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ABSTRACT: This paper proposes an efficient meta-heuristic method called expert groups’ optimization 
algorithm. The method strategy relies on four principles and starts from a random initial population. The 
population members are divided into two expert groups: the free group and the guided group. Each 
group has specific tasks for effective domain search, but with one new operator. This operator has an 
intelligent mechanism so that exploration and exploitation of the population can lead the members to the 
global optimum. The new method is validated through a standard test function. Then its performance is 
evaluated in the application of an inverse geometric reconstruction and the results are compared with a 
genetic algorithm, particle swarm optimization, and mean-variance mapping optimization. Results show 
that the new method outperforms the alternative methods in convergence rate and reaching the global 
optimum. Finally, the expert groups’ optimization algorithm performance is evaluated in an engineering 
problem with high computational cost. In this case, the goal is drag coefficient minimization of the RAE 
2822 airfoil in transonic flow at a fixed lift coefficient with constraints on the pitching moment and 
airfoil area. An unstructured grid Navier-Stokes flow solver with a two-equation turbulence model is 
used to evaluate the aerodynamic objective function. The results show that the optimal solutions obtained 
by the new method outperform those of mean-variance mapping optimization with considerably faster 
convergence. 
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1- Introduction
Many optimization search algorithms have been devel-

oped in recent years. Genetic Algorithm (GA) is one of the 
most powerful methods developed by J. Holland in the 1960s 
and 1970s. GA evolves a population of candidate solutions 
for defined objective function using operators inspired by 
natural genetic variation and natural selection [1]. GA can be 
used to solve various optimization problems, especially those 
including issues in which the objective function is discon-
tinuous, non-differentiable, stochastic, or highly nonlinear. 
Simulated Annealing (SA) was developed by S. Kirkpatrick 
et al. [2] in 1983 inspired by the annealing process of metals. 
F. Glover [3] was the first to use memory in the meta-heuristic 
methods in Tabu search. The search history records in a Tabu 
list in this method and future moves should avoid revisiting 
previous solutions. In 1992, M. Dorigo et al. [4] proposed a 
new algorithm called Ant Colony Optimization (ACO). This 
search technique uses pheromone as a chemical messenger 
and builds solutions by mimicking the foraging behavior of 
ants. Such methods are inspired by collective animal behav-
ior known as Swarm Intelligence (SI) methods. Another SI 
algorithm with significant progress in meta-heuristic algo-
rithms is Particle Swarm Optimization (PSO) by J. Kennedy 
and R. Eberhart, which gleaned ideas from swarm behavior 

of bird flocking or fish schooling [5]. PSO has attracted much 
attention and applied to many optimization problems. One 
of the critical features of GA and PSO is that they search the 
design space from a population of members rather than a spe-
cific one, resulting in a higher likelihood of finding the glob-
ally optimized point. Additionally, they use only the objec-
tive function and do not require its derivatives. Such features 
make GA and PSO attractive for practical engineering appli-
cations like aerodynamic shape optimization [6-9]. Although 
these methods are very successful in finding the global opti-
mum, their major disadvantage is that they require thousands 
of function evaluations to arrive at solutions with reasonable 
quality and impose a lot of computational costs, particularly 
when time-consuming fitness evaluation methods such as 
Computational Fluid Dynamics (CFD) are used.

At the turn of the 21st century, more diverse meta-heuris-
tic methods were inspired by nature. Harmony search [10], 
imperialist competitive [11], gravitational search [12], cuck-
oo search [13], grey wolf optimizer [14], whale optimization 
algorithm [15], harris hawks optimization [16], atom search 
optimization [17], and equilibrium optimizer [18] are some 
of these abundant meta-heuristic algorithms. As can be seen, 
significant efforts have been made to develop efficient meth-
ods for global optimization. However, most of these methods 
are not specifically developed to optimize computationally *Corresponding author’s email: ajahan@aut.ac.ir
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expensive functions and perform poorly when faced with 
limitations on calling the objective function. They usually 
perform by evolving a population within a relatively large 
number of fitness evaluations, which could impose an ex-
traordinary computing effort. 

Many researchers have proposed surrogate-assisted op-
timization algorithms to address the problems of expensive 
optimization. They often use a surrogate method to calcu-
late the objective function with a lower computational cost 
than the original. These methods are widely used in industry; 
however, the user’s main problem is that achieving sufficient 
accuracy to estimate the main objective function is often chal-
lenging and error-prone. A review of surrogate-based global 
optimization methods for computationally expensive func-
tions is available in Ref. [19].

There are fewer methods to optimize computationally ex-
pensive functions. Tanweer et al. [20] developed an Improved 
Self-Regulating Particle Swarm Optimization Algorithm (iS-
RPSO) for solving computationally expensive numerical op-
timization problems.  In the iSRPSO algorithm, the last two 
minimum particles use different learning strategies to update 
speed. These particles are updated from the best particle and 
the following three particles in search of better solutions. One 
of the best methods in this field is Mean-Variance Mapping 
Optimization (MVMO). This method is the best perform-
ing algorithm of the expensive optimization competition in 
CEC2015. MVMO is a novel population-based stochastic op-
timization algorithm developed by Rueda and István Erlich 
[21]. The main features of this evolutionary method are in 
the adoption of a single parent-offspring pair approach along 
with a normalized search space in the range [0, 1] for all op-
timization parameters, as well as in the use of a statistical 
analysis of the evolving solution based on a mapping func-
tion. The mapping function is based on the mean and vari-
ance of the current best population, and it applies to mutating 
the offspring. At each iteration, MVMO updates the candi-
date solution around the best solution. As the search process 
progresses, the shape and location of the mapping curve are 
adjusted. Therefore, this method adaptively shifts the search 
priority from exploration to exploitation. Although the perfor-
mance of the MVMO is acceptable, it is very complex. Some 
researchers have proposed a hybrid optimization algorithm. 
Hybrid Firefly and Particle Swarm Optimization Algorithm 
is one of these methods that retain the strong points of the 
combined algorithms [22]. Li et al. [23] developed a Three-
Level Radial Basis Function (TLRBF)-assisted optimization 
algorithm. This method includes three search methods per 
iteration: global exploration search, subregional search, and 
local exploitation search. These methods create solutions by 
optimizing a global Radial Basis Function (RBF) approxima-
tion function in the whole search space, in a sub-region, and 
in the neighborhood of the best current solution, respectively. 
This method also uses three different algorithms to imple-
ment different search methods and has eleven parameters 
that need to be tuned. These factors cause its users to face 
special complexities and difficulties. Hence, developing more 
straightforward and more efficient optimization methods that 

require a limited number of function evaluations is still an 
open research issue. 

The main contribution of the present work is that, in-
stead of being inspired by nature, some common principles 
are carefully defined or selected to develop the new method. 
Then, a fast and efficient optimization procedure is proposed 
based on these principles. The developed method expects to 
work well, particularly for optimizing the computationally 
expensive functions. Details of the new method are presented 
in the next section, and its performance will be evaluated 
against three standard test functions, a geometry reconstruc-
tion case, and finally an aerodynamic optimization problem.

2- Expert Groups’ Optimization Algorithm (EGOA)
2- 1- The optimization principles

Natural phenomena inspire most meta-heuristic methods. 
However, the main parameter in the succession of a search 
algorithm is its search principles. In this work, the main prin-
ciples are defined as follows:

I. All operators should work randomly (or have a ran-
dom component) to maintain the generality of the method.

II. All population members should have an active and 
specific role in objective function improvement, and superior 
members should improve as much as possible in each genera-
tion.
III. The optimization method should compromise ex-
ploration and exploitation to search all domain regions and 
gradually focus on the global optimum. 
IV. The relationship between members of the popula-
tion in successive generations should be so that each member 
can obtain the maximum benefit from the information of prior 
generations.

Our observations indicate that different meta-heuristic 
methods vary concerning their commitment to these prin-
ciples, and more commitments to them cause more success 
in the optimization method. Therefore, we try to develop an 
effective method based on the mentioned principles to opti-
mize computationally expensive functions.

2- 2- Algorithm steps
The proposed optimization algorithm is a random pop-

ulation-based method during which the population is split 
into two expert groups called free search and guided search 
groups, each includes a specific duty to perform its specified 
role. Both expert groups use a single comprehensive opera-
tor that can manage the balance between the exploration and 
exploitation of the members. Fig. 1 shows the flowchart of 
the proposed algorithm.

The proposed method starts from a random population 
that uses normalized search space within the range [0, 1] for 
all optimization variables. The initial population forms the 
basis of the search and, therefore, dramatically affects the 
search process. The heterogeneous initial population can re-
sult in search difficulty or even lack of search in some areas. 
In addition, if one or more variables are in the order of the 
truncation error, it can cause problems in the operation of the 
method. Therefore, using normalized search space in the ini-
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tial population makes the magnitude of the various dimen-
sions in the same order, and all dimensions are searched simi-
larly and without discrimination. After generating the initial 
population, their objective functions are calculated.

In the second step, members are sorted according to their 
fitness, and the best member is passed on to the next gen-
eration without any changes. Next, a selection pool is made 
that filters weak population members by only the top half of 
the members that will be duplicated. Our numerical experi-
ments showed that the presence of weaker population mem-
bers within the future generations results in slower progress 
towards the global optimum. 

The population is divided into two expert groups within 
the third step: free search group and guided search group. One 
of the most important reasons for establishing expert groups 
is to compromise between exploration and exploitation ap-
propriately. The expert groups can ably manage their mem-
bers.  The free search group is an expert in exploring the do-
main, while the guided search group is an expert in directing 
the population to the global optimum regions. An important 
question here is the population of each group for the efficient 
implementation of the method. Here a simple strategy fol-
lows to allocate more population for the free search group in 
the early generations. Then they migrate to the guided search 

group until the end of the method (principle III). A simple 
trend that showed satisfactory results is the linear function, as 
illustrated in Fig. 2. The use of groups’ variable populations 
helps EGOA handle the difficulties of balancing between ex-
ploration and exploitation.

 
Fig. 1. Flowchart of the EGOA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flowchart of the EGOA.

 
Fig. 2. Population migration from free search group to guided search group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Population migration from free search group to 
guided search group.
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In the next step, two random permutation members are 
selected from the selection pool to produce new group mem-
bers. This random permutation results in the new member 
parent being non-duplicate and all members of the selection 
pool selected precisely twice. The ‘comprehensive operator’ 
is then applied to the variables of the selected random mem-
bers to generate the new members. This operator comprises 
two components: the combination part and the unbalance 
part (see Eq. (1)). The combination part is the same for both 
groups, but the unbalance part is specific to each group. The 
operator selects two random members from the selection pool 
and combines the variables of these members with a particu-
lar proportion. Then a perturbation value is added according 
to the relationEquations typed in MathType Equation number Page 
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Where 
1
nX  and 

2
nX  are the values of the specific vari-

able corresponding to the first and second member chosen 
randomly from the selection pool (Principle I) and n  is the 
number of generations, 1c  and 2c are the ratios of the com-
bination of two member variables, unbalance is a component 
that is dedicated to each group and explained in the follow-
ing. This unbalance component should be applied randomly 
to the combined part of a few variables (for example, 10 to 20 
percent of variables).

In this operator, according to a rational rule, it attempts to 
somewhat move the new members to the best areas found by 
their parents. The better the value of the objective function, 
the more prone that area is considered, and the population 
is directed to that area. Hence, the ratios of the combination 
of two member variables have a reverse relation with the dis-
tance of their fitness to the current best fitness. The ratio of 
the combination of the first member variables formulated as
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Where 1fitness  is the first member fitness, 
2fitness is the 

second member fitness, and  best fitness is the best fitness of 
all members at the current generation ( )n . The combination 
proportion of the second member will be also
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In Eqs. (2) and (3), the combination method means that 
any member closer to the current best member contributes 
more to creating the new member. This combination method 
leads to a move towards the superior members of the previous 
generation and may improve the best members (Principle II). 
On the other hand, it preserves the effect of weaker members 
in the generation of new members. Therefore, to some extent, 
this combination method helps prevent early convergence 

around the local optimums (Principle III). The unbalance 
component of the free search group and guided search group 
can be formulated as
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Where r is a normally distributed random number (Prin-
ciple I), fb is the free group unbalance bound, gb is the guid-
ed group unbalance bound, and  nbest X  is the best member 
variable values of the current generation. In EGOA, there 
are only two main internal parameters that must be adjusted: 

fb and gb .
Eq. (4) indicates that the free unbalance term consists 

of a random number (r) and an unbalance bound ( )fb . The 
random number is the essence of disturbance in unbalance 
terms and causes randomness (Principle I). The free search 
via its randomness can help the method not trap the local op-
timum and resolve early convergence. Another component is 
the unbalance bound, making it possible for the free group to 
search freely in a specific bound. Large values of unbalance 
bound increase the search scope and help the method explore 
across the field not be trapped in the local optimum, while 
small values limit the search scope and help the method con-
verge to a particular position. It should be noted that the free 
search does not mean a random search across the domain, 
but it spreads the unbalance component around the combined 
part of the operator. This method preserve the information 
connection of the population with the previous generation. 
Hence the members of the new generation continue to benefit 
from the accumulation experience of previous generations 
(Principle IV) and avoid wasting a lot of computational costs 
in irrelevant areas.

Eq. (5) shows that the guided unbalance consists of three 
components: a random number ( )r , an unbalance bound 
( )gb , and a differential component ( )1  n nbestX X− . The ran-
dom number and the unbalance bound the same role as in 
the free unbalance component. However, the magnitude of 
unbalance bound can be varied in each group. The unbalance 
bound values of the two groups should be adjusted to com-
promise between exploration and exploitation of the popula-
tion (Principle III). We applied a variety of fb and 

gb  values 
and found that the intervals of (0.1 to 0.2) and (0.005 to 0.03), 
respectively, give the best performance for different test func-
tions. Note that choosing a larger bound practically causes 
members to spread throughout the field with fewer restric-
tions, which takes the proposed method away from the goal 
of using the information of the previous generation (Principle 
IV). Although this bound may seem limited, the existence of 
a random initial population, the existence of a random com-
ponent in all method operators, the allocation of more search 
members to the free group in the early generations, and the 
continuation of the free group search until the end of the op-
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timization process, makes the method to effectively explore 
all potential areas. The other component that is the main dif-
ference between the two groups is the differential compo-
nent. This component leads to a guided diffusion of members 
around the combined part of the comprehensive operator. 
Guided diffusion directs distribution orientation towards the 
best member of the current generation that moves members 
towards more susceptible regions (Principle II).

After generating the new members, the objective func-
tion is recalculated. If the stopping criteria are satisfied, the 
optimization process ends, and otherwise, steps 2 to 4 are re-
peated until the stopping criteria are met. The basic steps of 
the EGOA can be summarized as the pseudo-code shown in 
Table 1.

In order to solve a constrained optimization problem with 
the proposed method, just verify whether the constraints are 
satisfied for the new member variables. If any constraint is 
violated, continue generating new members with the pro-
posed operator until a member that satisfies all the constraints 
is found. If any equality or inequality function exists as a 
constraint, the penalty function can be added to the objective 
function. In addition, the weighted sum method, ε-Constraint 
method, elitist non-dominated sorting algorithm can be used 
for multi-objective optimization problems.

3- Validation with Standard Test Functions
A numerical experiment is carried out to demonstrate 

the validation of the expert groups’ optimization method. 
Three well-known and challenging functions named Rastri-
gin’s function, Mikhalewicz’s function, and Langermann’s 
function are selected. Rastrigin’s function is a separable and 
highly multimodal function with 10×n local minima  on an 

n-dimensional domain. Due to its large numbers of local min-
ima, finding its global minimum value is a tricky problem. 
Michalewicz’s function is a multimodal test function with n! 
local optima. The global minimum located at the bottom of 
valleys, and the values of the function for points outside of 
narrow peaks, provide very little information about its global 
optimum. The slope of the valleys is determined by the pa-
rameter m . The larger the m , the greater the slope of the 
valleys and the more difficult it is to find. Whenever m  is 
very large, the function behaves like a needle in a haystack. 
Langermann’s function is also a deceptive function that has 
many unevenly distributed local minima. According to the 
reference [24], these functions are defined in Table 2, and 
their landscape is shown in Fig. 3.

The expert groups’ optimization algorithm with a popula-
tion of 50 and 10 generations is used to find the minimum 
of this function. Other settings applied to the new method 
are as follows: 0.2fb =   and 0.03gb = . Fig. 4 illustrates the 
dispersion of the population within the parameters domains 
and how they move towards the optimal point. In this fig-
ure, the initial population is represented by black circles, the 
free search group with red asterisks, and guided search group 
members with blue asterisks. As can be seen, the free search 
group, which has a large population in the early generations, 
will explore new areas. At the same time, the guided search 
group, with a small population, carries out the exploit of pre-
vious prime regions. Gradually, the population of the free 
search group is reduced and is added to the population of the 
guided search group. Thus, as the process of optimization ap-
proaches, the population will be more involved in exploiting 
identified spaces, and in the end, the entire population is cen-
tered on global optimum.

Table 1. Pseudo-code for the EGOA.Table 1. Pseudo-code for the EGOA. 

begin 

      Objective function f(x),   x = (x1, ..., xd)T 

      Generate an initial population and Evaluate their fitness Fi 

      while (stop criterion) 

            Rank the solutions and keep the best solutions 

            Forming the selection pool 

            Forming 'Expert Groups': 

1. Free search group 

2. Guided search group  

            Implementing the operator to form the new generation members 

            Evaluate population members fitness Fi 

      end while 

      Post-process results and visualization 

end 
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Fig. 3. The landscape of different standard test functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The landscape of different standard test functions.

Table 2. Standard test functions.Table 2. Standard test functions. 
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Initial 

population
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Generation 

#1: 

   

Generation 
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Generation 
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Generation 
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 a. Rastrigin's function b. Mikhalewicz’s function c. Langermann’s function 

Fig. 4. The convergence of members on different functions. 

 

 

 

 

Fig. 4. The convergence of members on different functions.
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To better evaluate the new method’s performance, results 
are compared with GA, PSO, and MVMO. GA and PSO 
methods have been obtained from the MATLAB 2019a op-
timization toolbox, and the MVMO code has been obtained 
from [25]. The experiment was repeated twice, and the con-
vergence history of the different methods is shown in Fig. 5. 
The results show that the proposed method converges more 
rapidly to the global optimum than other competitors in all 
three test functions and ultimately achieves better results.

4- Inverse Design Optimization 
In this section, the capability and efficiency of the new 

method are evaluated through the airfoil inverse geometric 
reconstruction problem, and the results are compared with 
GA, PSO, and MVMO. It should be noted that only the ef-
fects of the optimization algorithms will be studied in this 
experiment, and all other settings kept the same. The popula-
tion size of optimization methods is selected as 10. The maxi-
mum number of function evaluations is set to 500. All experi-

   
a. Rastrigin's function b. Mikhalewicz’s functions c. Langermann’s functions 

 

Fig. 5. The convergence history of GA, PSO, MVMO, and EGOA. 
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Fig. 5. The convergence history of GA, PSO, MVMO, and EGOA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The convergence history of GA, PSO, MVMO, and EGOA.



M. Heidari Soreshjani and A. Jahangirian, AUT J. Mech. Eng., 6(2) (2022) 261-278, DOI: 10.22060/ajme.2021.20376.5998

269

 

 
 

Fig. 6. PARSEC method for airfoil parameterization [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. PARSEC method for airfoil parameterization [26].

Table 3. PARSEC variables and their boundaries.Table 3. PARSEC variables and their boundaries. 

Upper boundary Lower boundary Description Variable 

0.016 0.008 Leading-edge radius 
ler  

0.55 0.30 Upper X coordination of crest point 
upX  

0.065 0.05 Upper Y coordination of crest point 
upY  

-0.30 -0.48 Upper curvature of crest point 
XXupY  

20 0 Trailing edge direction 
TE  

16 0 Trailing edge wedge angle 
TE  

0.40 0.25 Lower X coordination of crest point 
loX  

-0.04 -0.07 Lower Y coordination of crest point 
loY  

0.90 0.30 Lower curvature of crest point 
XXloY  

0.15 -0.15 Y coordination of trailing edge 
TEY  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ments are repeated two times to show the general behavior 
of the methods independent of the random numbers. Other 
settings are the same as in the previous section. Both methods 
start from NACA0012 as an initial airfoil, and RAE2822 air-
foil is the final target. The objective function is measured as 
the sum of distances between the obtained and target profiles, 
as defined in Eq. (6), which should be minimized in the opti-
mization process.
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   (6)

Where 
iY and 

tiY are the design and target coordinates of 
surface points with fixed iX  coordinate and pn  is the number 

of surface points.
In this problem, we use the Parametric Section (PARSEC) 

method to reconstruct the geometry of the airfoil. PARSEC 
is one of the most common methods that has been used to 
describe the shape of the airfoils. Fig. 6 shows the ten basic 
variables of PARSEC, which are the leading edge radius ( )ler
, upper and lower crest location ( ), , ,up up lo loX Y X Y  and curvature 
( ),XXup XXloY Y , trailing edge coordinate, and direction ( ),TE TEY α  
and trailing edge wedge angle ( )TEβ . The maximum curvature 
of the upper and lower surfaces and their location can be ef-
fectively controlled using the above variables, which is very 
useful in reducing the shock wave strength or delaying its oc-
currence [26]. The PARSEC variables should be bounded to 
avoid infeasible shapes. These bounds for inverse design are 
presented in Table 3.



M. Heidari Soreshjani and A. Jahangirian, AUT J. Mech. Eng., 6(2) (2022) 261-278, DOI: 10.22060/ajme.2021.20376.5998

270

Fig. 7 shows the initial airfoil, together with the final air-
foils obtained from optimization methods. As can be seen, 
only the airfoils obtained from EGOA match well with 
the target airfoil, and other methods have not been able to 
achieve the desired goal with this limited computational 
cost. Fig. 8 shows that the convergence rates are different, 
such that EGOA overcomes other methods in terms of con-
vergence speed and goal achievement. In other words, un-
der the constraint on computational cost, EGOA approaches 
the target more quickly and accurately, and MVMO ranked 

second. Fig. 9 shows the new method’s intelligent distribu-
tion of two variables across their boundaries. This figure also 
demonstrates how the method manages to scatter members 
in the early generations and then concentrate around optimal 
values. As can be seen, the free search will continue continu-
ously until the end of the optimization process. In the next 
section, the performance of the proposed method is compared 
with MVMO in an engineering problem with high computa-
tional cost.

 

 

 
Fig. 7. Target, initial, and constructed geometries after 500 function evaluations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Target, initial, and constructed geometries after 500 function evaluations.
 

 

 
 

Fig. 8. The convergence history of GA, PSO, MVMO, and EGOA on the inverse design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The convergence history of GA, PSO, MVMO, and EGOA on the inverse design.
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Fig. 9. EGOA scattering history of X (1), X (2), and X (3) after 50 generations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. EGOA scattering history of X (1), X (2), and X (3) after 50 generations.

5-  Aerodynamics Optimization
In this section, a numerical implementation is carried out 

to evaluate the new method’s performance in the airfoil shape 
optimization problems. The problem is the second aerody-
namic benchmark case of the ADODG, which is the drag 
minimization of the RAE 2822 in transonic flow conditions. 
Because the CFD performs the objective function calcula-
tions, the optimization process will be time-consuming and 
may take days or weeks. Therefore, this test can indicate the 
capability of the new method in an actual engineering ap-
plication. The problem is to minimize the drag coefficient 
of the RAE2822 case 9 at a Mach number of 0.734 and lift 
coefficient of 0.824 (This approximately corresponds to the 
wind tunnel corrected the angle of attack of 2.79 degrees), 
and Reynolds number of 6.5 million concerning area and 
pitching moment constraints. In this problem, the pitching 
moment coefficient (evaluated at the quarter-chord) is con-
strained to   0.092mC ≥ − . The area must be higher than or 
equal to the initial RAE2822 airfoil area during the optimiza-
tion process. In summary, the optimization problem is

 
  0.824

 :    0.092
  

d

l

m

initial

Minimize C
C

Subject to C
Area Area

=
 ≥ −
 ≥

 

The lift coefficient constraint is explicitly satisfied by 
trimming the angle of attack. The pitching moment and the 
area constraints are handled by using penalty terms in the ob-
jective function as defined by
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   (7)

The total population of each generation is set to 10, and 
the maximum number of generations is 30, so the maximum 
number of function evaluations is 300. Other settings ap-
plied to the new method in the competition are 0.1fb =  and 

0.01gb = . The design variables are bounded, as shown in Ta-
ble 4. As seen in this table, the Y coordinate of the trailing 
edge is eliminated from the design variables, and the trimmed 
angle of attack of fluid flow is added instead. In this problem, 
each experiment is repeated three times, and the best perfor-
mances of algorithms are compared with each other.

Table 4. Design variables and their boundaries for the 
aerodynamic benchmark problem.

Table 4. Design variables and their boundaries for the aerodynamic benchmark problem. 

 

Upper boundary Lower boundary Variable 

0.012 0.005 
ler  

0.6 0.4 
upX  

0.075 0.055 
upY  

-0.3 -0.5 
XXupY  

12 2 
TE  

12 2 
TE  

0.6 0.3 
loX  

-0.04 -0.065 
loY  

0.8 0.4 
XXloY  

3.0 2.6 
TEY  
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a) Coarse grid                                                           b) Medium grid 

 

 Fig. 10. Unstructured grids around RAE2822 airfoil . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 10. Unstructured grids around RAE2822 airfoil.

Table 5. Mesh convergence study for initial airfoil (RAE2822) 
Table 5. Mesh convergence study for initial airfoil (RAE2822) 

  

Grid Level No. of Cells  Cd (counts) CPU Time (sec) 

Coarse 10651 232.0 567 

Medium 18092 230.0 1049 

Fine 22299 230.1 1354 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5- 1- . Grid study
The successive refinement approach proposed by Jahan-

girian and Johnston [27] generates high-quality viscous grids. 
The method can produce high-quality (regular) unstructured 
cells inside the boundary and shear layers and isotropic cells 
outside these regions. Three grid levels are generated to es-
tablish a mesh convergence study. As shown in Table 5, the 
medium and fine meshes have similar drag coefficients with 
only a difference in the order 0.1 count. Thus, the medium 
mesh uses for objective function evaluation since it has low-
er computational costs than the fine grid. Figs. 10a and 10b 
show the coarse and medium grids generated around the ini-
tial geometry, RAE 2822 airfoil, containing 10651 and 18092 
triangular cells, respectively.

In this work, the primary mesh generated around the ini-
tial airfoil is moved automatically to fit the newly created air-
foils using tension–spring analogy so that there is no need for 
the user to interrupt the computations . This work provides an 
automatic and efficient mesh movement tool called hundreds 
of times during a single optimization process.

5- 2- Objective function evaluation by CFD
The flow solver consumes most of the computational ef-

fort required in the airfoil optimization process performed 
several hundreds of times. Therefore, the CFD solver must 
possess high efficiency and convergence rate. In this work, 
the Reynolds Averaged Navier–Stokes flow equations are 
solved using a finite-volume cell-centered implicit scheme 
for the unstructured grids [28]. This method reduces the com-
putational time due to convergence acceleration techniques 
such as residual smoothing and local time steps. Turbulence 
effects are considered by applying a two-equation k-ε turbu-
lence model with the main flow equations. The wall-func-
tion approach is adopted to treat the near-wall region of the 
boundary layer.  The flow solver validation is carried out for 
the RAE 2822 airfoil using the coarse grid, as this grid is se-
lected for objective function evaluation in this work. The flow 
conditions are set to the AGARD test case 9 as Mach number 
of 0.73, Reynolds number of 6.5 million, and incidence angle 
of 2.79 degrees. Fig. 11 presents the numerical results for the 
surface pressure coefficient distributions compared to the ex-
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Fig. 11. Surface pressure coefficients for RAE2822 airfoil at M=0.73 and α=2.79 o [29]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Surface pressure coefficients for RAE2822 airfoil at M=0.73 and α=2.79 o [29].

perimental data that shows good agreements [29]. It should 
be noted that the slight differences between the numerical and 
experimental data on the upper surface of the airfoil are com-
mon in all numerical results.

5- 3- Results
The optimum airfoils at the flow conditions of the second 

aerodynamic benchmark case of the ADODG are obtained, 
and their geometry is compared to the initial airfoil in Fig. 12-
a. This figure shows that upper surfaces are slightly flattened 
in both optimum airfoils, which is one of the main features of 
supercritical airfoils. In addition, their upper crest points are 
inclined backward and highly downward-curved at the upper 
trailing edge cause to restore lift loss by flattening the upper 
surface. However, the lower surfaces of the optimum airfoils 
are widely different. The airfoil obtained from the new meth-
od has a highly curved lower trailing edge, which increases 
the pressure locally and creates more lift in this area. Instead, 
in the airfoil obtained from MVMO, the shape of the lower 
front edge is such as to compensate for the lift deficiency in 
this area. The surface pressure coefficient distributions are 
plotted in Fig. 12-b. According to this figure, a strong shock 
wave appears in the middle part of the initial airfoil upper 
surface. However, this shock wave is considerably weaker for 
both optimum airfoils. The weaker shock wave reduces the 
wave drag and thus reduces the total drag. It should be noted 
that the two constraints applied to the minimum lift coeffi-
cient and the minimum area have caused the shock strength. 
Fig. 13 shows the Mach number contours around initial and 
optimum airfoils. As can be seen, there is a sharp shock wave 
at the RAE2822 upper surface with maximum Mach number 
1.341, which is the main flow feature in this case. Howev-
er, the maximum Mach number is decreased for the present 

method’s and MVMO’s optimum airfoils. 
The aerodynamics performances of the designed airfoils 

are compared with those of the initial airfoil in Table 6. Note 
that the convergence criteria for this case are to reach the same 
objective function value of about 0.0137. This table indicates 
that the new method’s trimmed angle of attack is 2.789 de-
grees, giving the target lift coefficient. This angle of attack 
is 0.16 degrees lower than the angle of attack of the initial 
airfoil and looks very desirable.  In addition, the initial airfoil 
has a drag coefficient of 0.0230, while the optimum airfoil 

dC  is only 0.0136. This drag coefficient is in the range of 
similar work results. However, it should be noted that in this 
paper, the wall function approach used for near-wall calcula-
tions, which generally over-predicts the drag coefficient and 
using a more accurate turbulence model, can lead to a lower 
drag coefficient.  Besides, the optimum airfoil well satisfied 
the constraints of the moment coefficient and area. In Table 
7, the present method’s computational cost and drag coeffi-
cient are compared with those obtained by MVMO. As can be 
seen, MVMO improved the drag coefficient by 40.4% after 
2000 function evaluations. However, the proposed method 
achieved a similar drag coefficient reduction after only 300 
function evaluations that take only 15% of the MVMO com-
putational budget.

Fig. 14 shows the convergence histories of the objective 
function and  values against the number of function evalua-
tions for three independent implementations of MVMO and 
the new method. As can be seen, MVMO has a slower con-
vergence with a higher computational cost. However, EGOA 
has a sharp convergence behavior that shifts the search path 
toward the optimal point. Hence, the proposed method can 
achieve similar results at a much lower computational cost 
due to its higher convergence rate.
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a. airfoil shapes b. pressure distributions 

  

Fig. 12. Comparison of the baseline and optimized airfoils. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Comparison of the baseline and optimized airfoils. 
 

  
a) RAE 2822 b) The optimum airfoil of MVMO   

 
c) The optimum airfoil of the new method 

 

Fig. 13. Comparison of the Mach number contours around initial and optimum airfoils. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Comparison of the Mach number contours around initial and optimum airfoils.
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Table 6. Results for initial and design airfoils
Table 6. Results for initial and design airfoils 

 

Parameter Initial Airfoil MVMO optimum EGOA optimum 

trim   

2.949 2.798 2.789 

lC   

0.8240 0.8240 0.8241 

dC   

0.0230 0.0137 0.0136 

mC   

-0.0908 -0.0860 -0.0854 
Area 0.0778 0.0779 0.0786 

Objective Function 0.0230 0.0137 0.0137 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Comparison of the computational cost and drag coefficient for different methods. 
Table 7. Comparison of the computational cost and drag coefficient for different methods.  

 

Method 
CFD 

calls 

Initial 

dC  

Optimized 

dC  

dC  

reduction 

Computational 

saving 

MVMO 2000 0.0230 0.0137 40.4% - 

Present 

Method 
300 0.0230 0.0136 

40.9% 
85% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
a. Objective function b. Cl 

 

Fig. 14. Convergence histories of MVMO against EGOA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Convergence histories of MVMO against EGOA.
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6- Conclusions
A new meta-heuristic optimization method is proposed 

for computationally expensive problems. It was developed 
based on four optimization principles.  The method was easy 
to implement and used two expert groups with a simple op-
erator. Using two expert groups made it possible to control 
and manipulate the population of exploration and exploita-
tion. In addition, the new operator intelligently distributed 
the population to more susceptible regions, which resulted in 
higher search population returns. With the help of a compre-
hensive operator, this property led to the advantage of sim-
plicity and faster convergence. The new method was firstly 
validated through a standard test function. Then, the method’s 
efficiency was tested compared to GA, PSO, and MVMO for 
a geometry reconstruction problem. Results showed that the 
new method outperformed other methods in terms of con-
vergence rate and reaching the global optimum, and MVMO 
ranked second in this competition. Then, the new method’s 
performance was compared with MVMO for the second 
aerodynamic benchmark case of the AIAA Design Optimiza-
tion Discussion Group (ADODG). In this case, the proposed 
method obtained the same results with 85% lower computa-
tional costs compared to MVMO. 
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