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in latent energy storage systems. This paper investigates the melting of the phase change material inside
a porous medium under the local thermal non-equilibrium condition with the lattice Boltzmann method.
Results examine the effect of Rayleigh number, porosity ratio, pore size, and Sparrow number on the
liquid fraction and position of the melting front. Results show that by increasing the pore diameter,
the interface of the two phases tends to bend but the liquid fraction decreases. Also, it is found that the
difference between the liquid fraction in the presence and absence of natural convection for Ra<10°, is
less than 5%. Nonetheless, by increasing the Rayleigh number to 10%, this difference at Fo=0.003 is more
than 14% and at Fo=0.006 will reach more than 31%. Furthermore, in Ra=10* and for small Sparrow
numbers, this difference is small and intensifies with increasing the Sparrow number. Also, by reducing
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the Darcy number, natural convection is weakened and it can be ignored for Da<10. It is shown that in Melting process

small Darcy numbers Da=10", the deviation from the pure conduction is always increased by Sparrow  Natural convection

number, and for larger Darcy numbers Da=107, this deviation has a maximum value of 53% at Fo=0.003  Lattice Boltzmann method

and 84% at Fo=0.006.

1- Introduction

Energy cost, its scarcity, as well as environmental prob-
lems have become a recent concern for researchers. The stor-
age of thermal energy in both sensible and latent forms can
be proposed as a solution for the management of energy con-
sumption [1, 2]. Phase Change Materials (PCMs) with a high
capacity of energy storage and nearly constant temperature of
melting and solidification can be referred to as Latent Heat
Thermal Storage (LHTS) systems. Nonetheless, PCMs suffer
from the low thermal conductivity that increases the phase
change time as well as the temperature gradient inside the
energy storage reservoir in large-scale applications. There are
various strategies to eliminate this weakness, including metal
fins [3, 4], adding nanoparticles into the PCM [5, 6], and plac-
ing a porous medium with a high thermal conductivity inside
the reservoir [7, 8].

Tao et al. [9] examined the problem of heat transfer with
phase change in the composites including paraffin and metal
foams using the Lattice Boltzmann Method (LBM). They de-
fined a new parameter, which represents the number of Pores
Per Inch (PPI) of the composite material. The results showed
that increasing the PPI increases the conduction heat transfer
and decreases the natural convection in the liquid phase of
the PCM. Jourabian et al. [10] presented a numerical study
to simulate the ice melting inside a rectangular cavity with
two vertical cylinders using a metallic porous matrix. They
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used enthalpy-based LBM with a double distribution function
with the local thermal equilibrium between porous structure
and ice. It is shown that inserting the porous medium into the
PCM enhances the heat conduction and weakens the natu-
ral convection. Gao et al. [11] presented a modified lattice
Boltzmann model to simulate the melting of the PCM inside
a porous medium with conducting fins. Results showed that
the long fins with low heat capacity increase the rate of melt-
ing. Gao and Chen [12] investigated the problem of melting
with natural convection in a rectangular cavity containing a
porous medium using LBM. They studied the effect of Darcy
number, Rayleigh number, and porosity on the melting pro-
cess and also continued to study the problem of solidification
with the same model. Results showed that with increasing the
Rayleigh and Darcy numbers and increasing the porosity, the
natural convection in the liquid phase is strengthened, which
bends the melting front.

The use of a porous medium with a high thermal con-
ductivity increases the rate of melting and freezing in the
PCM. Nevertheless, the difference in thermal conductivity
between the porous medium and the PCM can expire the Lo-
cal Thermal Equilibrium (LTE) condition between the PCM
and the porous medium [13, 14]. Under the Local Thermal
Non-Equilibrium (LTNE) condition, two energy equations
should be solved simultaneously to obtain the temperature
distribution of the PCM and the porous medium. Gao et al.
[15] used the LBM to investigate the natural convection in a
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Isolated wall

Isolated wall

Fig. 1. Schematic of melting problem inside a porous medium.

porous medium under the LTNE condition. They used three
distribution functions: one is for calculating the velocity field
and the other two distribution functions compute the tempera-
ture field of the operating fluid and the porous medium. It
is shown that if the thermal conductivity of the porous me-
dium to the thermal conductivity of the working fluid is large
and the Nusselt number is small, the LTE assumption is not
reliable. In another study, Gao et al. [13] proposed an im-
proved LBM for the problem of solid-liquid phase change in
a porous medium under local thermal non-equilibrium condi-
tions. They used the total enthalpy method and defined a free
parameter to reduce the induced numerical diffusion due to
phase change. Wang et al. [16] studied unsteady heat transfer
in the porous medium focusing on the necessary condition to
apply the LTNE condition. They used the Sparrow number as
equilibrium conduction to the convection thermal resistances.
They concluded that for the high Sparrow numbers LTE con-
dition is provided. Esapour et al. [17] investigated the melting
and solidification of the PCM embedded in metallic porous
foam inside a multi-tube heat exchanger. They assumed the
LTNE condition and examined the effects of inner tubes and
porous medium on the melting and solidification of the PCM.
They concluded that the use of porous medium is more ef-
ficient in the solidification process rather than the melting.
Liu et al. [18] proposed a new LBM for the convective heat
transfer within a porous medium under the LTNE condition.
The advantage of this model is its simplicity compared to the
previous models.
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The authors found that there is no parametric study that shows
the simultaneous effects of natural convection and local
thermal non-equilibrium condition within the liquid phase
on the melting process of the PCMs. Therefore, the process
of melting of the PCM in a porous medium is simulated
numerically considering the local thermal non-equilibrium
condition with the LBM and the effects of parameters such
as Rayleigh number, porosity ratio, pore size, and Sparrow
number on the liquid fraction and position of the melting front
are investigated. Also, conditions in which the role of natural
convection in the melting process is low and negligible are
introduced.

2- Problem Definition

Consider a two-dimensional square container which is
completely filled with phase change material and a uniform
porous medium. According to Fig. 1, the upper and lower
boundaries are thermally insulated and the right and left
boundaries are subject to a constant temperature. The initial
and right wall temperatures are equal to the melting tempera-
ture in such a way that the initial state of the phase change
material is solid. At the beginning of the process, the temper-
ature of the left wall is increased slightly above the melting
temperature to start the melting process.

The temperature of the boundaries as well as the melting
temperature in the dimensionless form and domain dimen-
sion are stated in section 5-1. For the sake of simplicity and
to avoid unnecessary computations, the numerical model
benefits from the following assumptions:
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1.The effects of flow and fluid compressibility are ne-
glected. To take into account the effects of natural convec-
tion, the Boussinesq approximation is used.

2.The PCM is assumed to be ideal. The ideal of PCM
means its behavior is isotropic and free of impurities.

3.The thermophysical properties of each phase are con-
sidered different from another phase but are independent of
temperature.

3- Mathematical Modeling
3- 1- Macroscopic equations

Due to the presence of the local thermal non-equilibrium
condition, it is necessary to solve the energy equations for the
PCM and porous medium, separately. Macroscopic energy
equations for the PCM and porous medium are expressed as
follows [13]:

5T+Vl[(pcp)ﬂ qu]z 0
k, VT, +h, (T, T, )-ep,L, ‘Z—;

o T,
(1_5)% =k VT, +h (T, -T,) @

where subscripts f, s, and fl express the PCM, porous
medium, and liquid phase of the PCM, respectively. In these
equations; u, T, c, L , and f represent the fluid velocity, tem-
perature, specific heat capacity, latent heat, and liquid frac-
tion of the PCM. Also, ¢ is the porosity, k_, and k__ refer to
the effective conductivity of the PCM and porous “medium
and h_ stands for the volumetric convective heat transfer co-
efficient due to the local thermal non-equilibrium condition
between the PCM and porous medium. By defining the total
enthalpy for the PCM En, = (pC,, )f T, + pL,f; and the porous
medium En, = ( pc, )S T,, Egs. (1) and (2) will be rewritten as:

e[ (pe,),

- uT, |=k, VT, +h,(1,-T,) O

O[En, |
Ot

(1-¢)

:kervav +hv (T/ _TY) (4)

Also, the macroscopic equations for the mass and mo-
mentum conservations for the porous medium are expressed
as follows [13]:

Vu=0 (5)
0 2
() ——Emp) +uVu+F ©)
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In the above equations, p and U, are pressure and effec-
tive kinematic viscosity, respectively. F represents the total
volumetric forces resulted from the porous medium and other
body forces and is expressed by [13]:

F=_2Y%y_ 20

© u+egh(T, T, ) (7N

In Eq. (7), Yy, F, K, B, T, and g are the kinematic vis-
cosity of the fluid, the Forchhelmer coefficient, permeabil-
ity, thermal expansion coefficient, the reference temperature,
and the gravitational acceleration, respectively. The dimen-
sionless parameters that control the fluid flow along with
heat transfer and the phase change phenomenon are Prandtl
number Pr, Rayleigh number Ra, Darcy number Da, Stefan
number Ste, Nusselt number Nu, and porosity ratio & . These
parameters along with other important non-dimensional pa-
rameters are defined by:

T, -T,)L’
pr="_ Ra 8B, ) Da=£2
a, vy L
c -T hd?
Ste—pﬂ(L R), Nu, =—*
a 1
(3)
ple LT g, ot
v’ T, -T, L’
U:(pcp S 5:di J:UL
(pcl’)ﬂ L Y

In the above definitions, L, d , V, V, T *, and Fo indicate the
. e p p .
characteristic length of the enclosure, the pore diameter, the
volume of empty space, the total volume of the space, the
dimensionless temperature, and the dimensionless time.

3- 2- Local thermal non-equilibrium condition

The dimensionless number that controls the thermal non-
equilibrium condition is the Sparrow number. Here, the Spar-
row number, Sp, and the equivalent thermal conductivity of
the medium k are defined by:

h L

Sp =

L ©)
e“p

k,=¢k,+(1-¢)k, (10)

By defining the Nusselt number based on the hydraulic
radius of the pores, Eq. (9) becomes Eq. (11).

Sp =Nud(%)(di)’ (an

P
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4- Lattice Boltzmann Modeling
4- 1- Fluid flow inside a porous medium

The distribution function for the velocity field f is given
by [13]:

fi(r+edt.t+6t)—f, (r.1)=

1 " (12)
_;[fi (r’t)_fi (I‘,t):'+5tFi

where r and e, are lattice positions and discretized lattice
velocities and At is the time step indicator. Also, f,“ is the
equilibrium distribution function for the velocity field, which
is defined by [13]:

5] (13)

4/9, i=0
w, =41/9, i=1-4 (14)
1/36, i=5-8

and ¢, =1/~/3 represent the sound velocity.
The discrete body force F, can be expressed by [13]:

e, F uF:ee, uF
———2} (15)

1
Fo=w (1-——)p| &4
' 3 27)1{02 et &c

s s s

The density p and fluid velocity u can be obtained as fol¢
lows [19]:

8
p(r,t)=>f.(rt) (16)
i=0

v
dy+\Jd,’ +d,|v] (17)
where
8 ef A
V=Ze—’+—8[gﬂ(Tf T ] (18)
i-0 P 2
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1 EAtL,
In Eq. (17), d, and d, are known using 4, =5(1+#j
EAtF, . . . .
and d, = £ respectively. The dimensionless relaxation
ok P

time is expressed according to Eq. (19):

U@
¢St

N

T= +0.5 (19)

Note that the velocity field inside the solid phase is considered
Zero.

4- 2- Temperature field for PCM and solid matrix

The distribution function for the temperature field of the
PCM, g, , and the solid matrix, g,  are expressed according to
Egs. (20) and (21), respectively [13]:

g, (r+edt,t+dt)-g,, (rt)=

e () -ar (e

T, (20)

2
[& +5L6thri L +1Su, |
: ,. L

\

g, (r+edt,t+6t)—g, (r.t)=

r, " o 1)

2
+[5¢ +%az]Srm

Relaxation times for the temperature of the PCM 7, and
solid matrix t, _are defined by:

o, 104
__f _ Y
Tt‘/- = cz +0.5, T, —c—2+0.5 (22)

s

Also, the equilibrium distribution functions for the tem-
perature of PCM and solid matrix are expressed as [13]:

EEn, —y, T, +wy, T, i=0

eq _

g = o) (23)
MT/{%*(P%)MT}’ i#0
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eq __ (I_S)Ens_}/sn_‘_w}i}/sy—;’ l:0
gis - (24)

where v, and y_ are two free parameters for the liquid and
solid phases, respectwely In Egs. (20) and (21), Sr and Su are
two source terms and are expressed by the following relations
[13]:

Sr,, =w.h (T, -T,) (25)

Su, :Wf[l_ 1 Je_,« i @7)

s
7, )¢ ot

Finally, the total enthalpy of the PCM En, and solid matrix
En_ can be calculated with the following equations [13]:

En, = Zg—f (28)
0

8 g.
En, :ZE (29)

Then, by having the enthalpy, the temperature and the lig-
uid fraction of the PCM f| liquid can be calculated [13]:

Enbegin —El’l

/
Tbegin - ( )
pcp /fs
s Enf SEnbpgm
En,, _Enf Enf _Enbegin

.+
_ begin
T, = Enend _Enhegin Enend
4 Enhegin <Enf <Enend

T +En5 -En,,

end (,DCP )ﬂ
N Enf >FEn,,

0 , En, <En,,,
Enf _Enbegin E E E
fi= W ) Mpegin < LNy < LMy (31)
en egin
1 , En, 2En,,

In the above equations, subscripts of begin and end re-
fer to the beginning and end of the phase change. Also,
Eny,y, = (pcp ) R T, 1s the total enthalpy at the beginning of the
phase change and En,,, =(pc, )/, T, + AL, is the total enthalpy
at the end of the phase change process.

Note that the equations for the velocity and energy distri-
bution functions are written in the FORTRAN programming
language.

4- 3- Boundary condition

Any distribution function N, at each point can be consid-
ered as a sum of equilibrium N/ and non-equilibrium N "
parts such as [20]:

N, =N7+N™ (32)

Since the distribution functions coming from the outside
of the domain are not known after streaming, the non-equilib-
rium part cannot be obtained at the collision step at the bound-
ary points. To yield the distribution function at the boundary
point, N, the equilibrium part N is computed owning to
the macroscopic parameter at the boundary and correspond-
ing equilibrium equation. But the non-equilibrium part N "/
could be estimated by the first order extrapolation with neigh-
bor points, N/ . Knowing that N =N, -N/ Eq.(32)
at the boundary points is written as:

N, =N +(N,,-N2) (33)

Hence, the collision term for the boundary points can be
obtained as follows:

N/,=Ng&, +[1—ij(zv,,n -N{) (34)
TN

In Eq. (34), N; , 1s the post-collision distribution func-
tion, and 7, is the relaxation time related to the N.

Knowing the macroscopic quantities at the boundaries

makes it possible to use Eq. (34) and calculate the equilib-
rium distribution function at the boundaries. According to
Fig. 1 and referring to Table 1, the distribution function at the
boundaries can be calculated.
Note that in the insulation boundary condition, the use of
first-order discretization determines the value of temperature
at the boundary, and then similar to the constant temperature
boundary condition, the distribution function is obtained.
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Table 1. Boundary conditions applied in the present problem.

Left wall Right wall Upper wall Bottom wall
Boundary T=T, T=Tx oT [on =0 oT on =0
condition
1
—*—¢ Present
—=— (Gao [13]
08 |
0.6
~
04 |
02 F
0 -
0.2 1 1 1 |

0.4 0.6 0.8 1

x/L

Fig. 2. Temperature of the PCM on the line passing through the middle of the enclosure (y/L=0.5) at
F0=0.002 for the case of LTE.

5- Results and Discussion

Here, the effect of natural convection on the melting rate
of the PCM in a porous medium with a high difference in
the thermal conductivities of PCM and solid matrix are in-
vestigated. The high difference in the thermal conductivities
causes a thermal non-equilibrium condition at the interface of
the PCM and the solid matrix. Before examining the effects
of natural convection on the temperature field and liquid frac-
tion, it is necessary to ensure the correct operation of the writ-
ten code.

5- 1- Model verification

Numerical results of Gao et al. [13] have been used to
validate the present work. For this purpose, first, the melt-
ing problem in a porous medium with local thermal equilib-
rium condition is solved and then the melting process with
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local thermal non-equilibrium is considered. In this regard,
a square domain with upper and lower adiabatic walls and
constant temperature on the left and right walls is intended.
At the beginning of the process, the PCM and solid matrix are
both at the initial temperature 7, =0, and the temperature of
the left wall T, suddenly rises to 1, and the temperature of the
right wall T, is set to 0. The dimensions of the computational
domain have been selected as 150x150. The detailed numeri-
cal values for all parameters are given in Table 2.[13].

The conditions corresponding to the numerical values
in Table 2 are considered as base conditions and are used as
reference values in the following sections. In the first step
of the validation, the melting temperature is the same as the
initial temperature (7, , =T, =0) and due to the local ther-
mal equilibrium condition, the Nusselt number is equal to
zero, Nu =0. Fig. 2 shows the temperature of the PCM on the
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Table. 2. The detailed numerical values for all parameters used in the base condition [13].

g o Pr Da Ra Ste

*

FS ’7 Nud Tmelt Tt S

0.8 0.0135 50 10 108 1

12000

0.068 1 5.9 0.3 0.501

0.8

0.6

v/L

0.4

0.2

O L T—Tt

0 0.2 0.4

0.6 0.8 1
x/L

Fig. 3. Temperature contour for the PCM at Fo=0.002 specified by the color spectrum in 9 levels along with
streamlines in the liquid phase (base condition).

line passing through the middle of the enclosure (y/L=0.5) at
Fo=0.002. It is seen that for the case of Nu, =0, a good agree-
ment appears between the present simulation and the results
of the test case [13]. Next, the validation is performed for the
condition where the local thermal non-equilibrium condition
exists. All numerical parameters are the same as in Table 2.

Fig. 3 shows the temperature contours for the PCM by
the color spectrum in 9 levels along with the position of the
melting front and the streamlines within the liquid phase at
Fo=0.002. According to this figure, it is observed that the
presence of natural convection within the liquid phase causes
two-dimensional heat transfer and bending of the melting
front.

Similarly, Fig. 4 shows the temperature contours for the
porous medium by solid lines at 9 levels with streamlines
at Fo=0.002. In order to compare the temperature fields of
the PCM and porous medium, the PCM temperature is also
shown by the color spectrum in 9 levels.

According to the figure, it can be seen that the existence
of the local thermal non-equilibrium condition has caused
a difference between the temperatures of these two media

so that this temperature difference is greater in the liquid
phase and at the top and bottom of the enclosure. Note that
the flow velocity in these two zones is higher and therefore
the difference in temperature between the PCM and the po-
rous medium can be attributed to natural convection. Fig. 5
represents a comparison of the position of the melting front
between the present simulation and the previous results [13]
at Fo=0.0004, Fo=0.002, and Fo=0.006. Comparing the posi-
tion of the melting front with the results of Gao et al. [13]
shows a slight difference in predicting the melting position.
This discrepancy can occur for two reasons. The first reason
is the existence of a time derivative in Egs. (20) and (21). In
the present paper, the forward second-order discretization is
used (the first stage is forward first-order), while in Ref. [13]
the derivation method is not mentioned. The second reason
can also be related to the satisfaction of incompressibility
conditions, which is also not considered by Gao et al. The
local Mach number at each point of the flow must be small
enough to ensure the incompressibility of the flow. In the case
of natural convection, the criterion used to ensure the incom-
pressibility of the flow is introduced as g SATH <0.1 [21].
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VL

0 0.2 0.4 0.6 0.8 1
x/L

Fig. 4. Temperature contour for the porous medium specified by solid lines in 9 levels along with streamlines
in the liquid phase. To compare the temperature of PCM and porous medium, the temperature of the PCM is
given as a color spectrum.

0—0.0004
0.9

08 -
Fo=0.002

0.7 -
0.6 -

05k Fo 0.006

/L

04

- Present
01k —=— Gao [13]

0 0.2 04 0.6 0.8 1 1.2
x/L

Fig. S. Position of the melting front at F0=0.0004, Fo=0.002, and F0=0.006 for the case of LTNE.
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1.2

0.8 -

0.6 -

04

0.2

Fo0=0.00005

-o—¢- Present
-=— Gao [13]

1 1 1

1.2

0.6 1.2
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0.8 -

0.6 -

04

0.2

FFo=0.00005
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-=— (Gao [13]

b

0.6 0.8 1 1.2

x/L

Fig. 6. Validation of numerical modeling with those of Gao et al. [13] for the case of LTNE, a) temperature of
the PCM and b) temperature of the solid matrix.

In order to compare the temperature distribution obtained
in the present work with Gao et al. [13], the temperature val-
ues of PCM and the porous medium are plotted on a horizontal
line passing through the middle of the domain at Fo=0.00005,
Fo=0.001, and Fo=0.006 in Figs, 6a, and 6b, respectively. It is
seen that the difference between the temperature distribution
of PCM and the porous medium of the two works is small
except at Fo=0.001, which is not clear to the authors.

In the following, the effect of changes in the Rayleigh
number, Nusselt number, porosity ratio, the ratio of pore di-
ameter to the characteristic length of the enclosure, and the
Sparrow numbers on the liquid fraction and melting front is
investigated. Finally, the conditions under which the natural
convection during the melting process can be ignored are ex-
pressed.
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Table. 3. The detailed numerical values for all parameters used in case 1 (Effect of Rayleigh number)

*

€ 0 Pr Da Ste Sp F. n Nug T, . T s
0.8 0.0135 50 10 1 12000  0.068 1 59 0.3 0.501
1
T*
08 0.9
0.8
0.7
0.6
0.6
2 0 0.5
0.4 0.4
0.3
0.2
0.2 0.1
0
0 0.2 0.4 0.6 0.8 1
x/L

Fig. 7. Temperature contour for the PCM and porous medium at Fo=0.002 specified by the color spectrum
and solid lines, respectively, in 9 levels along with streamlines in the liquid phase (Da=10-2).

5-2- Effect of Rayleigh number

To evaluate the effect of the Rayleigh number, four values
of Ra=0, Ra=10°, Ra=107, and Ra=10® have been used, and
the rest of the parameters are according to Table 3. This case
is called case 1.

Fig. 7 shows the temperature contours for the PCM and
the porous medium at Fo=0.002 by the color spectrum and
solid lines at 9 levels, respectively. A comparison of this fig-
ure with Fig. 4 shows that with increasing the Darcy number
and increasing the permeability of the porous medium, the
amount of liquid fraction has increased. It is also observed
that the temperature difference between the PCM and the po-
rous medium increases, which is due to the strengthening of
the velocity field due to the increase in the permeability of the
porous medium.

Fig. 8 shows the effect of the Rayleigh number on the
liquid fraction. As shown in this figure, as the Rayleigh num-
ber increases, the liquid fraction increases, which is because
as the Rayleigh number increases, the natural convection
enhances, and speeds up the melting process. It is also seen
that for Ra=0 and Ra=10° the values of the liquid fraction are
similar, which means that up to Rayleigh 10° contribution of
the natural convection is weak. Fig. 9 shows the position of
the melting front for different Rayleigh numbers at Fo=0.002.
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According to Fig. 9, it is quite clear that with the increase
of the Rayleigh number, the curvature of the melting front
increases, and natural convection plays a more important role
in the melting process.

It is also seen that up to Ra=10°, the melting front has a
very small curvature, so that a similar amount of deviation in
the upper half of the enclosure, occurs approximately at the
bottom of the enclosure. For this reason, the change of the lig-
uid fraction in the presence of natural convection in the range
of Ra=0 to Ra=10° does not change significantly compared
to the pure conduction state. Fig. 10 shows the temperature
of the middle node of the cavity, T; with time. This diagram
consists of three parts: pure conductive heat transfer (tem-
perature growth at the beginning of the diagram), mushy zone
(nearly constant temperature of the diagram), and heat trans-
fer with natural convection (sudden increase in temperature
after the mushy zone). As shown in Fig. 10, with increasing
the Rayleigh number, the mushy zone becomes smaller and
the temperature of the node in the middle of the enclosure
increases faster, due to the acceleration of heat transfer by the
natural convection. Also, the slope of the diagram in its initial
part is the same for different Rayleigh numbers, because the
Rayleigh number does not affect the conduction heat transfer.
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Fig. 8. Variation of the liquid fraction with respect to the dimensionless time at four Rayleigh numbers.
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Fig. 9. Variation of the liquid fraction with respect to the dimensionless time in Fo=0.002 for different Rayleigh numbers.
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Fig. 10. Temperature of the node in the middle of the enclosure with time for different Rayleigh numbers.

Table. 4. The detailed numerical values for all parameters used in case 2 (Effect of porosity ratio).

0 Pr Da Ra Ste Sp

*

Fa ’1 Nud Tmeh Tt S

0.0135 50 10 108 1

12000

0.068 1 59 0.3 0.501

5- 3- Effect of porosity ratio

The porosity ratio represents the share of metal in the po-
rous medium, so that¢ = 0 indicates that the whole space is
filled with metal, and & =1 indicates that the whole space is
filled with PCM (without any metal solids). Here, three poros-
ity ratios of 0.3, 0.8, and 0.93 are tested and the other numeri-
cal parameters are listed in Table 4. Similar to the previous
cases, Fig. 11 shows the temperature contours for the PCM
and the porous medium at Fo=0.002 by the color spectrum
and solid lines at 9 levels along with the streamlines within
the liquid phase, respectively. Since the amount of porosity
in this figure (¢=0.3) is reduced compared to Fig. 4 (¢=0.8),
so the velocity field and consequently the natural convection
within the liquid phase is weakened and the curvature of the
melting front is reduced.

Fig. 12 displays the effect of the porosity ratio on the lig-
uid fraction. As mentioned, by increasing the porosity ratio,
the share of solid metal in the enclosure decreases, this solid
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metal acts as a fin inside the enclosure and transfers heat
throughout the enclosure. As a result, as the share of solid
metal decreases, heat is transferred slowly into the enclosure
and the liquid fraction is reduced. Therefore, it can be con-
cluded that there is an inverse relationship between the po-
rosity ratio and the liquid fraction. Fig. 13 shows the position
of the melting front at Fo=0.002 for different porosity ratios.
According to the diagram, as the porosity ratio decreases, the
melting front progresses further, but its curvature decreases,
and vice versa. The reason for this is that by reducing the
porosity ratio, the heat transfer tends to pure conduction, and
therefore the curvature of the melting front decreases. How-
ever, due to the large thermal conductivity of the solid matrix
and also the reduction of PCM volume, the position of the
melting front in small porosities is ahead of larger porosities.
Also, in high porosity ratios, the predominant mechanism of
heat transfer is convection, which increases the curvature of
the melting front.
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Fig. 11. Temperature contour for the PCM and porous medium at Fo=0.002 specified by the color
spectrum and solid lines, respectively, in 9 levels along with streamlines in the liquid phase (¢=0.3).
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Fig. 12. Variation of the liquid fraction with respect to the time for three porosity ratios.
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Fig.13. Position of the melting front at Fo=0.002 for three porosity ratios.

Table. 5. The detailed numerical values for all parameters used in case 3 (effects of pore diameter).

e Pr Da Ra Ste Sp

*

F, n Nuy T

melt

(%7

0.8 50 10+ 108 1 12000

0.068 1 59 0.3

0.501

5- 4- Effect of pore diameter to enclosure length (d /L)

In this section, for the sake of simplicity, the term ratio
of diameter to length refers to the ratio of pore diameter to
enclosure length. To evaluate the effects of pore diameter,
three ratios of diameter to length of =0.007, 6=0.0135, and
5=0.03 are selected (case 4) and other numerical values are
reported in Table 5. Given the constant Sparrow and Nus-
selt numbers, and owing to Eq. (11), by decreasing the ra-
tio of diameter to length 6, the ratio of effective thermal
conductivity to the thermal conductivity of the PCM, k /k,
is increased. This increases the rate of heat transfer by the
conduction and increases the liquid fraction by decreasing
the & (see Fig. 14).

Increasing the conduction mechanism by decreasing the
ratio of diameter to length is also shown in Fig. 15.

According to this figure, it is observed that by decreasing
this ratio, along with increasing the liquid fraction, the melt-
ing front becomes flattered and its curvature decreases, which
means that the natural convection decreases.
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5- 5- Effect of Sparrow number

In order to compare the local convection with the conduc-
tion heat transfer, the definition of Sparrow number is used.
According to Eq. (11), the Sparrow number is obtained by
multiplying the Nusselt number, Nu, by the ratio of PCM
conductivity to equivalent thermal conductivity, k /k_times
the ratio of enclosure length to the pore diameter, L/d . In
this section, only the Sparrow number is changed and oth-
er dimensionless numbers are similar to the base condition.
Therefore, by changing the Sparrow number, only the ratio
of PCM conductivity to the effective thermal conductivity
will be changed. Accordingly, three Sparrow numbers equal
to 750, 12000, and 150000 are selected. Table 6 shows the
numerical parameters used in case 4.

The thermal conductivity of the porous medium to the
PCM, k/k, is obtained in these three Sparrow numbers ac-
cording to Table 7.
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Fig. 14. Variation of liquid fraction for the different ratios of diameter to length.
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Fig. 15. Position of Melting front for different diameter to length ratios at Fo=0.002.
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Table. 6. The detailed numerical values for all parameters used in case 4 (effects of Sparrow number).

£ 0 Pr Da Ra Ste

F, n Nuy T’

melt

Ty

0.8 0.0135 50 10 10® 1

0.068 1 59 0.3

0.501

Table. 7. Ratio of PCM conductivity to the effective thermal conductivity of the solid matrix corresponding to the
Sparrow number.
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Fig. 16. The liquid fraction variation with time for different Sparrow numbers.

Fig. 16 illustrates the liquid fraction variation with time
for different Sparrow numbers. By increasing the Sparrow
number, the thermal conductivity of the solid matrix decreas-
es. Hence, the conduction inside the enclosure is weakened
and consequently less PCM melts compared to the small
Sparrow numbers. Also in Fig. 17 the position of the melting
front at Fo=0.002 is shown for different Sparrow numbers. It
is quite clear that by reducing the Sparrow number, the melt-
ing front advances further, and more PCM melts. Also, as the
Sparrow number decreases, the curvature of the melting front
decreases. The reason for this is that by reducing the Sparrow
number and increasing the thermal conductivity of the porous
medium, the conduction mechanism is strengthened against
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the natural convection and thus the effects of natural convec-
tion that lead to the curvature of the front are reduced.

At the end of this paper, the effect of natural convection
on the melting rate of the PCM is investigated. To do this, the
results of the liquid fraction are compared in two cases with
and without natural convection and the deviation of liquid
fraction between these two conditions, D is defined as:

NC PC
p =L T 00 (3)

1
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Fig. 17. The position of the melting front at Fo=0.002 for different Sparrow numbers.

where superscripts of NC and PC refer to the natural con-
vection and pure conduction, respectively. First, the devia-
tion of the liquid fraction, D for different Sparrow numbers
and different Rayleigh numbers at Fo=0.003 and Fo=0.006
are presented in Fig. 18. As can be seen, the deviation of the
liquid fraction up to Ra=10% and Fo0<0.006 is almost zero.
But for Ra=108 a significant deviation for the liquid fraction
appears.

The reason for this is that by increasing the Rayleigh
number, the natural convection increases, and the melting
rate of the PCM is enhanced compared to pure conduction.
Also, by increasing the Sparrow number and reducing the
thermal conductivity of the solid matrix, the role of the con-
duction decreases, and therefore natural convection plays a
more important role which causes a deviation of liquid frac-
tion from the pure conduction. Next, the deviation of liquid
fraction for different Darcy and Sparrow numbers in two
dimensionless times is investigated. According to Fig. 19, it
is observed that by increasing the Darcy number, the devia-
tion increases because with increasing the Darcy number,
the permeability increases, and the heat transfer is enhanced

by the natural convection due to the strengthening of the
velocity field.

Also, over time, the deviation increases due to the in-
crease in the melting rate. The important point of the diagram
in Fig. 19 is that the deviation of the liquid fraction has a
maximum value for the Da=10~. The reason for ascending at
the beginning of the diagram is that by increasing the Spar-
row number and thus decreasing the thermal conductivity of
the solid matrix, the pure conduction is weakened, and there-
fore the deviation increases by increasing the Sparrow num-
ber. With a further increase in the Sparrow number and fur-
ther decrease of thermal conductivity of the solid matrix, the
heat transfer to the solid PCM becomes weaker, resulting in
a reduction of malting rate and consequently decrease of de-
viation of the liquid fraction. In other words, for the Sparrow
numbers larger than a certain value, the thermal conductivity
of the solid matrix controls the rate of melting, and for the
Sparrow numbers smaller than that, the natural convection
controls the rate of melting. For example, according to Fig.
19, for Da= 10 and Fo= 0.003, this critical value for Sparrow
number is 37500.
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Fig. 18. Deviation of the liquid fraction compared to pure conduction under different Rayleigh numbers and
different Sparrow numbers at Fo=0.003 and Fo=0.006.
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Fig. 19. Deviation of the liquid fraction compared to pure conduction under different Darcy and Sparrow num-
bers at F0o=0.003 and Fo=0.006.
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Fig. 20. Position of melting front for pure conduction and natural convection at Fo=0.003 and Da=10-2.

Fig. 20 shows a comparison between the position of the
melting front in two cases of pure conduction and natural
convection for Sp=37500 and Sp=225000 at Fo=0.003 and
Da= 102 In this figure, two shaded areas are seen for both
Sparrow numbers. Also, the position of the melting front in
the pure conduction condition is plotted in a vertical line. Due
to this figure, in both conditions, the liquid fraction deviates
from the net conduction. But for Sp=37500, the difference is
greater. As can be seen, in this case, the difference between
the area of the upper shadow and the lower shadow is large
which means that the effects of natural convection are high.
However, for Sp=225000, this difference has decreased, and
as a result, the net liquid fraction has approached the net con-
duction conditions.

6- Conclusions

In this study, the process of PCM melting in a porous
medium under the local thermal non-equilibrium condition
was investigated using the lattice Boltzmann method. For this
purpose, in addition to solving the velocity equations, two
energy equations were solved, one for the PCM and the other
for the porous medium. The effects of effective parameters
such as Rayleigh number, Sparrow number, porosity ratio,
and pore diameter to enclosure length were examined. Also,
the conditions where the role of the natural convection in
the melting process is weakened were studied. The results
showed that:

1. Itis seen that for small Rayleigh numbers (Ra<10°)
the rate of advance of the melting front at the top of the en-
closure is almost equal to the rate of lag at the bottom of the
enclosure, and therefore the amount of liquid fraction in these
conditions does not differ from the pure conduction. Also,
it is shown that with increasing the Rayleigh number, the
mushy zone becomes smaller and the temperature of the point
located in the center of the enclosure increases faster.

2. As the porosity decreases, the progress of the melt-
ing front increases but its curvature decreases. This is due to
the weakening of the natural convection as well as the reduc-
tion of the volume of the phase change material.

3. It is seen that by increasing the pore diameter, the
natural convection increases which cause the melting front to
bend, but the liquid fraction decreases.

4.  In the small Darcy numbers, the deviation of liquid

fraction from the pure conduction is always ascending func-
tion of the Sparrow number, but for the large Darcy numbers,
this deviation has a maximum value.
Finally, the following points can be suggested for future
studies. Here, a constant convective heat transfer coefficient
was used to apply the local thermal non-equilibrium
condition. Existing correlations can be used to approximate
the local heat transfer coefficient in terms of Prandtl and
Reynolds numbers. Also, the study of time-dependent
boundary conditions instead of the constant temperature can
show the effects of changes in the amplitude and frequency of
the boundary temperature on strengthening or weakening the
local thermal non-equilibrium condition.
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Nomenclature

Specific heat at constant pressure

Cs Lattice sound speed
D% Deviation percentage
Da Darcy number, Da=K/L?
dp Pore diameter
ei Discrete lattice velocity
En Enthalpy
fi Liquid fraction of the PCM
fi Density distribution function
F Body force per unit mass
F; Discrete body force
Fo Fourier number, Fo=oyt/L’
F. Forchheimer coefficient
g Acceleration due to gravity
gi Temperature distribution function
hy Volumetric heat transfer coefficient
J Equivalent kinematic viscosity to the
kinematic viscosity of the PCM
k Thermal conductivity
K Permeability
L, Latent heat of melting
L Characteristic length
m Mass
N Arbitrary distribution function
Interfacial Nusselt number based on
Nua e pore diameter, Nu, =h d 13 / ky
p Pressure
Pr Prandtl number, Pr = v, / a
3
Ra Rayleigh number, Ra = gﬂﬂ
Un%
hL’
Sp Sparrow number, Sp =
kd,
Source term due to local non-
Sr i e e ..
equilibrium condition
Su. Discrete source term to correct the
' energy equation
c, AT
Ste Stefan number, Ste = 4l
t Time
T Temperature
T, Mid-point temperature
u Velocity
v Temporal velocity
V Volume
V, Volume of the empty space
wi Weight factor
Xz Cartesian coordinates
Greek symbols
a Thermal diffusivity
S Coefficient of thermal expansion
y Free parameter in the equilibrium

distribution function
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Pore diameter to the characteristic

length
ot Time step
Ax Lattice space
& Porosity
Porous heat capacity to PCM heat
T capacity
v Kinematic viscosity
p Density
77, 7, Dimensionless relaxation time
Q Collision parameter
Subscripts
b Boundary
begin  Beginning of the melting
e Effective or equal
end End of the melting
f fluid
fl Liquid phase of the PCM
i The ith direction in a lattice
L Left wall
n Neighbor
R Right wall
ref Reference value
s Solid matrix
Superscript
eq Equilibrium
neq Non- equilibrium
* Dimensionless value
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