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ABSTRACT: In this study, an approach to free vibration analysis of thin quadrilateral plates using 
the generalized differential quadrature method based on the strong version of the governing equation 
is proposed. Hence, the governing equation of a thin quadrilateral plate is firstly obtained using the 
Kirchhoff–Love theory of plates (classical theory) to achieve this aim. The well-known differential 
quadrature method is then utilized to obtain the discretized form of the equations of motion. However, 
simulation of any arbitrary geometry using conventional Generalized Differential Quadrature Method 
based on classical theory is impossible. This drawback can be removed by defining the additional 
degrees of freedom in boundaries. Moreover, the combination of the Refined Differential Quadrature 
Method with geometry mapping is developed to simulate thin quadrilateral plates. Also, the multi-block 
or elemental strategy is implemented for problems with more geometric complexities. For this aim, 
geometry can be divided into several subdomains. Continuity conditions make the connection between 
adjacent elements at each interface. By establishing the whole discretized governing equations, the free 
vibration analysis of a thin plate will be provided via the achieved eigenvalue problem. The obtained 
results are compared and validated with available results in the literature that show high accuracy and a 
fast rate of convergence.
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1- Introduction
The free vibration analysis of structures, including 

any arbitrary shape such as any geometric discontinuities/
complexities and complicated boundary conditions, is one of 
the attractive problems in the field of mechanical engineering. 
However, powerful numerical tools such as the Finite Element 
Method (FEM) can be used to solve the aforementioned 
problems. In recent decades the development of numerical 
tools with low computational complexity and high accuracies 
such as mesh-free method, boundary element method, and 
Differential Quadrature Method (DQM) has been considered 
for such problems. The differential quadrature was first 
introduced by Bellman and Casti [1]. This method has many 
positive features such as less complexity, faster convergence, 
and higher accuracy than other numerical methods for 
solving the various mechanical problem, especially in simple 
domains expressed by partial differential equations [2-
3]. Based on the essence of DQM, the partial derivative of 
a field variable at a specified point is estimated by a linear 
summation of the weighted values of the field variable at all 
discrete points on the domain [2]. The main drawback of the 
early version of DQM was solved by Shu et al. [4] so that 
this method was sensitive to the distribution type of sampling 

points. Therefore, Generalized Differential Quadrature 
Method (GDQM) was suggested to overcome the expressed 
drawback based on a polynomial vector space analysis. This 
method was developed by many researchers converted to a 
powerful method for solving different mechanical problems 
so that partial differential equations can include nonlinear 
terms. Khalafi et al. investigated aeroelasticity analysis of 
the composite and Functionally Graded Materials (FGM) 
plates containing linear and nonlinear terms in partial 
differential equations [5-6]. The presented results indicate 
the high accuracy and convergence of this method. Wang 
and Yuan also studied buckling analysis of isotropic skew 
plates under general in-plane loads using GDQM based 
on a classical theory with the relations between Cartesian 
coordinate system and oblique coordinate system [7] so 
that the governing equation of skew plate was expressed by 
skewness angle. However, it can be induced that this method 
is convenient for a simple domain. The structural analysis 
for complex geometric structures is impossible by using the 
ordinary GDQ method [3].  Therefore, an elemental approach 
based on the GDQ method could be appropriate to overcome 
this problem named Differential Quadrature Elemental 
Method (DQEM) [8]. The DQEM based on the strong form 
equation is defined as the manner in which a computational 
domain is divided into several sub-domains (elements), and 
the connection between adjacent elements is established in *Corresponding author’s email: h-shahverdi@aut.ac.ir
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mathematical form by continuity conditions at boundaries. 
The DQEM approach was used by many researchers 
for analyzing various problems containing geometric 
discontinuity, especially the free vibration of cracked beams 
[9-10]. The presented results show excellent features such as 
high accuracy and fast convergence, indicating acceptable 
compliance between the DQM and elemental approach.  
However, vast studies were done for beam problems by 
the DQEM approach. Liu and Liew [11-12] implemented 
this method to investigate structural analyses of Mindlin’s 
plates containing discontinuity. Afterward, the Generalized 
Differential Quadrature Finite Element Method (GDQFEM) 
was introduced to investigate plates’ structural analysis with 
arbitrary shapes by Fantuzzi et al. [13]. They utilized the 
Mindlin and first-order shear deformation plate theories in 
their research. The obtained results verify high accuracy and 
fast convergence. Also, free vibration analysis of cracked 
plates subjected to a uniaxial in-plane compressive load using 
GDQM based on Mindlin’s theory was conducted by Moradi 
et al. [14]. Using Mindlin’s theory causes three equations 
of boundary conditions for three governing equations, 
whereas using Kirchhoff–Love theory causes two equations 
of boundary conditions for one governing equation. Hence, 
using the conventional differential quadrature method based 
on Kirchhoff–Love theory cause regardless of four equations 
of boundary equations. However, the use of theories related 
to thick plates is convenient for thin plates; they can increase 
computational cost because of increasing degrees of freedom. 
The importance of this problem becomes obvious in the 
analysis of structure with the high computational cost, such 
as the optimization process. It is vital that engineers notice to 
use a suitable theory that fits the model. Therefore, it should 
be regarded using classical theory for structural analysis of a 
thin plate. However, a differential quadrature finite element 
method introduced for free vibration thin beam and plate 
with arbitrary shape in the weak-form version that led to 
high accuracy [15], the powerful differential quadrature is 
known in the strong-form version. The solving of partial 
differential equations derived by classical theory with the 
DQEM approach has some restrictions in applying boundary 
conditions [16]. Many researchers proposed approaches 
to overcome this difficulty convenient for a single domain 
[17-18]. Navardi [16] developed the GDQ method for 
applying different boundary conditions in a thin plate. he 
suggested extra degrees of freedom at the boundary of 
a domain to provide three degrees of freedom at corners 
so that two degrees of freedom were observed at the edge 
containing displacement and normal slope. The presented 
results show that this approach had resolved difficulties 
in applying different boundary conditions, especially 
when free boundary conditions were applied on two edges 
perpendicular simultaneously. Shahverdi and Navardi 
[19] expanded this approach for the elemental approach in 
order to the simulation of a crack in thin plates. They used 
six-element for simulation of central crack, and continuity 
conditions were used for joining elements together. The high 
accuracy and fast convergence were indicated in this study by 

the presented results. Thin quadrilateral plates with arbitrary 
shapes such as skew and trapezial are widely used as a major 
component in various industries. Hence, structural analysis 
of such plates is vital to achieving a safe design expressed 
by a differential equation. Moreover, it is necessary to use a 
proper method such as the generalized differential quadrature 
method with the aforementioned positive features than other 
numerical methods for solving the governing equation [2-
3]. Furthermore, the main drawback of the conventional 
generalized differential quadrature method based on 
Kirchhoff–Love theory is the imperfection of applying 
boundary and continuity conditions, especially in the corner 
points that introduced a refined approach generalized 
differential quadrature method by Shahverdi and Navardi 
[19]. However, the only weakness of the proposed method 
was the simulation and structural analysis of geometries 
with arbitrary shapes. Therefore, the combination of the 
geometric mapping and elemental approach in the refined 
generalized differential quadrature method is developed to 
solve structures with arbitrary shapes.

The novelty of the present study is to develop an 
approach based on the Generalized Differential Quadrature 
Element method (GDQEM) for simulating quadrilateral 
thin plate structures with mixed boundary conditions based 
on the classical theory of plates. For this aim, the weighting 
coefficients are derived in the local coordinate based on 
GDQM. Then, the weighting coefficients are calculated 
for all sampling points by geometry mapping in the global 
coordinate. Finally, the governing differential equations are 
discretized and presented according to the proposed approach 
[16, 19] based on GDQEM. The obtained results are evaluated 
with the available results in the literature.

2- Governing Equations 
The equation of motion for a thin structure based on the 

Kirchhoff–Love theory of plates with regardless of surface 
shearing forces, body moments, and inertial forces in x and y 
direction is presented by [20]:
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where ,x yM M  and xyM  denote the components of 
the out-of-plate moment. q  and ρ  denote the intensity of 
transverse distributed load and the plate mass density per 
unit area, respectively. Also, 0w  and 0I  are the transverse 
displacement and the plate’s mass moment of inertia. Based 
on the classical plate theory, the displacement field of a plate 
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is as follows [20]:
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Where u, v, and w are the displacement component in 
the x, y, and z directions, respectively. u0 and v0 are the in-
plane displacement components, and w0 is the out-of-plane 
displacement component of the plate’s mid-plane. According 
to von Karman linear strain-displacement relations, the linear 
strains are defined as [20]:
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where 0ε and k  are the mid-plane membrane and 
bending strain vectors [20]:
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The curvatures are defined by [20]:
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The out-of-plane moments are related to the curvatures 
through the following relations [20]:
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where D denotes the plate flexural rigidity and is 
associated with Young modulus and Poison ratio via
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The shear force and the total transverse force components 
are expressed by [20]:
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Some modifications are vital in the aforementioned 
relations to introduce a refined approach in the differential 
quadrature element method. The transverse displacement 
derivatives, according to the following relationships, are 
firstly considered as [19]:
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By changing the degrees of freedom according to rotations 
of the normal about x and y-axis, the curvature vector can be 
rewritten as [19]:
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Also, the out-of-plate moment components are expressed 
by [19]:
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Substituting Eq. (13) into Eq. (1) yields [19]:
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By substituting Eq. (13) into Eq. (9), the shear force 
components become [19]
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The normal slope, the out-of-plate moment components, 
and the shear force components on the surface are expressed 
by Eq. (16) [20]. Where, θ  is an angle from the x-axis to the 
outward normal n-axis.
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Also, the total transverse force components can be written 
as follows [20]:
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3- Refined Differential Quadrature Element Method
In this section, the formulation of the refined conventional 

DQEM is presented by [19]. For this purpose, the equation 
of motion for thin structure in the form of Eq. (14) is first 
discretized by using the GDQ method. The key of this method 
is to determine the derivative of a function with respect 
to a space variable at a specific point as a weighted linear 
summation of all the functional values at all other sampling 
points along with the domain [2] and [4]. Therefore, the first-
order partial derivative of a function f( x ) with respect to the 
space variable ξ  for the regular domain may be written as:
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 (18)

where N is the number of sampling points in the domain 
and ( )r

ikA  is the weighting coefficients to be defined as 
follows [4]:
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A well-known method of defining these points is to use 
Chebyshev-Gauss-Lobatto point distribution given by Shu 
[2-3] as:
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The first-order partial derivative of a function f(x) can be 
expressed in x-y coordinate by geometric mapping presented 
by Eq. (21) [21].
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where J  is Jacobean expressed by Eq. (22).
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By substituting Eq. (18) into Eq. (21), the first-order 
partial derivatives of a function f(x) in x-y become [21]:
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Eq. (23) can be rewritten by Eq. (24).
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(r)A  and (rs)A  are defined by Eq. (25).  for the r-th order 
partial derivative [21].
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It should be noted that the weighting coefficients are 
only dependent on the derivative order and on the number 
and distribution of sampling points along with the domain. 
By defining the degrees of freedom slope at the edge of an 
element and the transverse displacement in all domains; 
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 can be expressed in the DQ 
discretization form as:
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Where N and M denote the number of computational/
sampling points in x and y-direction, respectively. In the 
above equations, it can be seen that there are two and three 
degrees of freedom at the edges and the corner points of a 
computational domain (element) with an arbitrary shape. 
[19]. 

Substituting the partial derivatives in Eq. (16), in a similar 
manner to Eq. (14), the following equation will be achieved.
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where xC  and xB are the weighting coefficients 
correspond to the third and second-order partial derivative in 
the x-direction and yC , and yB are those in the y-direction, 
similarly. 
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4- Boundary Conditions
In this section, different conventional boundary conditions 

are introduced, and their discretized forms are presented. 

4- 1- Clamped boundary condition
At edges 0x =  or x a= : 0 and  0nw = Ψ = .
These equations can be written in DQ form as
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At edges 0y =  or y b= : 0 and  0nw = Ψ = . 
These equations can be shown in the discretized form 

similar to the previous items.  
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4- 2- Simply support boundary conditions
At edges 0x =  or x a= : 0 and  0nnw M= = .
These equations can be written in DQ form as
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At 0y =  or y b= : 0 and  0nnw M= = . 
These equations can be expressed in a discretized form 

similar to the prior items.
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4- 3- Free boundary conditions
At 0x =  or x a= : 0 and  0nn nnV M= = .
These equations can be written in DQ form as
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At edges 0y =  or y b=  : 0 and  0nn nnV M= = .  

1

1

2

2

1

2

At 0, 0

and 0

At , 0

and 0

(N 1) N

nn
n

nn
n

nn
n

nn
n

x V

M
where n j

x a V

M

where n j

 





 



   

 (33) 

 

 

 

1

1

2

2

1

2

At 0, 0

and 0

( 1) N 1

At , 0

and 0

( 1) N

nn
n

nn
n

nn
n

nn
n

y V

M

where n i

y b V

M

where n i M

 



   

 



   

 (34) 

 

0 , 0 , 0x yw      (35) 
 

1 2

0 , 0 ,

0

nn ss

ns ns
edge edge

M M

S M M

 

  
 (36) 

 

1 2

1 2

1 2

1 2

0 ,

0

0,

0

edge edge

n n
edge edge

nn nn
edge edge

nn nn
edge edge

w w

M M

V V

 

  

 

 

 (37) 

 

       0M K δ   (38) 

 

     2 0K M    (39) 

 (34)

4- 4- The boundary conditions of corner point
If corner points have a combination of simply support 

and clamped boundary conditions simultaneously or have 
an identical specific boundary condition (clamped or simply 
support), the boundary conditions at this point can be 
expressed by:
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The boundary conditions of a corner on the intersection of 

two adjacent free edges are
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4- 5- The connection between elements
It should be noted that the physical connection between 

the adjacent elements is provided by the compatibility 
conditions, including continuity of transverse displacement, 
rotation, bending moments, and shear forces. So, the 
continuity conditions can be expressed in the normal direction 
as follows:
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5- Solution Methodology
The set of governing equations can be expressed by
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With assuming { } { } i teδ Ω=δ  Eq. (38) can be written by
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According to the static condensation concept, the 
combination of the aforementioned discretized governing 
equations and the associated boundary condition equations 
can be represented by a system of linear equations through 
an assembling procedure such that the continuity conditions 
between adjacent DQ elements are satisfied (see more details 
in Ref. [16]).
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where the subscripts B and D denote the boundary 
and interior points along with the domain, respectively. 

, ,BB BD DBK K K  and DDK imply the influence coefficients 
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appeared in the discretized equations. Bδ is the degree of 
freedom vector including transverse displacements and slope 
states which are considered on the boundaries of the domain 
and defined by:
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Also, Dδ  is the degree freedom vector including 
transverse displacement of the interior points along the 
domain and defined by:
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Computing Dδ  from the first row of Eq. (40) and 
substituting it into the second-row results in the following 
relation.
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The eigen-frequencies of Eq. (43) can be determined 
through a standard eigenvalue solver. 

6- Results and Discussions
 In this section, the free vibration analyses of three thin 

plate test cases are conducted by the developed numerical 
tool. 

6- 1- Free vibration of a single domain with arbitrary shape
In order to evaluate the accuracy and fidelity of the present 

approach, free vibration analysis of a trapezoidal plate with several 
different boundary conditions that are shown in Fig. 1 is carried out. 
Table 1 presents the convergence behavior of the first eight non-
dimensionalized natural frequencies of the trapezoidal plate under 
the fully clamped boundary condition with increasing sampling 
points in the domain. In order to perform the convergence study 
of the present method, different numbers of sampling points have 
been considered. A good monotonic convergence behavior could 
be noticed, and a 24 24× sampling point is found to provide 
sufficiently accurate results.

Table 2 shows the first five non-dimensional natural 
frequencies of symmetric trapezoidal thin plate with 
several boundary conditions in comparison with Ref. [21] 
that is obtained by a combination of conventional GDQM 
(CGDQM) with mapping method for a  simple domain that 
this method has not capable of applying free boundary and 
continuity conditions. The presented results in Table 2 show 
an excellent accuracy in comparison with those reported by 
Ref. [21].

In the next study, the free vibration analysis of the skew 
plate with different boundary conditions is examined. Table 
3 shows the non-dimensional natural frequencies of this test 
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Fig. 1. A symmetric trapezoidal thin plate. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A symmetric trapezoidal thin plate.
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case study in comparison with Refs. [22-24] that are obtained 
by finite element method, generalized differential quadrature 
method based on first-order deformation theory, and Ritz 
method, respectively. The achieved results show high accuracy 
as well as other references, especially in implementing free 
boundary conditions. The DQM, as the known form, is not 
able to solve the derived partial differential equations of 
classical theory for the thin plate with arbitrary geometry, 

including free boundary conditions. This table shows that the 
problem of applying free boundary conditions is solved.

To evaluate the accuracy and fidelity of the present 
approach for connection among several elements, free 
vibration analysis of a square plate composed of two 
subdomains under the clamp and support boundary conditions, 
which are shown in Fig. 3 is investigated. 

Table 4 shows the natural frequencies for a square plate 

Table 1. Non-dimensional natural frequencies ( ( )2a h Dω π ρΩ =  ) of a symmetric trapezoidal thin 
plate under clamped boundary conditions with  and 

Table 1. Non-dimensional natural frequencies (  ) of a symmetric trapezoidal 
thin plate under clamped boundary conditions with and  

 
  Mode sequence 

Method 1 2 3 4 5 6 
  Present (9 × 9) 10.4334 15.4107 20.7297 23.007 23.0346 23.8607 

Present (10 × 10) 10.4236 15.4867 20.4276 23.7694 24.4243 32.2927 

Present (11 × 11) 10.4296 15.5699 21.3632 23.8928 24.3680 30.3402 

Present (12 × 12) 10.4274 15.5668 21.4238 23.9092 27.8697 27.8697 

Present (13 × 13) 10.4288 15.5643 21.4806 23.9050 29.4442 29.4442 

Present (14 × 14) 10.4280 15.5640 21.4747 23.9052 28.8236 32.5396 

Present (15 × 15) 10.4280 15.5640 21.4747 23.9052 28.8236 32.5396 

Present (16 × 16) 10.4273 15.5633 21.4766 23.9083 28.8409 32.5414 

Present (17 × 17) 10.4276 15.5637 21.4761 23.9054 28.8435 32.5401 

Present (18 × 18) 10.4273 15.5633 21.4763 23.9069 28.8406 32.5412 

  Present (19 × 19) 10.4274 15.5635 21.4761 23.9054 28.8420 32.5401 

Present (20 × 20) 10.4273 15.5634 21.4762 23.9061 28.8411 32.5407 

Present (21 × 21) 10.4274 15.5634 21.4761 23.9054 28.8418 32.5401 

Present (22 × 22) 10.4273 15.5634 21.4762 23.9057 28.8414 32.5405 

Present (23 × 23) 10.4273 15.5634 21.4761 23.9054 28.8417 32.5401 

Present (24 × 24) 10.4273 15.5634 21.4762 23.9055 28.8415 32.5403 
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Table 2. Non-dimensional natural frequencies ( ( )2a h Dω π ρΩ =  ) of a symmetric trap-
ezoidal thin plate under clamped boundary conditions with  and 

Table 2. Non-dimensional natural frequencies (  ) of a symmetric trapezoidal 
thin plate under clamped boundary conditions with and  

  Mode sequence 

Boundary condition Method 1 2 3 4 5 

C-C-C-C 
Present 10.427 15.563 21.476 23.905 28.841 

Ref.[21] 10.427 15.563 21.476 23.905 28.842 

S-S-S-S  
Present 5.389 9.423 14.688 15.910 21.690 

Ref.[21] 5.389 9.422 14.685 15.908 21.689 

S-C-S-C 
Present 9.443 14.386 19.897 22.4694 26.331 

Ref.[21] 9.443 14.386 19.897 22.472 26.331 
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Fig. 2. Schematic figure of the skew plate. 
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Fig. 2. Schematic figure of the skew plate.

Table 3. Non-dimensional natural frequencies ( ( )2a h Dω π ρΩ =  ) of a skew plate Table 3. Non-dimensional natural frequencies ( ) of a skew plate  

  Mode sequence 

Boundary condition Method   1 2 3 4 5 

C-C-C-C 
Present 

  
12.3247 18.0069 23.4808 29.5373 30.8788 

Ref.[22] 12.3399 18.0057 23.4956 29.5649 30.9447 

S-S-S-S  
Present 

15 
2.1130 4.8842 5.6845 8.0090 10.5374 

Ref.[23] 2.1144 4.8842 5.6846 8.0085 10.5372 

S-C-S-C 
Present 

30 
3.7440 6.5112 9.4198 10.2110 13.9495 

Ref.[22] 3.7451 6.5119 9.4233 10.2112 13.9530 

C-F-C-F 
Present 

45 
3.6856 3.8447 6.2487 8.7815 10.3478 

Ref.[23] 3.6852 3.8432 6.2509 8.7740 10.3352 

S-F-S-F 
Present 

60 
2.5700 2.7109 5.5671 7.3968 10.1871 

Ref.[22] 2.5810 2.7249 5.4567 7.3786 10.1551 

F-F-F-F 
Present 

0 
1.3645 1.9855 2.4591 3.5261 3.5261 

Ref.[24] 1.3667 2.005 2.4755 3.4736 3.4736 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2/ /a h D   



60



H. Shahverdi et al., AUT J. Mech. Eng., 6(1) (2022) 15-30, DOI: 10.22060/ajme.2021.20283.5995

25

a

a1

b

a2

 
Fig. 3. A rectangular thin plate consists of two subdomains with 1 0.75a

a   and 2 0.25a a  .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. A rectangular thin plate consists of two subdomains with 1 0.75a
a =  and 2 0.25a a = . 

Table 4. Non-dimensional natural frequencies ( 2a h Dω ρΩ = ) of a square plate consist of two subdomainsTable 4: Non-dimensional natural frequencies ( ) of a square plate consist of two subdomains 

  Mode sequence 

Boundary condition Method 1 2 3 4 5 

C-C-C-C 

Present 35.9853 73.3939 73.3939 108.215 131.580 

CDQM [16] 35.9852 73.3939 73.3939 108.217 131.579 

Ref.[24] 35.992 73.413 73.413 108.270 131.640 

`S-S-S-S  

Present 19.7392 49.3480 49.3480 78.9568  98.6960 

CDQM [16] 19.7392 49.3480 49.3480 78.9568  98.6960 

Ref.[24] 19.7392 49.3480 49.3480 78.9568 98.6960 

 

2 ha
D
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consisting of two subdomains, and the connection between 
subdomains has been established by continuity conditions. 
The results have been presented by 16 16× sampling points 
in each subdomain. The results have been compared by [16] 
which are presented based on Conventional DQM for a single 
domain with16 16× sampling points. The convergence of the 
present method needs more grid points than ordinary DQM, 
but the high accuracy has made it convenient to use the 
presented approach for solving thin plates with an arbitrary 
shape or consist of multi-domain.  

6- 2- The free vibration of an L-Shape thin plate
In this section, the free vibration analysis of a simply 

supported L-shaped thin plate with equal sides is conducted. 
In order to apply the present approach (GDQEM) for solving 
this problem, the plate is divided into three subdomains, as 
shown in Fig. 4. 

The results consist of the first four non-dimensional 
natural frequencies along with those reported in Ref. [25] are 
presented in Fig. 5. Also, the effect of the cutout aspect ratio 
(c/a) on the natural frequency has been studied and depicted 
in this figure. It should be noted that a sampling point 
distribution including 22 22×  grid points in each subdomain 
has been considered to achieve an acceptable convergence. 
As it is evident, there is an excellent correlation between the 
results of the present method and Ref. [25].

The first four shape modes of this thin plate structure have 
been presented in Fig. 6.

6- 3- The free vibration of a square thin plate with mixed 
boundary conditions

In this section, the results of free vibration analysis of a 
square plate with mixed boundary conditions are presented 

 

Fig. 4. The L-shaped thin plate with cut out. 
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Fig. 4. The L-shaped thin plate with cut out.

by using the present method. Fig. 7 shows a square plate with 
simply supported, free, and clamped boundary conditions at 
the same edges. For this purpose, the plate is divided into 
six subdomains (as shown in Fig. 7), and a sampling point 
distribution including 22 22×  grid points in each subdomain 
is considered. 

The first four non-dimensional natural frequencies of 
the first case, corresponding to Fig. 7, are presented in Fig. 
8. The obtained results are in good agreement with those of 
Ref. [27]. It should be noted that the results of Ref. [27] were 
obtained by applying DQEM to analyze the above problems 
based on the first-order shear deformation theory.

7- Conclusions
In this study, the combination of geometric mapping 

with a refined approach in the generalized differential 
quadrature element method has been proposed to provide the 
free vibration analysis of thin plate structures with complex 
geometry or boundary conditions. The main idea of this 
approach is to refine the GDQ formulation based on the 
classical plate theory by incorporating an additional degree 
of freedom. To validate the present approach, free vibration 
analyses of some different test cases, including symmetric 
trapezoidal thin plate, skew thin plate, L-shape thin plates, and 
square thin plates with mixed boundary conditions, have been 
performed. The evaluation of the obtained results clarifies 
the accuracy and fidelity of the present method. However, it 
was found that the convergence of the present method needs 
more grid points than ordinary DQM.  However, using the 
developed formulation, one can overcome the difficulties in 
applying different types of boundary and the simulation of 
geometry with arbitrary shape in the computational domain 
based on classical theory.
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Fig. 5. Variation of the natural frequencies of the simply supported L-Shaped plate with a cutout aspect ratio 
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Fig. 5. Variation of the natural frequencies of the simply supported L-Shaped plate with a cut-
out aspect ratio
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Fig. 6. The first four mode shapes of the simply supported L-Shaped thin plate 
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Fig. 7. a square plate with simply supported, free, and clamped boundary conditions. Fig. 7. a square plate with simply supported, free, and clamped boundary conditions.
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Fig. 8. Effect of increasing the free edge aspect ratio on the non-dimensional natural frequencies of a square plate with simply 

supported, free, and clamped boundary conditions. 
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Fig. 8. Variation of the natural frequencies of the simply supported L-Shaped plate with a cut-
out aspect ratio



H. Shahverdi et al., AUT J. Mech. Eng., 6(1) (2022) 15-30, DOI: 10.22060/ajme.2021.20283.5995

30

Reference

[1] R. Bellman, J. Casti, Differential quadrature and long-
term integration, Journal of Mathematical Analysis and 
Applications, 34(2) (1971) 235-238.

[2] C. Shu, Differential quadrature and its application in 
engineering, Springer Science & Business Media, 2012.

[3] F. Tornabene, N. Fantuzzi, F. Ubertini, E. Viola, Strong 
formulation finite element method based on differential 
quadrature: a survey, Applied Mechanics Reviews, 67(2) 
(2015).

[4] C. Shu, B.E. Richards, Application of generalized 
differential quadrature to solve two‐dimensional 
incompressible Navier‐Stokes equations, International 
Journal for Numerical Methods in Fluids, 15(7) (1992) 
791-798.

[5] M. Javadi, V. Khalafi, Flutter reliability analysis of 
laminated composite plates, Amirkabir Journal of 
Mechanical Engineering, 53(6 (Special Issue)) (2021) 
10-10.

[6] V. Khalafi, H. Shahverdi, S. Noori, Nonlinear 
Aerothermoelastic Analysis of Functionally Graded 
Rectangular Plates Subjected to Hypersonic Airflow 
Loadings, AUT Journal of Mechanical Engineering, 2(2) 
(2018) 217-232.

[7] X. Wang, Z. Yuan, Buckling analysis of isotropic skew 
plates under general in-plane loads by the modified 
differential quadrature method, Applied Mathematical 
Modelling, 56 (2018) 83-95.

[8] A.G. Striz, C. Weilong, C.W. Bert, Static analysis of 
structures by the quadrature element method (QEM), 
International Journal of Solids and Structures, 31(20) 
(1994) 2807-2818.

[9] L. Ke, Y. Wang, J. Yang, S. Kitipornchai, F. Alam, 
Nonlinear vibration of edged cracked FGM beams using 
differential quadrature method, Science China Physics, 
Mechanics and Astronomy, 55(11) (2012) 2114-2121.

[10] K. Torabi, H. Afshari, F.H. Aboutalebi, A DQEM for 
transverse vibration analysis of multiple cracked non-
uniform Timoshenko beams with general boundary 
conditions, Computers & Mathematics with Applications, 
67(3) (2014) 527-541.

[11] F.-L. Liu, K. Liew, Vibration analysis of discontinuous 
Mindlin plates by differential quadrature element 
method,  (1999).

[12] F.-L. Liu, K. Liew, Differential quadrature element 
method: a new approach for free vibration analysis of 
polar Mindlin plates having discontinuities, Computer 
Methods in Applied Mechanics and Engineering, 179(3-
4) (1999) 407-423.

[13] N. Fantuzzi, F. Tornabene, E. Viola, Generalized 
differential quadrature finite element method for vibration 

analysis of arbitrarily shaped membranes, International 
Journal of Mechanical Sciences, 79 (2014) 216-251.

[14] S. Moradi, H. Makvandi, D. Poorveis, K.H. Shirazi, 
Free vibration analysis of cracked postbuckled plate, 
Applied Mathematical Modelling, 66 (2019) 611-627.

[15] M. Ishaquddin, S. Gopalakrishnan, A novel weak form 
quadrature element for gradient elastic beam theories, 
Applied Mathematical Modelling, 77 (2020) 1-16.

[16] M.M. Navardi, Supersonic flutter analysis of thin 
cracked plate by Differential Quadrature Method, Master 
of Scince thesis, Amirkabir University of Technology 
University, Tehran, Iran (2015).

[17] Y. Wang, X. Wang, Y. Zhou, Static and free vibration 
analyses of rectangular plates by the new version of the 
differential quadrature element method, International 
Journal for Numerical Methods in Engineering, 59(9) 
(2004) 1207-1226.

[18] G. Karami, P. Malekzadeh, Application of a new 
differential quadrature methodology for free vibration 
analysis of plates, International Journal for Numerical 
Methods in Engineering, 56(6) (2003) 847-868.

[19] H. Shahverdi, M.M. Navardi, Free vibration analysis 
of cracked thin plates using generalized differential 
quadrature element method, Structural engineering and 
mechanics: An international journal, 62(3) (2017) 345-
355.

[20] J.N. Reddy, Mechanics of laminated composite plates 
and shells: theory and analysis, CRC press, 2003.

[21] C.W. Bert, M. Malik, The differential quadrature 
method for irregular domains and application to plate 
vibration, International Journal of Mechanical Sciences, 
38(6) (1996) 589-606.

[22] N. Bardell, The free vibration of skew plates using 
the hierarchical finite element method, Computers & 
structures, 45(5-6) (1992) 841-874.

[23] M. Zamani, A. Fallah, M. Aghdam, Free vibration 
analysis of moderately thick trapezoidal symmetrically 
laminated plates with various combinations of boundary 
conditions, European Journal of Mechanics-A/Solids, 36 
(2012) 204-212.

[24] A.W. Leissa, The free vibration of rectangular plates, 
Journal of sound and vibration, 31(3) (1973) 257-293.

[25] R. Solecki, Vibration of a simply supported L-shaped 
plate,  (1997).

[26] R. Solecki, Free-vibration of an L-shaped plate: the 
general solution and an example of a simply-supported 
plate with a clamped cutout,  (1996).

[27] F.-L. Liu, K. Liew, Analysis of vibrating thick 
rectangular plates with mixed boundary constraints using 
differential quadrature element method, Journal of Sound 
and Vibration, 225(5) (1999) 915-934.

HOW TO CITE THIS ARTICLE
H. Shahverdi, M. M. Navardi, M. H. Sadr, A Proposed Approach to Simulate Thin 
Quadrilateral Plates Using Generalized Differential Quadrature Method Based on 
Kirchhoff–Love Theory, AUT J. Mech Eng., 6(1) (2022) 15-30.
DOI: 10.22060/ajme.2021.20283.5995


