotive, and 
the construction of many structures in civil and mechanical 
engineering is not hidden from anyone. For example, bridge 
structures, rotating shafts, robotic arms, and space vehicles 
are usually modeled by beams subjected to static and dynamic 
loads. It is obvious that a beam experience greater deflections 
and stresses under dynamic loads in comparison to static 
loads, and these differences motivated numerous researchers 
to focus on the forced vibration of beams in past decades [1-
5].

In recent years, composite materials with their specific 
behavior such as lightweight, corrosion resistant, high strength, 
and stiffness have been used in many engineering structures, 
and their dynamic response under moving loads became an 
interesting field for civil and mechanical engineers. Kiral et 
al. [6] studied the dynamic behavior of laminated composite 
beams subjected to a single force with constant velocity. The 
Finite Element Method (FEM) based on classical lamination 
theory was used in this article and the results were compared 
against the isotropic simple beam. Kahya [7] proposed 
an approach for vibration analysis of the intact laminated 
composite beam based on the shear deformation theory. 

It was concluded that angle-ply laminated beams are more 
sensitive to moving loads. Kargarnovin et al. [8] investigated 
the results of the delaminated Timoshenko beam under the 
action of moving load by considering Poisson’s effect, shear 
deformation, and rotary inertia. Galerkin’s method was 
used to obtain the transient response. It was concluded that 
the existence of any single delamination can increase the 
dynamic deflection of the beam. Kadivar and Mohebpour 
[9] compared the dynamic response of laminated composite 
beams with different layups and subjected to moving force. 
By expressing lateral strains and curvatures in terms of the 
axial, transverse strains and curvatures, the effect of couplings 
was considered. Classical Lamination Theory (CLT), First-
order Shear Deformation Theory (FSDT), and Higher-order 
Shear Deformation Theory (HSDT) were used to obtain the 
transient response. Jafari-Talookolaei et al. [10] studied the 
dynamic response of delaminated composite beams using 
the finite element method. Dynamic analysis of composite 
sandwich beams under the action of a moving mass was 
investigated by Kahya and Mosallam [11]. Zibdeh and Abu-
Hilal [12] analyzed the stochastic vibrations of a laminated 
composite-coated intact beam traversed by a random moving 
load.

While forced vibration of straight beams has been the 
subject of numerous studies [6-12], composite curved beams 
in spite of their practical applications such as curved bridges, 
elevated railroads, and aerospace applications have been 
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less likely analyzed during the past decades. Genin et al. 
[13] used a general algorithm for the moving mass problem 
and developed it to analyze the curved bridge response due 
to the moving mass. For this purpose, Green functions were 
applied to derive two coupled integral-differential equations 
of curved bridges. Differential equations were transferred 
into the matrix form to derive the response of the bridges. By 
considering only the first mode of vibration, Yang et al. [14] 
derived an analytical solution for forced vibration analysis 
of the single-layer curved beam. The accuracy of the results 
was validated with numerical solutions. Wu and Chiang [15] 
studied the forced vibration of the Timoshenko curved beam. 
It has been shown that utilizing a local polar coordinate 
system instead of the local Cartesian system for the element 
property matrices can reduce calculations during solution 
processes. Curved beams subjected to three directional 
moving loads were studied by Li and Ren [16]. Vertical, 
torsional, radial, and axial vibrations were considered using 
Galerkin’s method along with the modal superposition 
method. In the above-mentioned studies, a single-layer beam 
was considered. Likewise, in many studies, only the first 
mode has been considered while it is clear that higher modes 
play an important role in the transient response of the beam. 
Arefi and Zenkour [17] presented the transient formulation 
for a three-layer curved nanobeam in thermo–magneto-elastic 
environments. The curved nanobeam included a nanocore 
and two integrated piezo-magnetic layers subjected to 
electric and magnetic potentials and transverse loads resting 
on a Pasternak foundation. In another work, Arefi et al. [18] 
used the principle of virtual work to obtain the equations 
for functionally graded curved nanobeam reinforced with 
nanoplatelets. Hajianmaleki and Qatu [19] developed a new 
equivalent modulus of elasticity for a laminated composite 
curved beam. In addition, they also represented equivalent 
stiffness parameters for curved beams to consider the effect 
of all couplings. In another study by Ye et al. [20], free 
vibration analysis of laminated deep curved beam with 
arbitrary boundary condition was studied. To derive the 
equations of motion and boundary conditions, Hamilton’s 
principle was employed and a series solution was used to 
solve these equations. A parametric study was represented in 
order to show the effects of shear deformation, inertia rotary, 
and deepness term. Jafari-Talookolaei et al. [21] studied the 
free vibrations of laminated composite curved beams with 
single delamination. Having continuity conditions at the 
delamination boundaries and using Hamilton’s principle, 
equilibrium conditions were derived. To solve the equations 
of motions, analytical and finite element solutions were 
applied. Parametric studies were done to show the effects 
of delamination size and locations, layups configurations, 
boundary conditions and material anisotropy on the dynamic 
responses. It was observed that the delamination reduces 
the natural frequencies. Qin et al. [22] proposed analytical 
solution for curved composite I-beam and compared results 
against FEM. They concluded that by increasing the shear 
connector’s stiffness, the beam seems more likely to be a 
rigid structure. Luo et al. [23] studied Euler-Bernoulli curved 

beam by Galerkin’ method using sinusoidal Fourier series, 
and by extending the approach, they investigated the train-
track spatial interaction.

Shao et al. [24] obtained the dynamic response of 
composite laminated curved beams with arbitrary lamination 
schemes and general boundary constraints by the method 
of reverberation ray matrix. To consider general boundary 
conditions, two pairs of linear springs and one pair of 
rotational springs were employed at the end of the beam. The 
exact solution for the transient response of a curved beam 
under unit transverse impact force was proposed by exerting 
Neumann series expansion and the fast Fourier transform 
algorithm. In another work by Kurtaran [25], the transient 
response of laminated composite curved beam under the tip 
load and uniformly distributed load has been studied. FSDT 
was used and the Generalized Differential Quadrature (GDQ) 
method was employed to derive the results. It has been 
observed that the GDQ method with FEM provides good 
accuracy for the transient analysis of laminated composite 
curved beams. Zhao et al. [26] studied a carbon fiber-
reinforced composite  circular arch with porous graphene 
platelet coating in a hydrothermal environment with general 
boundary conditions. Verification of results was carried out 
by comparing results with available literature. Subsequently, 
a forced response that can be divided into steady-state 
response and transient response has been computed. It should 
be mentioned that transient response was conducted for four 
different pulse functions to consider the impact resistance of 
the arch. Sarparast and Ebrahimi-Mamaghani [27] presented 
a new analysis of composite laminated curved beams under a 
moving load and sequences of moving loads. They, however, 
proposed expressions for calculating resonance, maximum 
resonance, resonance disappearance, and two types of 
cancellation. Moreover, the cancellation phenomenon of 
laminated curved beams under moving loads has been studied. 
It has to be mentioned that in this paper, only the first mode 
of vibration for simply supported beam has been considered. 

In the present paper, a laminated composite curved beam 
under the action of moving radial force has been studied. 
Considering the first mode of vibration to analyze the beam 
does not provide accurate results. Due to this fact, a laminated 
composite curved beam with general boundary conditions 
and subjected to the moving load is studied by considering 
higher modes of vibration. The finite element method has 
been used to calculate the natural frequencies, mode shapes, 
and dynamic response of the laminated curved beam. It is 
worth mentioning that by assuming an artificial spring at the 
ends of the beam, we are capable of setting the stiffness of 
springs to model different boundary conditions. Choosing a 
suitable number of elements in FEM enables us to calculate 
the natural frequencies and mode shapes accurately in our 
one-dimensional model in comparison with 3D analysis in 
ANSYS. 

This study is organized as follows. First, the mathematical 
model of the beam and its equations of motion are given. 
Then, the solution procedure has been presented in the next 
section. Subsequently, by using the eigenvalue technique, 
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frequencies and mode shapes of the beam are obtained and 
results are compared against available results in literature 
and ANSYS. To further validate the present model, the 
forced vibration of the beam is compared with ANSYS. The 
parametric study is employed to investigate the effect of 
different parameters such as boundary condition, total angle 
of the curved beam, and fiber orientation on the response. In 
the end, the conclusions of this study are represented.

2- Governing Equations of Motion
Schematic view of the considered laminated composite 

curved beam is shown in Fig. 1. As it can be seen the 
laminated curved beam consists of N orthotropic laminas. 
Arbitrary boundary conditions are considered by assuming 
artificial springs at both ends of the beam. It is assumed that 
the beam has a constant thickness h and the thickness of each 
lamina can be calculated as ( )i

h
h N
= .

 The radius of the beam from the middle surface is R
, and its angle and width are 0θ   and b , respectively. The 
coordinatesθ , β and z are taken along the beam’s length, 
width, and thickness direction, respectively.

In order to consider the effects of shear deformation 
and rotary inertia, first-order shear deformation theory 
is employed. So, the generalized displacements can be 
expressed as:
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In which u  and w  indicate displacements along the 
θ  and z directions, respectively. Likewise, 0u and 0w  
represent the displacements of the middle surface and ψ is 
the bending rotation. Normal strain, θε , curvature, θχ , and 
shear strain, zθγ  of the beam can be calculated as follows:
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Based on FSDT, the force and moment resultants are 
defined as [21]:
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Where , ,QN M θθ θ
 are the in-plane force, bending 

moment, and shear force, respectively. It has to be mentioned 
that 

11A  
11, B  and 

11D are the extensional, bending-extension 
coupling and bending stiffnesses, and 

55A  is the shear 
stiffness. These coefficients are obtained as:
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In which 1kz +  and kz  are the distances from the laminate 
midplane to the top and bottom of the kth layer, respectively. 
Likewise, 

sK  stands for shear correction factor. For the beam 
with a rectangular cross-section, this factor is 5

6sK =  [21]. In 
addition, 

xkE  indicates the equivalent modulus of elasticity 
and 

55kQ  is the transformed shear stiffness of each lamina and 
are obtained from the following equations [21]:
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Where 
11E  is the elastic modulus of the composite material 

along the direction parallel to the fiber. Moreover, 
22E  is the 

elastic modulus along the direction perpendicular to the fiber 
and ijG  

is the shear modulus in the i-j plane. 12 21,ν ν  are the 
Poisson’s ratios and kθ  is the angle of the fiber orientation of 
each layer [25].

Beam’s equations of motion are derived by employing 
Hamilton’s principle: 
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In which , FT w  and U  denote the kinetic energy, work 
done by moving load, and potential energy, respectively. 
Moreover, (1)δ  denotes the first variation of the functional. 
Potential energy is divided into two parts: the potential energy 
of the beam, BU , and the potential energy of the boundary 
springs, ASU . These terms are calculated as follows:
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In Eq. (14), , ,l l l
u wK K Kψ

 are the linear and rotational 
springs’ stiffness at the left side of the beam. Similarly, 

, ,R R R
u wK K Kψ

 are the springs’ stiffness at the right side of the 
beam. It should be noted that by allocating different values 
for the springs’ stiffness, different boundary conditions can 
be set.

By substituting the Eqs. (2) to (5) into Eq. (13), the 
potential energy in terms of displacement components can be 
written as:
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In the second term of Eq. (12), 
FW  is the work done by 

moving load defined as [10]:
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It is assumed that radial point force ( )F t moves along the 
beam with constant velocity v . It is worth mentioning that 
δ  is the Dirac delta function.

Subsequently, the corresponding kinetic energy for the 
curved beam is obtained as [21]:
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In the above-mentioned equation, the inertia terms can be 
calculated by the following equations:
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By substituting Eqs. (14) to (17) into Eq. (12), differential 
equations of motion and the corresponding boundary 
conditions can be determined after some mathematical 
manipulations: 
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Where Eq. (19) denotes equations of motion and Eqs. 
(20) and (21) are the boundary conditions at the left and 
right ends of the beam, respectively. By assigning the proper 
value for the stiffnesses of the boundary springs, the general 
boundary conditions can be modeled. For instance, the free 
and clamped end conditions can be modeled by assuming 

0k =  and k →∞ , respectively. The below stiffnesses are 
considered to model simple (S), clamped (C), and free (F) 
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(22)

3- Solution
To solve differential equations of the beam, the finite 

element method is used. The mass and stiffness matrices 
of each element are calculated. We used higher order 
curved beam element with three nodes. Each node has three 
degrees of freedom, namely ,u w  and ψ , which shows 
displacement fields of the middle surface along , zθ  and β
axis, respectively. Fig. 2 (a) shows a typical element in which 
the location of nodes in the middle surface has been depicted. 
The intrinsic coordinate ζ  is defined as

0

( )e

θζ
θ

= (Fig. 2 (b)). 
By employing Lagrangian interpolation functions, i.e., ( )iN ζ
, displacement components of the beam are interpolated as 
follows [21]:
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It should be said that in Eq. (23), ( , ,i i iu w ψ ) are 
the degrees of freedom of the ith node. By defining 

{ }1 1 1 2 2 2 3 3 3, , , , , , , , Tu w u w u wψ ψ ψ∆ = as the vector of degrees 
of freedom for the element, Eq. (23) can be rewritten in 
the matrix form, i.e., [ ] , [ ] , [ ]u wu N w N N ψψ= ∆ = ∆ = ∆  in 
which:
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(a) (b) 
Fig. 2. (a) A higher-order curved beam element, and (b) its intrinsic coordinates [21]   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) A higher-order curved beam element, and (b) its intrinsic coordinates [21]  
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By substituting displacement fields in the potential and 
kinetic energies and applying the standard procedure, the 
mass and stiffness matrices of the element can be obtained 
which are presented in the Appendix.

By discretizing the whole beam into n  elements, the total 
displacement vector, q , has 6 3n +  degrees of freedom. After 
assembling the global mass and stiffness matrices, [M ] and 
[K], respectively, the equations of motion can be represented 
as follows:
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In this equation, the dot shows derivation with respect to 
time, so it is obvious that { }q  

shows the acceleration vector. 
In addition, { }f  

indicates the total force vector. Since there 
is only a concentrated force in the radial direction, the values 
of the force vector have been obtained based on the force 
location, i.e., if the point force 0F  is located on the ith element, 
the values of the force vector are obtained as:
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(27)

In which ξ  indicates the local position of the point force. 
Eq. (26) shows the coupled linear differential equations. The 
Newmark method in this section is employed to solve Eq. 
(26). If { }nq shows the displacement vector at the nth time 
step, using the Newmark method, { }1nq +  

can be obtained as 
follows [10]:
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t∆  is defined as 1n nt t+ − . It should be mentioned that 
the coefficients α , β  are 0.5 and 0.7, respectively [10]. 
substituting Eq. (28) into Eq. (26) yields the following matrix 
form:
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(29)

In which the modified stiffness matrix K̂  
 and force 

vector F̂  
for each time step can be calculated as:

By solving the algebraic Eq. (29), the dynamic response 
can be obtained.
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(30)

4- Validation 
To validate the results, we have compared free and forced 

vibrational results with available literature and ANSYS 
software. Unless mentioned otherwise, the physical and 
geometrical properties of the beam are listed in Table 1. In 
the first part, we compared natural frequencies. According 
to Table 2, the fundamental frequency of the present st-udy 
has been compared with Refs. [20] and [27]. Two types of 
boundary conditions, i.e., simple-simple (S-S) and clamped-
clamped (C-C), are considered. As can be observed, there are 
good agreements between our results and previous studies. 
The maximum difference of 1.208 percent has been seen.

In order to compare higher mode frequencies, we have 
modeled a 3D composite curved beam in ANSYS software. 
Solid46 element in ANSYS is employed to simulate the beam 
and also C-C boundary conditions have been considered. In 
Table 3, the first five dimensionless frequencies are compared 
with ANSYS and Ref. [20]. Very good agreements have been 
observed.

In the second part, forced vibrational results against 
the ANSYS model are compared. In this case, a harmonic 
downward nonmoving force, i.e., 1000sin(300 )f t N= − , in 
the middle of the beam is assumed. Fig. 3, shows the radial 
displacement of the middle point versus time. As can be 
clearly observed in Fig. 3, the results are in good agreement 
with ANSYS, especially in the early time of the simulation.

Table 1. Material and geometrical properties of the curved beam [27]Table 1. Material and geometrical properties of the curved beam [27] 
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5- Numerical Results and Discussion
Parametric studies for laminated composite curved beams 

are presented to investigate the effects of different parameters 
such as boundary conditions, total angle of the beam, and fiber 
orientations on the vibrational characteristics of the beam. 
Also, the resonance phenomenon for different boundary 
conditions is discussed. Convergence study of results for a 
different number of elements i.e., 10, 50, and 100 elements, 

have been examined and shown in Fig. 4. As can be seen in 
Fig. 4, there is good agreement between results by considering 
50 elements. Thus, to calculate our results, we consider 50 
elements that provide good accuracy. It should be mentioned 
that number of time steps in this method are considered to be 
1000 5000− for different cases to obtain convergent results. 
In this section, the physical and geometrical properties of the 
beam are listed in Table 4.

Table 2. Dimensionless fundamental frequency parameter ( 2 2 2
0 1112 /R E hω θ ρΩ = )

Table 2. Dimensionless fundamental frequency parameter ( 2 2 2
0 1112 /R E h   = ) 
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Table 3. First five dimensionless frequencies ( 2 2 2
0 1112 /R E hω θ ρΩ = )Table 3. First five dimensionless frequencies ( 2 2 2

0 1112 /R E h   = ) 

Mode number Present ANSYS [20] 
1 24.680 23.944 24.681 
2 48.25 46.89 48.19 
3 86.628 84.316 86.386 
4 124.452 122.07 123.93 
5 177.706 168.239 176.62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.  

     11 144.8E = Gpa 13 5.5G = Gpa 1389.297 = kg/m3  

22 9.65E = Gpa 0.25 =    
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Fig. 3. Validation of transient response for a curved beam under harmonic load 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Validation of transient response for a curved beam under harmonic load

 
Fig. 4. Effect of the number of elements on the transient response 
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Fig. 4. Effect of the number of elements on the transient response
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Fig. 4. Effect of the number of elements on the transient response 

 

 

 

 

 

 

 

 
(a) 

 

 
(b) 

Fig. 5. Dynamic response of the free end of the beam under harmonic load for different excitation 
frequencies ( 01 m, 2 / 3 radL  = = ) 

(a: 40 rad/sec = , b: 50 rad/sec = (continued on the next page)) 
 
 
 
 

 
(c) 

 
(d) 

Fig. 5. Dynamic response of the free end of the beam under harmonic load for different excitation frequencies 

( 01 m, 2 / 3 radL θ π= =  ) (a: 40 rad/secω = , b: 50 rad/secω =  

 
(b) 

Fig. 5. Dynamic response of the free end of the beam under harmonic load for different excitation 
frequencies ( 01 m, 2 / 3 radL  = = ) 

(a: 40 rad/sec = , b: 50 rad/sec = (continued on the next page)) 
 
 
 
 

 
(c) 

 
(d) 
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Table 5. First five dimensionless frequencies (
2 2 2

0 1112 /R E hω θ ρΩ =  )Table 5. First five dimensionless frequencies ( 2 2 2
0 1112 /R E h   = ) 

Mode number C-C S-S 
1 24.509 14.827 
2 47.786 37.350 
3 85.487 70.170 
4 122.336 109.221 
5 173.804 155.690 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) 

Fig. 5. Dynamic response of the free end of the beam under harmonic load for different excitation 
frequencies ( 01 m, 2 / 3 radL  = = ) 

(a: 40 rad/sec = , b: 50 rad/sec = (continued on the next page)) 
 
 
 
 

 
(c) 

 
(d) 

Fig. 5. Dynamic response of the free end of the beam under harmonic load for different excitation frequency  
( 01 m, 2 / 3 radL θ π= = )(c: 70 rad/secω = , d: 60 rad/secω =  (solid line), ( 61.7984 rad/secω =  dot line) )

5- 1- Effect of harmonic excitation
In this section, the effect of harmonic load, 

1000sin( ) f t Nω= − , on the dynamic response of the 
clamped-free laminated composite beam has been studied. 
The nonmoving force is located at the free end of the beam 
and the deflection of the endpoint of the beam versus time 
is plotted in Fig. 5. As can be seen when the excitation 
frequency is getting close to the fundamental frequency 
of the beam, the beam is prone to experience a resonance 
phenomenon. However, the beam experience resonance is just 
for the excitation frequency exactly equal to the fundamental 
frequency ( 61.7984 rad/secnω ω= = ), (Fig. 5(d)). Moreover, 
in Fig. 5(d), we can see that the beating phenomena occur 
when the excitation frequency ( 60 rad/secω = ) is very close to 
the fundamental frequency.

5- 2- Effect of boundary conditions
Table 5 shows the effect of boundary conditions on the 

natural frequencies. As it is expected, it can be observed that 

the clamped-clamped beam has the highest value for natural 
frequencies and the minimum value has been observed for the 
simple-simple boundary condition.

The corresponding mode shapes of the laminated 
composite curved beam have been depicted in Fig. 6.

5- 3- Transient response of the curved beam subjected to the 
moving force

In this section, parametric studies have been done to 
investigate different parameters on the transient response 
of the laminated composite curved beam. Unless mentioned 
otherwise, the radius and total angle of the beam are taken to 
be 0.5 m and / 2 radπ , respectively.

5- 3- 1- The effect of boundary conditions
Fig. 7 shows the maximum deflection i.e., w at the beam 

center vs dimensionless velocity ( /fT τ ). τ denotes the 
fundamental period of the beam and 

fT  is the time duration 
that force exists on the beam and can be expressed 
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(a) First mode shape (b) First mode shape 

  
(c) Second mode shape (d) Second mode shape 

  
(e) Third mode shape                                                             (f) third mode shape 

Fig. 6. First four mode shapes of the beam for C-C and S-S boundary conditions (continued on the 
next page) 

 

 

Fig. 6. First four mode shapes of the beam for C-C and S-S boundary conditions (continued on the next page)
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(g) Fourth mode shape (h) Fourth mode shape 

Fig. 6: First four mode shapes of the beam for C-C and S-S boundary conditions. (continued from 
the previous page) 

 

 

 
Fig. 7. Variation of 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚vs. /fT  for two layered beams ([0 ,90 ] ) with C-C and S-S boundary 

conditions 
 

Fig. 6. First four mode shapes of the beam for C-C and S-S boundary conditions. (continued from the previous page)

as (
f

lT
v

= ). As can be seen from Fig. 7, maxw  has an 
insignificant value in lower dimensionless velocity. This is 
likely to happen due to the fact that there is not enough time 
for the occurrence of the beam deflection when the velocity 
of moving force is high i.e., low value of l

v

. It should be 

mentioned that the laminated composite curved beam with 
clamped-clamped boundary condition represented greater 
stiffness than the simple-simple one, and due to this reason, 
it has a lower deflection which can be obviously seen in most 
parts of Fig. 7. 

  
  
  

 

  
(g) Fourth mode shape (h) Fourth mode shape 

Fig. 6: First four mode shapes of the beam for C-C and S-S boundary conditions. (continued from 
the previous page) 

 

 

 
Fig. 7. Variation of 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚vs. /fT  for two layered beams ([0 ,90 ] ) with C-C and S-S boundary 

conditions 
 

Fig. 7. Variation of w maxvs. /fT τ  for two layered beams ([0 ,90 ]  ) with C-C and S-S boundary conditions
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Fig. 8. Variation of deflection at the beam center ( mw ) vs. fX  at critical load velocity for two layered 

beams ([0 ,90 ] ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Variation of deflection at the beam center ( mw ) vs.   at critical load velocity for two layered beams ([0 ,90 ]  )

Referring to Fig. 7, critical dimensionless velocity can be 
defined as the velocity when the maximum deflection occurs 
at the beam center. This critical dimensionless velocity 
is obtained at 0.91 and 0.64 for C-C and S-S boundary 
conditions, respectively. It can be concluded that the critical 
velocity in the C-C boundary conditions is close to the first 
period of the beam. In Fig. 8, the deflection of the beam center 

mw  versus dimensionless point force position (
fX ) is shown 

in its critical velocity. 0fX =  
indicates that the force is on the 

left end of the beam and 1fX =  indicates that the force is on 
the right end of the beam. It can be seen that, the maximum 
value for mw  occurs when the load is in the verge of leaving 
the beam. It should be noted that, simple end conditions for 
laminated composite curved beam, provides more deflections 
compared to the clamped end conditions.

5- 3- 2- Effect of total angle of the beam
The transient response of the beam for the constant value 

of the beam’s length ( 0L Rθ= ) is calculated by assuming 
different values for a total angle of the beam ( 0θ ). Fig9 . (a) 
and (b), show the maximum deflection of the beam center for 
two different boundary conditions, i.e., clamped-clamped and 
simple-simple. It can be observed that in a simply supported 
beam, increasing the total angle ( 0θ ), causes the vertical 
deflection to increase. Moreover, maximum deflection for 
simply supported beam occurs in lower load velocity for 
higher values of total angle.  Also, for clamped-clamped 
boundary conditions, the same behavior can be seen except 
for 0 6

πθ =  rad. In general, the beam under the action of 
moving force with high velocity has the lowest deflection for 

a different total angles of the beam. This can be due to the 
fact that the beam doesn’t have enough time to respond to the 
movement of the force.

5- 3- 3- Effect of fiber orientations
In this section, the effect of fiber orientation on the dynamic 

response of the beam with cross-ply and angle-ply lamination 
schemes is investigated. Results have been presented for 
four-layered simply supported beams. The other parameters 
are the same as the previous sections. Different stacking 
sequences have been considered namely [0 ,90 ,0 ,90 ]     and 
[0 ,90 ,90 ,0 ]   

 for symmetric and anti-symmetric cross-
ply layups, respectively, and angle-ply layups [ , , , ]θ θ θ θ− −
. As can be seen from Fig. 10(a), the maximum deflection 
response for the case of symmetric cross-ply is smaller than 
that of the anti-symmetric one. Moreover, it is seen from Fig. 
10(b) that increasing the angle of fiber orientation in angle-ply 
layups causes the dynamic response of the beam to increase. 
The reason is that increasing the angle of fiber orientation 
decreases the bending stiffness of the beam. In addition, as can 
be observed in Fig. 10(b), differences between the transient 
response for 60θ =   and 90θ =   are insignificant which is due 
to the fact that the difference between their bending stiffness 
is small. The most notable differences between different fiber 
orientations can be observed between cross-ply and angle-ply 
laminates. By comparing these two figures, it is evident that 
the cross-ply laminates have more stiffness than the angle-ply 
laminates. In other words, it shows that choosing different 
fiber orientations can influence the stiffness of the structure 
and so different response will be obtained.
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(a) 

 
(b) 

Fig. 9. Variation of  maxw vs. /fT  for a different total angles of the two-layered beams ([0 ,90 ] ). 
(a: clamped-clamped; b: simple-simple) 

 

 

 

 

 

 

Fig. 9. Variation of maxw  vs. /fT τ  for a different total angles of the two-layered beams ([0 ,90 ]  ).(a: clamped-
clamped; b: simple-simple)
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(a) 
Fig. 10. Variation of maxw of the beam center vs.  /fT  for cross-ply and angle-ply stacking 

sequences. 
(a: cross-ply (continued on the next page)) 

 

 
(b) 

Fig. 10. Variation of maxw of the beam center vs.  /fT  for cross-ply and angle-ply stacking 
sequences. 

( b: angle-ply (continued from the previous page)) 
 

Fig. 10. Variation of maxw  of the beam center vs. /fT τ   for cross-ply and angle-ply stack-
ing sequences.(a: cross-ply) ( b: angle-ply)

 
 

(a) 
Fig. 10. Variation of maxw of the beam center vs.  /fT  for cross-ply and angle-ply stacking 

sequences. 
(a: cross-ply (continued on the next page)) 

 

 
(b) 

Fig. 10. Variation of maxw of the beam center vs.  /fT  for cross-ply and angle-ply stacking 
sequences. 

( b: angle-ply (continued from the previous page)) 
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6- Conclusion
Free and forced vibration analysis of the laminated 

curved beams is presented in this study. The effects of 
shear deformation, rotary inertia, and material coupling 
are taken into account. The finite element method is used 
to solve the governing equations of motion. The obtained 
natural frequencies are validated by comparing the present 
results against available results in the literature and ANSYS. 
Likewise, the results of forced vibration analysis of the 
curved beam are verified against ANSYS. The effects of 
different parameters on the vibrational characteristics and 
also the transient response of the beam have been investigated 
in detail. Based on the numerical results, the boundary 
conditions have a significant influence on the response of 
the laminated composite curved beam. It is shown that the 
beam with clamped–clamped ends has the lowest transient 
deflection and highest frequency which is due to the highest 

overall stiffness of this kind of boundary condition. Likewise, 
it is found that the clamped-clamped beam has a higher 
critical velocity with respect to the beam with simple-simple 
end conditions.

The inspection released that the beam with cross-ply 
layups has lower values of transient deflection compared to 
the angle-ply layups. Moreover, the anti-symmetric cross-ply 
beam has more deflection in comparison with the symmetric 
one. Likewise, it is shown that by increasing the angle of fiber 
orientation in angle-ply layups, the dynamic response of the 
beam increases.

 
Appendix
Element mass and stiffness matrices

For each element, the mass and stiffness matrices are 
calculated as follows:

  1
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