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ABSTRACT: In this study, an approach to free vibration analysis of thin quadrilateral plates using
the generalized differential quadrature method based on the strong version of the governing equation
is proposed. Hence, the governing equation of a thin quadrilateral plate is firstly obtained using the
Kirchhoff-Love theory of plates (classical theory) to achieve this aim. The well-known differential
quadrature method is then utilized to obtain the discretized form of the equations of motion. However,
simulation of any arbitrary geometry using conventional Generalized Differential Quadrature Method
based on classical theory is impossible. This drawback can be removed by defining the additional
degrees of freedom in boundaries. Moreover, the combination of the Refined Differential Quadrature
Method with geometry mapping is developed to simulate thin quadrilateral plates. Also, the multi-block
or elemental strategy is implemented for problems with more geometric complexities. For this aim,
geometry can be divided into several subdomains. Continuity conditions make the connection between
adjacent elements at each interface. By establishing the whole discretized governing equations, the free
vibration analysis of a thin plate will be provided via the achieved eigenvalue problem. The obtained
results are compared and validated with available results in the literature that show high accuracy and a
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1- Introduction

The free vibration analysis of structures, including
any arbitrary shape such as any geometric discontinuities/
complexities and complicated boundary conditions, is one of
the attractive problems in the field of mechanical engineering.
However, powerful numerical tools such as the Finite Element
Method (FEM) can be used to solve the aforementioned
problems. In recent decades the development of numerical
tools with low computational complexity and high accuracies
such as mesh-free method, boundary element method, and
Differential Quadrature Method (DQM) has been considered
for such problems. The differential quadrature was first
introduced by Bellman and Casti [1]. This method has many
positive features such as less complexity, faster convergence,
and higher accuracy than other numerical methods for
solving the various mechanical problem, especially in simple
domains expressed by partial differential equations [2-
3]. Based on the essence of DQM, the partial derivative of
a field variable at a specified point is estimated by a linear
summation of the weighted values of the field variable at all
discrete points on the domain [2]. The main drawback of the
early version of DQM was solved by Shu et al. [4] so that
this method was sensitive to the distribution type of sampling
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points. Therefore, Generalized Differential Quadrature
Method (GDQM) was suggested to overcome the expressed
drawback based on a polynomial vector space analysis. This
method was developed by many researchers converted to a
powerful method for solving different mechanical problems
so that partial differential equations can include nonlinear
terms. Khalafi et al. investigated aeroelasticity analysis of
the composite and Functionally Graded Materials (FGM)
plates containing linear and nonlinear terms in partial
differential equations [5-6]. The presented results indicate
the high accuracy and convergence of this method. Wang
and Yuan also studied buckling analysis of isotropic skew
plates under general in-plane loads using GDQM based
on a classical theory with the relations between Cartesian
coordinate system and oblique coordinate system [7] so
that the governing equation of skew plate was expressed by
skewness angle. However, it can be induced that this method
is convenient for a simple domain. The structural analysis
for complex geometric structures is impossible by using the
ordinary GDQ method [3]. Therefore, an elemental approach
based on the GDQ method could be appropriate to overcome
this problem named Differential Quadrature Elemental
Method (DQEM) [8]. The DQEM based on the strong form
equation is defined as the manner in which a computational
domain is divided into several sub-domains (elements), and
the connection between adjacent elements is established in
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mathematical form by continuity conditions at boundaries.
The DQEM approach was used by many researchers
for analyzing various problems containing geometric
discontinuity, especially the free vibration of cracked beams
[9-10]. The presented results show excellent features such as
high accuracy and fast convergence, indicating acceptable
compliance between the DQM and elemental approach.
However, vast studies were done for beam problems by
the DQEM approach. Liu and Liew [11-12] implemented
this method to investigate structural analyses of Mindlin’s
plates containing discontinuity. Afterward, the Generalized
Differential Quadrature Finite Element Method (GDQFEM)
was introduced to investigate plates’ structural analysis with
arbitrary shapes by Fantuzzi et al. [13]. They utilized the
Mindlin and first-order shear deformation plate theories in
their research. The obtained results verify high accuracy and
fast convergence. Also, free vibration analysis of cracked
plates subjected to a uniaxial in-plane compressive load using
GDQM based on Mindlin’s theory was conducted by Moradi
et al. [14]. Using Mindlin’s theory causes three equations
of boundary conditions for three governing equations,
whereas using Kirchhoff-Love theory causes two equations
of boundary conditions for one governing equation. Hence,
using the conventional differential quadrature method based
on Kirchhoff-Love theory cause regardless of four equations
of boundary equations. However, the use of theories related
to thick plates is convenient for thin plates; they can increase
computational cost because of increasing degrees of freedom.
The importance of this problem becomes obvious in the
analysis of structure with the high computational cost, such
as the optimization process. It is vital that engineers notice to
use a suitable theory that fits the model. Therefore, it should
be regarded using classical theory for structural analysis of a
thin plate. However, a differential quadrature finite element
method introduced for free vibration thin beam and plate
with arbitrary shape in the weak-form version that led to
high accuracy [15], the powerful differential quadrature is
known in the strong-form version. The solving of partial
differential equations derived by classical theory with the
DQEM approach has some restrictions in applying boundary
conditions [16]. Many researchers proposed approaches
to overcome this difficulty convenient for a single domain
[17-18]. Navardi [16] developed the GDQ method for
applying different boundary conditions in a thin plate. he
suggested extra degrees of freedom at the boundary of
a domain to provide three degrees of freedom at corners
so that two degrees of freedom were observed at the edge
containing displacement and normal slope. The presented
results show that this approach had resolved difficulties
in applying different boundary conditions, especially
when free boundary conditions were applied on two edges
perpendicular simultaneously. Shahverdi and Navardi
[19] expanded this approach for the elemental approach in
order to the simulation of a crack in thin plates. They used
six-element for simulation of central crack, and continuity
conditions were used for joining elements together. The high
accuracy and fast convergence were indicated in this study by
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the presented results. Thin quadrilateral plates with arbitrary
shapes such as skew and trapezial are widely used as a major
component in various industries. Hence, structural analysis
of such plates is vital to achieving a safe design expressed
by a differential equation. Moreover, it is necessary to use a
proper method such as the generalized differential quadrature
method with the aforementioned positive features than other
numerical methods for solving the governing equation [2-
3]. Furthermore, the main drawback of the conventional
generalized differential quadrature method based on
Kirchhoff-Love theory is the imperfection of applying
boundary and continuity conditions, especially in the corner
points that introduced a refined approach generalized
differential quadrature method by Shahverdi and Navardi
[19]. However, the only weakness of the proposed method
was the simulation and structural analysis of geometries
with arbitrary shapes. Therefore, the combination of the
geometric mapping and elemental approach in the refined
generalized differential quadrature method is developed to
solve structures with arbitrary shapes.

The novelty of the present study is to develop an
approach based on the Generalized Differential Quadrature
Element method (GDQEM) for simulating quadrilateral
thin plate structures with mixed boundary conditions based
on the classical theory of plates. For this aim, the weighting
coefficients are derived in the local coordinate based on
GDQM. Then, the weighting coefficients are calculated
for all sampling points by geometry mapping in the global
coordinate. Finally, the governing differential equations are
discretized and presented according to the proposed approach
[16, 19] based on GDQEM. The obtained results are evaluated
with the available results in the literature.

2- Governing Equations

The equation of motion for a thin structure based on the
Kirchhoff-Love theory of plates with regardless of surface
shearing forces, body moments, and inertial forces in x and y
direction is presented by [20]:

M oM. O*M O*w
o e T T4Th PR
Also
2
1, = I_h/z p(z)dz )

where M ,M  and M denote the components of
the out-of-plate moment. ¢ and p denote the intensity of
transverse distributed load and the plate mass density per
unit area, respectively. Also, w, and [ are the transverse
displacement and the plate’s mass moment of inertia. Based
on the classical plate theory, the displacement field of a plate
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is as follows [20]:

oW, (x, 1,1)
ox
o, (x, y,1)
o

u(x, y,z,t) =uy(x,y,t)—z

v(xX,3,2,8) = vy (x, y,t) -z 3)

w(x,y,z,t) = wy(x,,t)

Where u, v, and w are the displacement component in
the x, y, and z directions, respectively. u,and v, are the in-
plane displacement components, and w, is the out-of-plane
displacement component of the plate’s mid-plane. According
to von Karman linear strain-displacement relations, the linear
strains are defined as [20]:

(4)

{e} = {80} +z{k}

where &%and k are the mid-plane membrane and
bending strain vectors [20]:

Gty
gxxo gx
l={e tl=y o (5)
)=jert=l 2
&y
Ouy vy
oy Ox
The curvatures are defined by [20]:
ﬁ(%j
ox\ Ox
kx
o (ow,
k, = —| =, (6)
. o\ o
Xy

2on), 2 o)
ox\ dy ) oy\ ox

The out-of-plane moments are related to the curvatures
through the following relations [20]:
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M, =D(k, +vk,)

M, =D(k, +uk,)
D(1-

_D( U)kxy

(7
M

Xy

where D denotes the plate flexural rigidity and is
associated with Young modulus and Poison ratio via

3
B ®)
12(1-0%)

The shear force and the total transverse force components
are expressed by [20]:

oM
0,=Ma T
ox oy .
oM oM @
Q =2
G)Y Ox
=0+
(10)
V=0t 8ny

Some modifications are vital in the aforementioned
relations to introduce a refined approach in the differential
quadrature element method. The transverse displacement
derivatives, according to the following relationships, are
firstly considered as [19]:

‘szég?,‘Py:%%? (11)

By changing the degrees of freedom according to rotations
of the normal about x and y-axis, the curvature vector can be
rewritten as [19]:
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v
k, = (12)
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ox oy

Also, the out-of-plate moment components are expressed
by [19]:

x y
M_=D ov +v ov
ox oy
y X
MW:D((}; +06;P J (13)
X
_ ¥ x
M :D(l V) ¥ +8‘I’
Y 2 ox Oy
Substituting Eq. (13) into Eq. (1) yields [19]:
fou . foa . o N o) Ow, »
ac ooy ovor oy ) o 0P

By substituting Eq. (13) into Eq. (9), the shear force
components become [19]

oY* (1-v\o*P* (1+v)\o¥Y’
0.=D —+ —+
X 2 ) oy 2 ) oxoy
oY (1-v\oY (1+v)o"P"
0,=D 7t 7t
oy 2 ) ox 2 ) Oxoy
The normal slope, the out-of-plate moment components,
and the shear force components on the surface are expressed
by Eq. (16) [20]. Where, & is an angle from the x-axis to the
outward normal n-axis.

M, =M cos’0+M , sin’ 0+
2M , sinfcos O
M, =M, —M_ )sin@cosO+
2 fa2
M (cos” 0 —sin” 0)
0,=0,cosf+Q sind

(16)
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Also, the total transverse force components can be written
as follows [20]:

oM
V — + ns
=0+

(7

3- Refined Differential Quadrature Element Method

In this section, the formulation of the refined conventional
DQEM is presented by [19]. For this purpose, the equation
of motion for thin structure in the form of Eq. (14) is first
discretized by using the GDQ method. The key of this method
is to determine the derivative of a function with respect
to a space variable at a specific point as a weighted linear
summation of all the functional values at all other sampling
points along with the domain [2] and [4]. Therefore, the first-
order partial derivative of a function f{'x ) with respect to the
space variable & for the regular domain may be written as:

o
oF (18)

N —
X=X = Z A"i]pk/
k=1

where N is the number of sampling points in the domain
and A lg) is the weighting coefficients to be defined as
follows [4]:

[1&)

;1;;{ _ (é _ék)H(gk) (19)

M
- Z Ai(vl)

v=1,v#i

i=j

A well-known method of defining these points is to use
Chebyshev-Gauss-Lobatto point distribution given by Shu
[2-3] as:

(’_11) 7. i=12,..N

& =—cos (20)

The first-order partial derivative of a function f{x) can be

expressed in x-y coordinate by geometric mapping presented
by Eq. (21) [21].

@_L(@ g v @j

ox |J|\on'og o& an
7 oy -
& |J\o¢ on aon og
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where |J | is Jacobean expressed by Eq. (22).

/.
0 on o0& on

By substituting Eq. (18) into Eq. (21), the first-order
partial derivatives of a function f{x) in x-y become [21]:

] 1
=—X
i |‘]|y

(22)

g
ox

(23)

@j _ L

)y Wl
(ox G-

— | . A’ f. A,
(aﬁj (Z J (%j (Z fj

Eq. (23) can be rewritten by Eq. (24).

1%

f NxM (24)
= =) A.
ax ) ; nk fk
where: n=(0G-D).N+j ; f,=f,

A and A™ are defined by Eq. (25). for the r-th order
partial derivative [21].

[4]-[4" ][4
4] [a )4

It should be noted that the weighting coefficients are
only dependent on the derivative order and on the number
and distribution of sampling points along with the domain.
By defining the degrees of freedom slope at the edge of an

r=2,3,..
(25)
r,s=12,...

element and the transverse displacement in all domains;
X 2 x 2,y
Oy OV OV and OV can be expressed in the DQ
o&on 0 0&o
dlasscg:retlzgn%n form as: 5071
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8\Px N xM . .
= Z A”kl ky =
ox key=1
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a\Py N xM
y y _
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- NxM
AL AL DS A A
ky=e k4=l
AL N xM
IS By -
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2 26)
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N xM
B + AL W) + 2

ky=e k4—l

xy y
nk3Ak kW k,

where :

a, =[(N-1)xN]+j ,
n=[{ -DxN]+j ,

¢ =[(k,~DxN]+j; k, 22

¢ =[(k,~D)xN]+j; k, <N -1
b, =[( —)xN]+1 ,

b, =[(i -)xN]+M ,

=[G —D)xN]+k;; k, 22
=[G —DxN]+k,; k<M -1

a =

Where N and M denote the number of computational/
sampling points in x and y-direction, respectively. In the
above equations, it can be seen that there are two and three
degrees of freedom at the edges and the corner points of a
computational domain (element) with an arbitrary shape.
[19].

Substituting the partial derivatives in Eq. (16), in a similar
manner to Eq. (14), the following equation will be achieved.
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NxM

Cr, Vi +Cr Wi + Z Z Coe A Wi, |+
k=c k=1
NxM
c v +Cy +
nb = b ;1{42_: "k ’%k4
X X X N (27)
+ G, Ve, +Ca, Yo, +kZ: Z:l Cor A Wi |+
1=¢ ky=
NxM
ny\yy +ny ‘I’y + Z Z Ca k3k4wk :szy
ky=e k=1

for 2<i<N-1 and 2<j<M -1

where C* and B are the weighting coefficients
correspond to the third and second-order partial derivative in
the x-direction and C” , and B are those in the y-direction,
similarly.

M., —D[AM A W +ZN§ AN AL w, ]

ky=c ky=l1

N xM
Dv| 4;, ¥, +4,, ¥, + 2

ky=e ky=1
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nk3Ak I J
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ky=c ky=1
— N xM
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ky=e k,=1
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4- Boundary Conditions
In this section, different conventional boundary conditions
are introduced, and their discretized forms are presented.

4- 1- Clamped boundary condition
Atedges x =0 orx =a:w =0and ¥Y" =0 .
These equations can be written in DQ form as

At x=0, w,=0
and YW, =0 where n =j
(29)
At x=a, w, =0
and W, =0 where n,=[(N-1)xN]+,

Atedges y =0 or y =b:w =0and V" =0 .
These equations can be shown in the discretized form
similar to the previous items.

At y=0, w, =0
and YW, =0
where n, :[ 1—1)><N]+1
(30)
At y=b, w,=0
and ¥ =0
where n, =[(i-1)xN]+M

4- 2- Simply support boundary conditions
Atedges X =0 orx =a:w =0and M ™ =0 .
These equations can be written in DQ form as

At x=0, w,=0

and M) =0 where n =]

At x=a, w, =0 Gl
and M) =0

where n, =[(N-1)xN]+

Aty =0ory=b:w=0and M" =0.
These equations can be expressed in a discretized form
similar to the prior items.
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At y=0, w,=0
and M) =0
where n, = [(i— 1)><N]+1

(32)
At y=b, w,=0
and M =0
where n, = [(i—l)xN]+M
4- 3- Free boundary conditions
Atx =0 orx =a:V" =0and M™ =0 .
These equations can be written in DQ form as
At x =0, V"=0
and M) =0
where n,=j
(33)
At x=a, V) =0
and M) =0

where nzz[(N—l)xN]+j
Atedges y =0 or y =b : V"™ =0and M ™ =0 .

At y=0, V=0
and M =0
where n, =[(i —=1)xN]+1

(34)
At y=b, V=0
M)" =0
where n, =[(i —1)><N]+M

and

4- 4- The boundary conditions of corner point

If corner points have a combination of simply support
and clamped boundary conditions simultaneously or have
an identical specific boundary condition (clamped or simply
support), the boundary conditions at this point can be
expressed by:

w=0,y =0,y =0 (35)

The boundary conditions of a corner on the intersection of

21

two adjacent free edges are

M™=0 , M* =0,
S:MVLS _MﬂS

edge

(36)

edge 2 o

4- 5- The connection between elements

It should be noted that the physical connection between
the adjacent elements is provided by the compatibility
conditions, including continuity of transverse displacement,
rotation, bending moments, and shear forces. So, the
continuity conditions can be expressed in the normal direction
as follows:

w edge 2 :0 >

edgel
W -v* =0
edge | edge 2
(37
nn nn
M =0,
edge | edge 2
nn nn _
edge edge 2

5- Solution Methodology
The set of governing equations can be expressed by

[M{a}+[K]{e} =10}

(38)

With assuming {6 } = {5 }eiQ’ Eq. (38) can be written by

([K]-*[M]){s}=0 (39)

According to the static condensation concept, the
combination of the aforementioned discretized governing
equations and the associated boundary condition equations
can be represented by a system of linear equations through
an assembling procedure such that the continuity conditions
between adjacent DQ elements are satisfied (see more details
in Ref. [16]).

Kps Kpp || 0p Op 0
where the subscripts B and D denote the boundary

and interior points along with the domain, respectively.
K. K;,,K,; and K, imply the influence coefficients

BB >"*BD >

(40)
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Edge 1
2a &

Fig. 1. A symmetric trapezoidal thin plate.

appeared in the discretized equations. &, is the degree of
freedom vector including transverse displacements and slope
states which are considered on the boundaries of the domain
and defined by:

=i, Bl

Also, §D is the degree freedom vector including
transverse displacement of the interior points along the
domain and defined by:

Oy (41)

(42)

Computing 5D from the first row of Eq. (40) and
substituting it into the second-row results in the following
relation.

KéS,=0%6, (43)
where
K=K, _KDBK;}?KBD (44)
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The eigen-frequencies of Eq. (43) can be determined
through a standard eigenvalue solver.

6- Results and Discussions

In this section, the free vibration analyses of three thin
plate test cases are conducted by the developed numerical
tool.

6- 1- Free vibration of a single domain with arbitrary shape

In order to evaluate the accuracy and fidelity of the present
approach, free vibration analysis of a trapezoidal plate with several
different boundary conditions that are shown in Fig. 1 is carried out.
Table 1 presents the convergence behavior of the first eight non-
dimensionalized natural frequencies of the trapezoidal plate under
the fully clamped boundary condition with increasing sampling
points in the domain. In order to perform the convergence study
of the present method, different numbers of sampling points have
been considered. A good monotonic convergence behavior could
be noticed, and a 24 x 24 sampling point is found to provide
sufficiently accurate results.

Table 2 shows the first five non-dimensional natural
frequencies of symmetric trapezoidal thin plate with
several boundary conditions in comparison with Ref. [21]
that is obtained by a combination of conventional GDQM
(CGDQM) with mapping method for a simple domain that
this method has not capable of applying free boundary and
continuity conditions. The presented results in Table 2 show
an excellent accuracy in comparison with those reported by
Ref. [21].

In the next study, the free vibration analysis of the skew
plate with different boundary conditions is examined. Table
3 shows the non-dimensional natural frequencies of this test
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Table 1. Non-dimensional natural frequencies ( Q=w(a/z)’ \[ph/D ) of a symmetric trapezoidal thin
plate under clamped boundary conditions with #/a=3 and a/c=2.5

Mode sequence

Method 1 2 3 4 5 6
Present (9 X 9) 10.4334 15.4107  20.7297 23.007 23.0346  23.8607
Present (10 x 10) 10.4236  15.4867  20.4276  23.7694  24.4243  32.2927
Present (11 x 11) 10.4296 155699 213632  23.8928 243680  30.3402
Present (12 x 12) 10.4274 15.5668  21.4238  23.9092  27.8697  27.8697
Present (13 x 13) 10.4288 15.5643  21.4806  23.9050  29.4442  29.4442
Present (14 x 14) 10.4280  15.5640  21.4747 239052  28.8236  32.5396
Present (15 X 15) 10.4280  15.5640  21.4747 239052  28.8236  32.5396
Present (16 X 16) 10.4273 15.5633  21.4766  23.9083  28.8409  32.5414
Present (17 X 17) 10.4276  15.5637  21.4761 23.9054  28.8435  32.5401
Present (18 x 18) 10.4273 15.5633  21.4763  23.9069  28.8406  32.5412
Present (19 x 19) 10.4274 155635  21.4761 23.9054  28.8420  32.5401
Present (20 x 20) 10.4273 15.5634 214762  23.9061 28.8411 32.5407
Present (21 X 21) 10.4274  15.5634  21.4761 23.9054  28.8418  32.5401
Present (22 x 22) 10.4273 15.5634  21.4762 239057  28.8414  32.5405
Present (23 x 23) 10.4273 15.5634  21.4761 23.9054  28.8417  32.5401
Present (24 X 24) 10.4273 15.5634  21.4762 239055  28.8415  32.5403

Table 2. Non-dimensional natural frequencies ( Q = cu(a/;r)2 Jph/D ) of a symmetric trap-
ezoidal thin plate under clamped boundary conditions with #/a=3 and a/c=25

Mode sequence

Boundary condition Method 1 2 3 4 5
Present 10.427 15.563 21.476 23.905 28.841
C-C-C-C
Ref.[21] 10.427 15.563 21.476 23.905 28.842
Present 5.389 9.423 14.688 15.910 21.690
S-S-S-S
Ref.[21] 5.389 9.422 14.685 15.908 21.689
Present 9.443 14.386 19.897 22.4694 26.331
S-C-S-C
Ref.[21] 9.443 14.386 19.897 22.472 26.331

case study in comparison with Refs. [22-24] that are obtained
by finite element method, generalized differential quadrature
method based on first-order deformation theory, and Ritz
method, respectively. The achieved results show high accuracy
as well as other references, especially in implementing free
boundary conditions. The DQM, as the known form, is not
able to solve the derived partial differential equations of
classical theory for the thin plate with arbitrary geometry,

including free boundary conditions. This table shows that the
problem of applying free boundary conditions is solved.

To evaluate the accuracy and fidelity of the present
approach for connection among several elements, free
vibration analysis of a square plate composed of two
subdomains under the clamp and support boundary conditions,
which are shown in Fig. 3 is investigated.

Table 4 shows the natural frequencies for a square plate
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»
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Fig. 2. Schematic figure of the skew plate.

Table 3. Non-dimensional natural frequencies ( Q = a)(a/;;)z |ph/D ) of a skew plate

Mode sequence

Boundary condition Method ﬂ 1 2 3 4 5
CaCCC Present 123247 180069 234808 295373 308788
Ref [22] 123399  18.0057  23.4956  29.5649  30.9447
$.5.5.5 Present s 2.1130 4.8842 5.6845 8.0090  10.5374
Ref.[23] 2.1144 4.8842 5.6846 8.0085 10.5372
Present 3.7440 6.5112 9.4198 102110  13.9495
5-C-5-C Ref[22] 30 3.7451 6.5119 9.4233 102112 13.9530
CFCF Present 45 3.6856 3.8447 6.2487 8.7815 10.3478
Ref [23] 3.6852 3.8432 6.2509 8.7740  10.3352
S-S Present 60 2.5700 2.7109 5.5671 7.3968 10.1871
Ref[22] 2.5810 2.7249 5.4567 7.3786 10.1551
Present 1.3645 1.9855 2.4591 3.5261 3.5261
F-F-EF Ref.[24] 0 1.3667 2.005 2.4755 3.4736 3.4736
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a

A

\

Fig. 3. A rectangular thin plate consists of two subdomains with a% =0.75 and a,/a=0.25.

Table 4. Non-dimensional natural frequencies (Q = wa®,/ph /D ) of a square plate consist of two subdomains

Mode sequence

Boundary condition Method 1 2 3 4 5
Present 359853 733939  73.3939  108.215 131.580
C-C-C-C CDQM [16] 359852  73.3939 733939  108.217 131.579
Ref.[24] 35.992 73.413 73.413 108.270 131.640
Present 19.7392 493480  49.3480  78.9568 98.6960
'S.S-S-S CDQM [16]  19.7392  49.3480  49.3480  78.9568 98.6960
Ref.[24] 19.7392 493480  49.3480  78.9568 98.6960
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a

Fig. 4. The L-shaped thin plate with cut out.

consisting of two subdomains, and the connection between
subdomains has been established by continuity conditions.
The results have been presented by 16x16 sampling points
in each subdomain. The results have been compared by [16]
which are presented based on Conventional DQM for a single
domain with 16 x16 sampling points. The convergence of the
present method needs more grid points than ordinary DQM,
but the high accuracy has made it convenient to use the
presented approach for solving thin plates with an arbitrary
shape or consist of multi-domain.

6- 2- The free vibration of an L-Shape thin plate

In this section, the free vibration analysis of a simply
supported L-shaped thin plate with equal sides is conducted.
In order to apply the present approach (GDQEM) for solving
this problem, the plate is divided into three subdomains, as
shown in Fig. 4.

The results consist of the first four non-dimensional
natural frequencies along with those reported in Ref. [25] are
presented in Fig. 5. Also, the effect of the cutout aspect ratio
(¢/a) on the natural frequency has been studied and depicted
in this figure. It should be noted that a sampling point
distribution including 22 x 22 grid points in each subdomain
has been considered to achieve an acceptable convergence.
As it is evident, there is an excellent correlation between the
results of the present method and Ref. [25].

The first four shape modes of this thin plate structure have
been presented in Fig. 6.

6- 3- The free vibration of a square thin plate with mixed
boundary conditions

In this section, the results of free vibration analysis of a
square plate with mixed boundary conditions are presented

26

by using the present method. Fig. 7 shows a square plate with
simply supported, free, and clamped boundary conditions at
the same edges. For this purpose, the plate is divided into
six subdomains (as shown in Fig. 7), and a sampling point
distribution including 22 x 22 grid points in each subdomain
is considered.

The first four non-dimensional natural frequencies of
the first case, corresponding to Fig. 7, are presented in Fig.
8. The obtained results are in good agreement with those of
Ref. [27]. It should be noted that the results of Ref. [27] were
obtained by applying DQEM to analyze the above problems
based on the first-order shear deformation theory.

7- Conclusions

In this study, the combination of geometric mapping
with a refined approach in the generalized differential
quadrature element method has been proposed to provide the
free vibration analysis of thin plate structures with complex
geometry or boundary conditions. The main idea of this
approach is to refine the GDQ formulation based on the
classical plate theory by incorporating an additional degree
of freedom. To validate the present approach, free vibration
analyses of some different test cases, including symmetric
trapezoidal thin plate, skew thin plate, L-shape thin plates, and
square thin plates with mixed boundary conditions, have been
performed. The evaluation of the obtained results clarifies
the accuracy and fidelity of the present method. However, it
was found that the convergence of the present method needs
more grid points than ordinary DQM. However, using the
developed formulation, one can overcome the difficulties in
applying different types of boundary and the simulation of
geometry with arbitrary shape in the computational domain
based on classical theory.
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