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ABSTRACT: This research work allocates to physical models in order to simulate real world results of 
the steam hammer at turbine multi-series pipeline in power plants. The aim of this study is to investigate 
the effect of a steam hammer on a steam turbine line and calculation the force on the shock absorber 
at the end of the main pipeline. For this purpose, the new theoretical model based on thermodynamic 
relationships and accurate calculation of wave speed propagation was developed and implemented into 
the physical model. The main achievement of this research is to present a simple and accurate theoretical 
model that can provide a bridge between hydro-mechanical data and estimates the impact force of the 
steam hammer on piping with less computational effort than finite element and a less costly setup than 
experimental models. The method of characteristics as a complement to the theoretical model was 
applied and compared. In this work, special attention is devoted to the study of the most relevant process 
parameters, with emphasis on their meaning, effects, and mutual interaction. The present paper organizes 
a theoretical model and numerical method of characteristics to predict steam hammer transients behavior 
in a multi-series pipeline. The initial results are promising and indicate the possibility of using the 
proposed simple yet, but efficient theoretical model than finite element models in terms of quality, cost, 
and time consumption of producing results.
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1- Introduction
The first research on the interaction mechanism between 

transient flow and pipe wall resistance considering fluid 
compressibility was done in the 19th century by Korteweg 
and Helmholtz [1, 2] and then other researchers based on the 
same principles developed their knowledge in the field of 
steam hammer [3]. Large long pipes nowadays in the modern 
world are widely used to transfer fluids, especially in power 
plants. High pressure and flow due to the rapid closing of 
the control valve and consequent steam hammer affect the 
fluid flow inside these pipes. The force caused by the impact 
of the steam hammer damages the piping if exceeds the 
bearing threshold of pipe walls. Therefore, understanding the 
mechanism of the steam hammer and calculating the force 
caused by the steam hammer is a necessity. Steam hammer is 
a term that refers to the transient pressure peaks which occur 
in a pipe when there is a rapid change in the flow velocity 
within it. Fig. l illustrates how a velocity change caused by 
an instantaneous closure of a gate at the end of a pipe creates 
pressure waves traveling within the pipe. Initially, steam 
flows at some velocity 0v  as shown in (a). When the gate 
is closed, the steam flowing within the pipe has a tendency 
to continue flowing because of its momentum. Because 

it is physically prevented from so doing, it piles up behind 
the gate; the kinetic energy of the element of steam nearest 
the gate is converted to pressure energy, which slightly 
compresses the steam and expands the circumference of the 
pipe at this point (b). This action is repeated by the following 
elements of steam (c), and the wavefront of increased 
pressure travels the length of the pipe until the velocity of the 
steam 0v  is destroyed, the steam is compressed, and the pipe 
is expanded its entire length (d). At this point, the steam’s 
kinetic energy has all been converted to strain energy of the 
steam (under increased compression) and strain energy of 
the pipe (under increased tension). Because the steam in the 
reservoir remains under normal static pressure but the steam 
in the pipe is now under higher pressure, the flow reverses 
and is forced back into the reservoir again with velocity 0v  
(e). As the steam under compression starts flowing back, the 
pressure in the pipe is reduced to normal static pressure. A 
pressure unloading wave then travels down the pipe toward 
the gate (f) until all the strain energy is converted back into 
kinetic energy (g). However, unlike case (a), the steam is 
now flowing in the opposite direction and because of its 
momentum, the steam again tries to maintain this velocity. 
In so doing, it stretches the element of steam nearest the 
gate, reducing the pressure there and contracting the pipe 
(h). This happens with successive elements of steam and a 
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negative pressure wave propagates back to the reservoir (i) 
until the entire pipe is under compression and steam under 
reduced pressure (j). This negative pressure wave would have 
the same absolute magnitude as the initial positive pressure 
wave if it is assumed that friction losses do not exist. The 
velocity then returns to zero but the lower pressure in the pipe 
compared to that in the reservoir forces steam to flow back 
into the pipe (k). The pressure surge travels back toward the 
gate (e) until the entire cycle is complete and a second cycle 
commences (b). The velocity with which the pressure front 
moves is a function of the speed of sound in steam modified 
by the elastic characteristics of the pipe material. In reality, 
the penstock pipe is usually inclined but the effect remains 
the same, with the surge pressure at each point along the pipe 
adding to or subtracting from the static pressure at that point. 
In addition, the damping effect of friction within the pipe 
causes the kinetic energy of the flow to dissipate gradually 
and the amplitude of the pressure oscillations to decrease 
with time [16].

Theoretical and practical studies of transient fluid flow in 
the pipe have been of interest to many researchers in the last 
hundred years4] ]. A number of researchers have also studied 
the phenomenon of water hammers according to the literature 
review mentioned as follows. Bayoumy and Papadopoulos 
[5] developed a method for analyzing steam hammers through 
a hot turbine power plant using commercial software from 
Caesar and PipeNet. The purpose of this research is to assist 
design engineers in the dynamic analysis of steam pipelines. 
Cao and Nistor [6]  used a multi-step approach to investigate 
water hammers using the method of characteristics. They 
used the monolithic perspective and Gauss-Seidel algorithm 
and showed that the accuracy of problem solving is increased 
by using the integer values for the Courant number. In the 
next study [7], they used the asymmetric finite element 
method to analyze water hammer impact and the principle 
of mass and energy stability that are applied to determine the 
internal pressure distribution of the pipe and the temporal 
dependence of fluid energy using the finite element model. 
Chong et al. [8] proposed the Condensation Induced Water 
Hammer (CIWH) method for investigating the flow regime 
of condensed fluid under the influence of a water hammer 
in oscillating states and different pipe lengths. The criterion 
was to predict the flow regime from alternating to non-
alternating state. Pham and Choi [9] simulated the effect of 
a steam hammer on steam pipes using the Computational 
Fluid Dynamics (CFD) method. The model includes energy 
and phase change equations and the Phyton algorithm is used 
to measure temperature and pressure changes results show 
that faster water flow reduces the impact of steam rams. 
Henclik [10] used a Shock Response Spectrum (SRS)-based 
numerical method to analyze water Hammer impact. Then 
the obtained data is compared with the experimental data to 
verify the results. The study showed an acceptable agreement 
of the results.

As can be concluded from previous research, the Method 
Of Characteristics (MOC) and the Finite-Element Method 

(FEM), or a combination of both, are the most common 
numerical methods used for solving the one-dimensional 
water Hammer impact. A different coupling approach consists 
of setting up an interaction between two different computer 
codes, one specific for the fluid and another for the structure. 
In each time step, the output information is transferred in both 
directions. There are contributions proposing methodologies 
to carry out this data transfer. However, the main challenge 
of this approach is the requirement of considerable 
computational effort, time consuming, and data transfer [3]. 
Furthermore, only a few authors investigated anchor and 
support behavior in the context of water hammer theory. In 
addition, understanding the governing equations that are in use 
in steam hammer research and practice and their limitations is 
essential for interpreting the results of the numerical models 
that are based on these equations, for judging the reliability 
of the data obtained from these models, and for minimizing 
misuse of water hammer models. Therefore, this research 
work aims to fill these gaps. 

This research attempts to provide a simple yet, but an 
effective and approximate tool in terms of low cost, high-
quality results, and low computational effort that can provide 
a bridge between hydro-mechanical data in the process of 
steam production. In addition, the Proposed model estimates 
the steam hammer force distributed in the multi-series pipeline 
by simplifying the real data model in the shortest possible time 
and lower cost than finite element or experimental models 
by entering the steam and piping parameters. The method of 
characteristics as a complement to the proposed theoretical 
model was applied and compared. The MOC method is a 
simple, accurate, effective numerical analysis method for 
analyzing one-dimensional transient currents with a constant 
pressure wave. 

This paper is organized as follows, Section 2 introduces 
the proposed numerical MOC model. Section 3 presents 
the proposed theoretical model. Section 4 demonstrates the 
geometry of the physical model. Computational experiences 
are shown in section 5. Finally, section 6 outlines the findings 
and draws conclusions

2- Numerical MOC Model
A list of the symbols used in this research work and the 

according meanings is composed in Table 1. Joukowsky [11]  
who was the founder of the basic theoretical equation of water 
hammer states the amount of pressure changes as follows [4]
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where c  is the wave speed, ρ is fluid density, and V is 
fluid velocity.

At fluid velocities much lower than the velocity of sound, 
the momentum continuity equation for fluid flow is given 
below [16]:
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Fig. 1. Steam hammer transient 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Steam hammer transient

Table 1. list of Symbols and descriptions.
Table 1. list of Symbols and descriptions. 

 
Description Symbol Description Symbol 

Circular natural frequency n  Fluid pressure  P  

Natural frequency nf  Fluid velocity V  

Period of vibration '
n  Fluid temperature T  

Damping coefficient nC  Fluid density   

Critical damping ratio   Wave speed C  

Pipe diameter D  Friction factor f  

Pipe length L  

Result of the global constant 

division of gases on molecular 

mass 

r  

Young modulus E  Reduced pressure    

Unit weight of pipe length W  Reduced temperature   

Inertia of the pipe cross section I  Force F  

bulk modulus   k  Valve close time vctt  
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The water hammer classical equation neglects fluid 
compressibility. In this research, the equations for studying 
the transient fluid flow behavior along with the boundary 
conditions are analyzed and extracted. Accurate analysis 
of water hammer is completely dependent on accurate 
measurement of the friction of the pipe wall with the fluid. For 
this purpose, the Darcy-Weisbach equation is used according 
to the following equation [16].
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where ( )f t  is Darcy-Weisbach friction factor. Various 
unstable flow friction models have been considered for better 
adaptation to real results.

The transient flows continuity and momentum equation in 
a pipe can be described as [16]:
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where distance ( x  ) and time (t ) are both independent 
variables but the pressure ( P ) and flow velocity (V ) are 
two dependent variables. The other variables are assumed not 
to vary with time.

1 2L L Lλ= + ,  is linear combinatory of Eqs. (4). where 
λ  is a linear coefficient. By repositioning the combination 
the following equation is obtained,
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By total derivatives for the flow speed and pressure as 
follows,  unknown coefficient λ  is solved and Eq. (8) is 
derived:
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In order to calculate the pressure and velocity of the flow, 
it is necessary to know the initial conditions in the first step. It 
should be noted that the friction losses in the above equation 
are nonlinear and are therefore considered constant flow 
velocities in engineering applications. If the results obtained 
are not acceptable, a shorter time period should be considered 
[16]:
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The above equations are suitable for programming, and 
the index i and index j are the time variables shown in Fig. 2.
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By rewriting Eq. (13) boundary conditions are organized 
at 1x =  and rewriting Eq. (14) the boundary conditions are 
organized at 0x = . Values for all nodes between boundary 
conditions are obtained by combining Eqs. (13) and (14) 
using Eqs. (15) and (16).
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The flow equation for the boundary condition is:
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By rewriting Eq. (14):
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By inserting Eq. (18) into Eq. (17) and rewriting:
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By solving Eq. (19):
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Eq. (20) is applied for the boundary at x  = 0.
The boundary condition near valve at discharge end of 

conduit:
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The loss coefficient ( LK ), the flow velocity in the full 
conduit area A  is rough estimated by:
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In this equation, vC is the reduction coefficient equal to 
1 for a smoothly curved entrance and ( )v vC a t  is the vena-
contracta area. The same approach is implemented for Eq. 
(13) [16]:
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By solving the above equations, 
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The proposed MOC method flowchart is presented in Fig. 3.
The IAWPS-IF 97 formula [13] is the basic equation 

for calculating the sound speed in steam. This equation 
is dimensionless and has two parts for calculating the free 
energy of Helmholtz ( , )f p T  and the free energy of Gibbs 

( , )g p T . The basic equation for Gibbs’ free energy is 
expressed in a dimensionless manner as follows:
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In this equation, p  is pressure, T  is temperature, r  is 
the result of the global constant division of gases on molecular 
mass, π  is reduced pressure, and τ  is reduced temperature. 
The function ( , )γ π τ  is defined by International Association 
for the Properties of Water and Steam (IAPWS) and the speed 
of sound is obtained from the following equation:
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The visual solution of the above equation is shown in Fig. 4 [13].
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Fig. 3. Proposed MOC method flowchart Fig. 3. Proposed MOC method flowchart
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3- Theoretical Model
To understand pipe failures due to steam hammer, the 

dynamics of generalized stresses require consideration. In 
this section, the equations governing the elastic stresses on 
the pipe are explained in successive steps. First, the equations 
for the temporal response of the induced vibration are 
expressed. Then, in the next step, the equations for temporal 
response to transient vibration related to impact excitation 
and sloping excitation are described. The dynamic response 
to an oscillating stimulus according to Newton’s second law 
is as follows [17]:
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nω  is the circular natural frequency, nf is the natural 
frequency, '

nτ is the period of vibration, nC is the damping 
coefficient, and ζ is the critical damping ratio. Damping 
and frequency effects can be described using a free vibration 
equation [17]. Accurate damping coefficient based on 
Hadjian’s [15]  experimental data is obtained. This data is 
from tests performed on the steam pipes of the power plant is 
attained. Statistical data have shown that welding, insulation, 
the liquid inside the pipe as well as various loads such as 
valves affect the damping coefficient. Hajian’s equation gives 
a more accurate estimate than the code ASCE-43:
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where D is the nominal pipe diameter, 0R = if yielding 
occurs, 1R =  if there is no yielding, 1FM =  for the first 
mode, 0FM =  for all other modes, 1LD =  if there are 
equipment or loads on the pipe, and 0LD =  for no loads on 
the pipe. The general solution for the response to a suddenly 
applied force is then expressed as [17]

 
Fig. 4. Values for the speed of sound in steam and in steam in a P–T diagram [13]. 
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By the way, the general solution for the response to a 
ramp applied force with 1t  duration is  stated  by [17]:
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The dynamic magnification factor for a step response 
is initially stated in terms of the Percent Overshoot (P.O.). 
The structural damping coefficient ratio can be calculated as 
follows [17]:
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The dynamic stress expression prepares a reduced 
expression for the response of simple systems¸ such as 
conduit¸ bars¸ or pipe supports. A common expression for the 
DMF of a single Degree of Freedom (DOF) structure is [17]
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Where "( ) ( )V t S t=  step ¸ ( )I t  impulse ¸ ( )R t
ramp ¸ or ( )C t harmonic responses may be derived as 
required from Harris and Piersol [14]. The step response is 
an important  dynamic stress equation for this work¸ so that 

the step response draws suddenly applied constant loads to 
conduits that are characteristic of some steam hammer loads 
to outcome [17]
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If coordinate axes are neglected to simplify discourses and 
explanations but Triple axial vibrations need attention. For 
instance¸ the step vibration response of Eq. (36) is rewritten 
as [17]
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Where j describes axial directions¸ and , ,j x y z=
.  The fact is that vibrations in a structure are coupled 
vibrations. The vibrations need to be uncoupled to implement 
the dynamic stress equation. Otherwise, matrix techniques 
must be employed to analyze vibrations [17]. 

In this stage, we will consider the one-dimensional 
wave propagation equation via the method of standing 
variables including one that is a Fourier series. The wave 
speed equation is applicable to waves in gases, fluids, or 
solids. In fact, the wave speed equation can be used to derive 
vibration equations, which is appropriate since shock waves 
on structures induce vibrations. The general form of the wave 
speed equation in elastic materials is frequently referred to as 
the D’Alembert equation and is expressed as 
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Furthermore, we will then consider traveling wave 
solutions of this wave equation, including one that is a Fourier 
series. A common sine wave with wavelength 2 / kλ π= , 
amplitude B , traveling with speed c  is
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This formula  gives a sinusoidal curve and other shapes 
can be made from an added of sines and

cosines. The square wave, defined by
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This can be explained by the sum of sine waves
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This special square wave only contains all 4th term, the 
n  = 3 to 9 terms are zero except 6n = is non-zero and so 
forth. Initiate with this square wave moving with speed c  at 

0t = is acquired by reducing ct from x in the argument of 
the sine waves, i.e.,
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The first few terms are
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The net shaking force at each piping leg is taken as the 
difference in the pressure existing at both ends of the pipe 
leg under consideration. The maximum shaking force, maxF
, is determined by the length of the leg. If the length of the 
leg is greater than the sonic velocity times the effective valve 
close time, the maximum shaking force is the same as the 
maximum surge force, tF . If the leg length is shorter than 
the sonic velocity multiplied by the valve closing time, the 
maximum shaking force is determined by direct proportion 
as:
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where ijl  is the length of the pipe leg located between 
point i  and point j . Then induced force by steam hammer 
can be calculated by:
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4- Proposed Pipeline Model 
For analysis of steam hammer in multi-series steam 

turbine pipeline using proposed theoretical model and method 
of  characteristics¸ the piping system shown in Fig. 5 has been 
used.

The specifications of this model are as follows:
 -Pipe Material: Low Carbon Steel
 -Fluid inside the pipe: hot steam
 -Fluid temperature: 750 °F
 -Fluid pressure: 500 PSIA
 -Insulating pipe: C.S. (Special type of glass fiber 

reinforcement composite)
 -Reference Standard: ASME B31.1
 -Permissible ambient temperature stress of pipe steel: 

17¸000 PSIA
 -Permissible working temperature stress of pipe steel: 

10950 PSIA
 -Fluid speed inside the pipe: 45 ft/s

Table 2 shows the list of components of the Piping System 
as shown in Fig. 5. The proposed piping system layout is 
based on the actual steam production line from the boiler 
to the steam turbine. The model is designed based on the 
code ASME B31.1. This model has four series¸ each series 
is divided into a number of segments. Each segment is also 
located on rigid supports. In order to increase the flexibility 
of leg #1, fixed support is omitted at the end of leg #1. At 
the end of leg #1, a snubber (shock absorber) is used to 
absorb the shock caused by the steam hammer. One of the 
practical goals of this research is to estimate the force exerted 
on this shock absorber. The length of each segment in order 
to increase the computational accuracy should be selected 
based on preventing segments’ rigidity and geometric shape 
loss due to excessive bending. For this purpose¸ according to 
the code, ASME B31.1¸ maximum length of each segment is 
determined by:
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Fig. 5. The proposed Multi-segment pipeline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The proposed Multi-segment pipeline.

Table 2. List of Fig. 5 piping system elementsTable 2. List of Fig. 5 piping system elements 

Length ft. OD 12.75 in 

Wall THK 0.688 in 
To Node From Node 

4 20 10 

20 

30 

40 

50 

60 

12 30 

13 40 

8 50 

1.42 60 

1.42 70 

8.5 80 70 

Leg #1 

12 90 80 

12 100 90 

12 110 100 

12 120 110 

12 130 120 

12 140 130 

12 150 140 

12 160 150 

12 170 160 

12 180 170 

18 190 180 
Leg #2 

36 200 190 

18 210 200 
Leg #3 

12.5 220 210 

13.75 230 220 Leg #4 
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Where E ¸ I ¸ W and ∆ are the young modulus¸ the 
inertia of the pipe cross section¸ W  unit weight of pipe 
length and permissible pipe mid-deflection respectively. 
According to code ASME B31.1¸, the maximum allowed 
mid-deflection is less than 0.1 inches. 

5- Results and Discussion 
This study attempts to calculate accurately the dynamic 

force of the steam hammer caused by the fluid transient of the 
sudden closure of the flow control valve. The closing time of 
the pneumatic valve is considered 10 milliseconds. For this 
purpose¸ the proposed MOC numerical model programmed 
in MATLAB software and proposed piping layout were 
implemented. The obtained results are compared with the 
proposed theoretical model. At first, the compared Pressure 
wave propagation by different computational tools for 
pipeline #1 is drawn as shown in Fig. 6. Pressure wave (for 
an instantaneous valve closure) calculated with Joukowsky’s 
fundamental equation of steam hammer.  If the steam hammer 
only affects the steam, the wave speed would be the speed 
of sound in steam. However, the elastic pipe expands due to 
the increased pressure, sending out a wave in the structure as 
well. The structural wave is approximately four times faster 
than the one in the fluid. This causes an interaction between 
the fluid and the structure, resulting in a slower wave speed 
than the sonic speed in steam.

Flowmaster software was also used for further validation. 
Flowmaster is an advanced Computer-Aided Engineering 

(CAE)/CFD Virtual Systems Modelling tool that enables 
engineers to model the most challenging transient hydraulic 
problems in complex systems. Flowmaster’s Transient 
module provides the capability to model time-dependent 
events in a real flow situation. To enable Transient modeling 
additional data is required for certain components. The wave 
speed suggested by  Flowmaster is calculated from:
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where ρ = liquid density, k = bulk modulus of liquid, 
D = pipe internal diameter, t = pipe thickness, E =
Young’s Modulus of pipe material, and φ  is pipe restraint 
factor. Flowmaster provides the rigid and elastic pipe models 
for simulating pipes in a Transient simulation. Elastic pipe 
models the full elastic behavior of a pipe containing a liquid 
in motion (or which can be set in motion). Therefore, in this 
research work, the elastic model is proposed and the method 
of characteristics is used. Therefore, it is required to define a 
distance-time grid for all elastic pipes in the network. In order 
to simulate in Flowmaster, pipeline layout implemented, 
wave speed and valve data input and output data established. 
The results for the first cycle are shown in Fig. 7 and 8. Fig. 7 
shows the calculations for series number one and Fig. 8 shows 
the same parameters for series number two. As shown in the 
figures, the results of all three methods are well matched by 
a 7% difference. The waveform in series two has changed 
compared to series one. In this series, the difference between 
the theoretical method and the other two methods in terms of 
form and amplitude increased, but still shows an acceptable 

 

Fig. 6. The compared Pressure wave propagation - time by different computational tools- 
pipeline #1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The compared Pressure wave propagation - time by different computational tools- pipeline #1.
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Fig. 7. The compared head force - time on different computational tools- pipeline #1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The compared head force - time on different computational tools- pipeline #1.

 
 

Fig. 8. The compared head force - time on different computational tools- pipeline #2. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The compared head force - time on different computational tools- pipeline #2.
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agreement by a 9% difference. Another important point is 
that the theoretical method has a pre-phase compared to other 
methods. In other words, it peaks faster and decreases faster. 
This seems to be due to the lack of friction consideration in 
the theoretical model.
For keen readers, the behavior of the theoretical model set 
against time and place simultaneously may be interesting. For 
this purpose, the pressure head diagram in terms of time and 
relative position along the pipe is presented in Fig. 9. 
The behavior of a wave function based on both time and 
distance as can be seen from Fig. 8, is sinusoidal. The 
frequency in terms of time is much higher than the frequency 
in terms of distance. It also changes shape as the wave travels 
over the distance. This is confirmed by the difference in the 
waveform in Fig. 8 compared to Fig. 7.
From another perspective, one of the objectives of this 
research is to calculate the dynamic inductive force from the 
steam hammer to the shock absorber. This shock absorber is 
located at the end of series one. The force applied to this shock 
absorber is obtained from Eq. (46), which Equals 2731 lbf. In 
order to validate the mentioned force, the pipeline model has 
been simulated in CAESAR software and the obtained force 
has had only a 4% error from the theoretical model.

6- Conclusion
The aim of this study is to study the effect of a steam hammer 
on a steam turbine multi-series line and calculation the force 
on the shock absorber at the end of the main pipeline by low 
computational effort and less costly setup. The goals of this 
research are:
- Accurate calculation of wave speed propagation is 
constructed.

- A simple yet, but effective and approximate tool that can 
provide a bridge between hydro-mechanical data in the 
process of steam production is provided. 
- The steam hammer force is distributed in the piping by 
simplifying the real data model quickly estimated.
- proposed theoretical model overcomes the drawback of the 
method of characteristics in terms of computational effort and 
experimental methods in terms of costly and labor-intensive 
setup.
- For more reassurance, results are compared with the 
MOC method and Flowmaster package. Results show good 
conformity in series one by %7 difference and acceptable 
agreement in series two by 9% difference respectively with 
the proposed theoretical model. 
- Moreover, In order to validate the obtained steam hammer 
force, the pipeline model was simulated in CAESAR software 
and the result has only a 4% error from the theoretical model.
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