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Two-Phase Simulation of Magnetohydrodynamics and Ferrohydrodynamics Impacts 
on the Natural Convection of a Magnetic Nanofluid within a Porous Cavity
S. Goudarzi , S. Yekani Motlagh, H. Soltanipour*

Department of Mechanical Engineering, Urmia University of Technology, Urmia, Iran

ABSTRACT: This article attempts to evaluate the impact of magnetohydrodynamics and 
ferrohydrodynamics on the free convection of a magnetic nanofluid in a square porous cavity. The 
published literature shows that the magnetic nanofluid convection problems have been mostly simulated 
by the single-phase model. In the present work, a two-phase model is used to consider the effects of 
Brownian diffusion, thermophoresis, and magnetophoresis of particles. The Darcy-Brinkman formulation 
is employed to treat mass, momentum, and energy transport phenomena in the porous medium. The 
governing equations are solved numerically by the finite volume technique. Numerical computations are 
performed for various Rayleigh numbers ( 410Ra =   and 510Ra =  ), Hartmann numbers ( 0 5Ha≤ ≤  
), magnetic numbers ( 70 4 10Mn≤ ≤ ×  ), and porosity ratio of 0.5ε =  and 0.9. The current results are 
validated via comparison with existing experimental or numerical results in the literature. Impacts of 
magnetohydrodynamics, ferrohydrodynamics, and ferrohydrodynamics/magnetohydrodynamics on 
the flow field and heat transfer rate are discussed separately in detail by contour plots of streamlines, 
isotherms, and distribution profiles of nanoparticles. Numerical results indicate that at 410Ra =  heat is 
mainly transferred by conduction and its rate is unaffected by porosity, magnetic, or Hartmann numbers. 
However, at 610Ra =  and 0.9ε =  the average Nusselt number decreases by increasing magnetic and 
Hartmann numbers.
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1- Introduction
Because of numerous applications in nature, engineering, 

and industry (including electronic cooling, solar collectors, 
crystal growth, thermal storage systems, etc.), the analysis of 
natural convection in cavities has fascinated many investi-
gators. In the last two decades, nanofluids have been one of 
the most effective fluids for heat transfer purposes. The ex-
perimental measurements of Choi and Eastman [1] revealed 
that the heat transfer performance of common liquids can be 
considerably improved by dispersing metallic nanoparticles. 

One of the first numerical studies on the nanofluids was 
performed by Khanafer et al.[2]. They reported the free con-
vection of nanofluids in an enclosure. Their numerical analy-
sis confirmed that the rate of heat transfer is increased via 
nanofluids. The majority of the existing numerical investiga-
tions concerning the heat transfer of nanofluids are carried 
out by the single-phase approach that is all possible relative 
motions of nanoparticles in the base fluid are neglected. For 
example, nanofluid natural convection in a semi-annulus cav-
ity was numerically investigated by Soleimani et al. [3]. They 
found that at any Rayleigh number, there is an angle of turn 
with a maximum heat exchange rate. Sheikholeslami et al. 
[4] investigated the free convection of a nanofluid in a cavity 

composed of an inner elliptic cylinder and an outer circular 
one. It was demonstrated that the rate of convection increases 
with enhancing nanoparticle void fraction, Rayleigh number, 
and inclination angle of the elliptic cylinder. Soltanipour et 
al. [5] reported the efficacy of a variable magnetic field on 
the nanofluid convection heat transfer in a 2D channel. They 
stated that an applied magnetic field considerably enhances 
the heat transfer rate. Some studies corroborated that the two-
phase treatment of nanofluids is more accurate results than 
the single-phase approach [6, 7]. The mixture model has been 
mostly used in the simulation of nanofluids [8-11]. Buongior-
no [12] introduced a new two-phase model that has received 
significant attention in recent years. By comparing different 
slip mechanisms, the author concluded that the Brownian and 
thermophoresis diffusions play a dominant role in the disper-
sion of nanoparticles. Corcione et al. [13] declared that Buon-
giorno’s two-phase model accuracy is higher than the single-
phase method in simulating the free convection of nanofluids. 
Some investigators employed Buongiorno’s two-phase model 
to study nanofluid natural convection [14-16]. 

Compared to other nanofluids, magnetic nanofluids have 
a prominent property of magnetization. This unique feature 
has made them widely used in medicine and engineering 
[17-20]. Utilizing the Lattice Boltzmann Method (LBM), 
Kefayati [21] analyzed the role of an external field in the *Corresponding author’s email:  h.soltanipour@gmail.com
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natural convection of a magnetic nanofluid within a cavity. 
Results showed that an externally- applied magnetic field is 
more effective at high Rayleigh numbers. Sheikholeslami 
and Gorji [22] studied the natural convection of a mag-
netic fluid in a bottom heated square cavity under a mag-
netic field. It was concluded that the rate of heat transport 
increases with increasing the Rayleigh number and length 
of heat source. Tzirtzilakis and Xenos [23] studied the ef-
fects of Ferrohydrodynamic and Magnetohydrodynamic on 
biomagnetic fluid flow in a lid-driven cavity. It was found 
that the flow pattern is strongly affected by the Hartmann 
and magnetic numbers. Recently, nanofluid natural convec-
tion inside saturated porous media has received much at-
tention. A literature survey shows that the two-phase mod-
eling of nanofluids in porous media is relatively rare, and 
most of them were performed using the single-phase method 
[24]. Sheremet et al. [25, 26] reported the results of  Bu-
ongiorno’s two-phase model for the prediction of natural 
convection of nanofluids inside 2D and 3D porous enclo-
sures. A two-phase simulation of nanofluid free convection 
in a tilted porous enclosure was done by Motlagh et al. [27]. 
Their numerical results indicated that at large porous Ray-
leigh numbers, the porosity ratio strongly affects the rate of 
heat transport. Motlagh et al. [28] implemented a two-phase 
simulation of nanofluid natural convection in a half-annulus 
porous cavity. An examination of the effect of the tilt angle 
of the cavity, porous Rayleigh number, porosity, and void 
fraction of nanoparticles, revealed that the rate of heat trans-
fer increases with increasing the porosity ratio.

The present paper seeks to elucidate the Ferrohydrody-
namics (FHD) and Magnetohydrodynamics (MHD) effects 
on a magnetic nanofluid natural convection in a porous me-
dium. For this purpose, the two-phase model of Buongiorno 
has been extended to consider the magnetophoresis effects. 
To the best knowledge of the authors, such an investigation 
has not been reported before. The impact of some effective 
parameters such as magnetic, Hartmann, and Rayleigh num-
bers, as well as the porosity ratio of the porous medium on the 
flow variables, are presented in the following sections.

2- Mathematical Modeling
2- 1- Problem statement 

The objective of the current work is to determine the 
Ferrohydrodynamics (FHD) and Magnetohydrodynamics 
(MHD) influences on the convective heat transport of water/
Fe3O4 magnetic nanofluid in a saturated porous medium. The 
schematic presentation of the problem is shown in Fig. 1. 

As shown in Fig. 1, the left and right vertical walls have 
constant temperatures, hT and cT while the horizontal walls 
are insulated. The origin of the coordinate system is at the left 
bottom corner of the enclosure. Magnetic nanofluid is sub-
jected to non-uniform magnetic fields of eight current-carry-
ing wires, which provide FHD effects. The location of each 
magnetic source is depicted in the figure. For wires w1-w4, 
an electrical current flows in the positive z-direction while 
for the remaining wires current is in the opposite direction. 
Moreover, a uniform magnetic field of ( ˆ

zB=B k


) is applied 
to the ferrofluid in the positive z-direction. Such a magnetic 
field provides MHD effects. 

 
Fig. 1. Geometry of the problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Geometry of the problem
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2- 2- Governing equations and boundary conditions
Magnetic nanofluid flow is taken to be 2D, laminar, in-

compressible, steady-state, and Newtonian. The Darcy-
Brinkman model is used for the formulation of ferrofluid flow 
in a porous medium which is considered as a homogeneous 
and isotropic material. Moreover, ferrofluid and solid matrix 
are considered to be in the Local Thermal Equilibrium (LTE). 
The Boussinesq law is utilized to approximate the density 
variation of ferrofluid in the buoyancy term. It is assumed that 
the applied magnetic fields have negligible effects on the ther-
mophysical properties of magnetic nanofluid. Also, the mag-
netocaloric effect, thermal radiation, and viscous dissipation 
are neglected. In this study, the Buongiorno two-phase model 
is extended to incorporate the magnetophoresis diffusion of 
nanoparticles in the base fluid. Based on these assumptions, 
the governing equations for continuity, momentum, energy, 
and nanoparticle void fraction are as follows [12, 23, 29]:
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where ( , )u v=V
 is velocity field; P  and T  are pressure 

and temperature; ge is the unit vector in the negative y-direc-
tion; ε is porosity and K  refers to permeability; nfσ denotes 
the electrical conductivity of nanofluid. Also 0µ  is the perme-
ability of vacuum; H



, B


and M are the magnetic field inten-
sity, flux density, and magnetization vectors, respectively and 

0µ=B H
 

. Also, subscript “nf” and “p” denote nanofluid and 
nanoparticles. The terms 0 ( . )µ ∇M H



 and ( )nfσ− × ×V B B
  

on 
the right side of momentum equations are the Kelvin and Lo-
rentz body forces, respectively. The components of the mag-
netic field and its magnitude are as follows [23]:
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where ( , )i ix y  denotes the coordinates of i-th magnetic 
source, and I is the current intensity.

Langevin law is used to compute the magnetization of fer-
rofluid [30]:
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where sM  is the saturation magnetization of ferrofluid 
and ( )L ξ  refers to Langevin function which is defined as:
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be written as:
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The Brownian diffusion  is calculated from [12]:
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where γ is a constant and defined as 
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Substituting of Eqs. (11) to (14) into nanoparticle’s void 
fraction equation yields:
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In the above equations, n is a unit vector normal to a 
boundary.

2- 3- Thermophysical properties of magnetic nanofluid
The following relations are used to determine the density, 

specific heat, and volume expansion coefficient of magnetic 
nanofluid [32, 33]:
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The viscosity of nanofluid is calculated based on the 
Brinkman equation [34]:
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Ferrofluid thermal conductivity is estimated by the Ham-
ilton-crosser  model [35]:
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Maxwell model is used to approximate the electrical con-
ductivity of the mixture [36]:
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The effective conductivity in porous media can be calcu-
lated as below [37]:
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The thermophysical properties used in this study are listed 
in Table 1.



S. Goudarzi et al., AUT J. Mech. Eng., 6(1) (2022) 129-148, DOI: 10.22060/ajme.2021.19819.5967

133

2- 4- Non-dimensionalisation of the governing equations
The nondimensionalized form of the governing equations 

can be obtained by the following parameters [12, 16, 39]:
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(26) Therefore, the non-dimensional representation of gov-
erning equations are as follows:
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The boundary conditions in the dimensionless forms are 
as follows:

Table 1. Thermophysical properties of water, Fe3O4 nanoparticles, and solid matrix [16, 27, 38]
Table 1. Thermophysical properties of water, Fe3O4 nanoparticles, and solid matrix [16, 27, 38] 

 

Physical 

properties 

water Fe3O4 porous 

medium 
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The average Nusselt number is obtained by integrating the 
local Nusselt number along the hot vertical wall of the cavity:
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(31)

3- Numerical Procedure
The governing equations of the problem are solved by 

the well-known finite volume technique and on a co-located 
mesh [40]. It should be mentioned that the constitutive rela-
tions for thermophysical properties of nanofluid, Brownian, 
and thermophoresis diffusion coefficients and magnetization 
of the ferrofluid are updated at each iteration since they vary 
with void fraction and temperature. In this study, a central dif-
ference scheme is employed to discretize the diffusive fluxes 
while the convective ones are treated by an upwind method. 
Also, the Semi-Implicit Method for Pressure Linked Equations 
(SIMPLE) method is utilized for coupling velocity and pres-
sure fields. The numerical solution starts with the single-phase 
method and after some iterations is switched to two phase-
model. To obtain the converged solution, the proper values of 
under relaxation factors are used. The termination criterion is 
satisfied as soon as all residuals become less than 10-6. 

3- 1- Grid independent study
To ensure that the obtained results are grid-independent, 

various uniform grids are tested. Table 2 presents the grid 
study validation test for the case of 610Ra = , 1Ha = , 0.9ε =
, and 74 10Mn = ×  As seen, for the mesh size of 200×200, 
the solution becomes grid-independent. 

3- 2- Validation 
Verification is done by the comparison of present results 

with other published ones.  The present results first are com-
pared with the experimental results of Ho et al. [41] and the 
numerical results of Sheikhzadeh et al. [42] for free convec-
tion of Al2o3/water nanofluid in a differentially heated enclo-
sure. This comparison is illustrated in Fig. 2. The average 

Table 2. Grid study at 610Ra =  , 1Ha =  , 0.9ε =  74 10Mn = ×  and  

 

Table 2. Grid study at 610Ra = , 1Ha =  , 0.9 =  and 74 10Mn =   

x yn n       

mNu  1.676 1.661 1.659 1.657 1.656 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Comparison of the average Nusselt number. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparison of the average Nusselt number.
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relative error between the experimental and current numeri-
cal results is determined to be 7.9% indicating the acceptable 
agreement. The difference between measured and predicted 
Nusselt numbers can be mainly attributed to different correla-
tions used for the estimation of the thermophysical properties 
of nanofluids.

Another comparison is made with the results of Refs. [42] 
and [15]. Isotherms and the distribution of particles are shown 
in Fig. 3. According to the figure, the agreement is excellent. 
To further check the accuracy of the current results, a 
comparison is made by the results of Tzirtzilakis [43], 
who numerically investigated a biomagnetic fluid flow in 

an aneurysm and under a non-uniform magnetic field. The 
axial variation of the friction factor is depicted in Fig. 4. The 
results are in good agreement, with small differences due 
to the different numerical methods used in the two studies 
(finite difference vs. finite volume).
Finally, the present results are compared with those of Basak 
et al. [44]. They analyzed the mixed convection problem in 
a porous enclosure. The distribution of local Nusselt number 
along the left and right walls are compared in Fig. 5. Once 
again, the agreement is good, with an average relative error 
of less than 6%. This error can be related to the various 
techniques employed in the two studies (finite element vs. 
finite volume).

 

 
Fig. 3. Comparison of current results with those of Sheikhzadel et al. [43] Garoosi et al. [14] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of current results with those of Sheikhzadel et al. [43] Garoosi et al. [14]

 
Fig. 4. Comparison of local friction coefficient  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of local friction coefficient 
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4- Results and Discussion
The MHD-FHD effects on the free convection of a mag-

netic nanofluid in a porous media are studied numerically 
utilizing Buongiorno’s two-phase model and based on the 
Darcy-Brinkman formulation. In this study, the Brownian, 
thermophoresis, and magnetophoresis fluxes of nanoparti-
cles in the carrier fluid are taken into account. Computations 
are performed for different values of dimensionless numbers 
including Rayleigh number ( 4 610 ,10Ra = ), Hartmann num-
ber ( 1,3Ha =  and 1), magnetic number ( 7 71 10 ,2 10Mn = × ×  
and 74 10×  ), and porosity ( 0.5,0.9ε = ) The effects of the 
above-mentioned parameters on the streamlines, tempera-
ture field, nanoparticle distribution, and the rate of heat 
transfer are examined. It should be noted that the values of 
Prandtl number, Schmidt number, Darcy number, dimen-
sionless temperature difference (δ), and NBT  are kept con-
stant at 4.623,  43.55 10× , 310− , 161, 0.245 , respectively. Also, 
the average particle volume fraction is set at 0.02 .

4- 1- FHD impacts
The effects of non-uniform magnetic fields (arising from 

eight current-carrying wires) are presented in this section. It 
should be mentioned that here the MHD effects are neglected 
(Ha=0). Fig. 6 shows the effects of the magnetic number on 
the flow pattern at 410Ra =  for 0.5ε =  and 0.9. In the ab-
sence of a magnetic field, streamlines are coaxial circles in-
dicating a weak recirculating flow. At such a small Rayleigh 
number, the buoyancy forces are negligible, and therefore the 
dominant forces are Kelvin’s body forces. As a result, in both 
porosity ratios, the flow pattern within the cavity is strongly 
influenced by the magnetic forces. It can be seen that two 
large vortices occupy almost the entire cavity.  There are also 
several small vortices near the magnetic sources. It is ob-
served that the number and size of formed vortices are more 
significant around the cold wall.

The effects of the magnetic number on the temperature 
field at 410Ra =  for 0.5ε =  and 0.9  are shown in Fig. 7. As 

can be seen, isotherms are parallel, indicating that conduc-
tion is the dominant mechanism in heat transport. However, 
at high magnetic numbers and especially at 0.9ε = , the iso-
therms are slightly distorted due to strong magnetic forces. 

The variation of nanoparticle distribution along the hot 
and cold walls of the cavity for 410Ra =   and at different Mn 
number is depicted in Fig. 8. In the absence of a magnetic 
field, the nanoparticles migrate from high-temperature to 
low-temperature areas, which is the result of thermophoretic 
forces. From the figure, it is observed that along the left wall 
by enhancing the magnetic number, the particle void fraction 
increases. Also, it can be observed that nanoparticle distribu-
tions near the magnetic sources show peaks due to magneto-
phoretic flux.

Fig. 9 shows the streamlines at 510Ra =  for 0.5ε =  
and 0.9 . As can be seen, the flow patterns in two porosity 
ratios are considerably different. Regardless of the mag-
netic number, flow intensity is higher at 0.9ε =  compared 
to 0.5ε = .

Another point is that at high magnetic numbers, there are 
small vortices in the right-bottom corner of the enclosure 
due to the Kelvin body forces. It is interesting to note that at 

0.9ε =  by applying non-uniform magnetic fields, the flow 
intensity decrease in the cavity. In contrast, at 0.5ε = , the 
impact of the magnetic field on the flow pattern seems to be 
insignificant.

To examine the FHD effects on the heat transfer rate, the 
variations of the average Nusselt number are plotted versus 
the magnetic number at two Rayleigh numbers and porosity 
ratios in Fig. 10. At small Rayleigh number, i.e. ( 410Ra =
) or small porosity ratio ( 0.5ε = ) heat transfer is primarily 
transmitted by conduction, and therefore, regardless of Mn  
values, Nusselt number approximately equals unity. But at 

610Ra =  and 0.9ε = , the applied magnetic field declines the 
rate of heat transfer. These findings are consistent with the in-
fluences of magnetic field on the flow and temperature fields 
shown in Figs. 6, 7, and 9.

 

 
Fig. 5. Comparison of current results with those of Basak et al. [45] for Gr = 105, Re=10, Pr=10 and 

Da=10-3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison of current results with those of Basak et al. [45] for Gr = 105, Re=10, Pr=10 and Da=10-3



S. Goudarzi et al., AUT J. Mech. Eng., 6(1) (2022) 129-148, DOI: 10.22060/ajme.2021.19819.5967

137

 

Fig. 7. Isotherms at different magnetic numbers for 410Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Isotherms at different magnetic numbers for 410Ra =  

 

Fig. 6. Streamlines at different magnetic numbers for 410Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Streamlines at different magnetic numbers for  410Ra =
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Fig. 8. nanoparticle distribution along the hot and cold walls for 410Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. nanoparticle distribution along the hot and cold walls for  410Ra =
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Fig. 9. Streamlines at different magnetic numbers for 610Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Streamlines at different magnetic numbers for  610Ra =

 

Fig. 10. The impact of the magnetic number on the rate of heat transfer: (a) 410Ra =  (b) 610Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The impact of the magnetic number on the rate of heat transfer: (a) 410Ra =   (b) 610Ra =  
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4- 2- MHD impacts
The impact of MHD (due to a uniform magnetic field) on 

the flow variables is discussed in this section. It should be 
noted that here the magnetic number is taken to be 0Mn = .

The influence of Hartmann number on the streamlines and 
isotherms at 410Ra =  for 0.5ε =  and 0.9  are shown in Figs. 
11 and 12, respectively. 

Due to negligible driven forces and also suppression of 
fluid flow by retarding effects of Lorentz forces, advection is 
weak. Consequently, apart from the Ha or ε  values stream-
lines are coaxial circles. Besides, isotherms are parallel and 
therefore, heat is mainly transferred by conduction.

The distribution of nanoparticles along vertical walls of 
the cavity is plotted in Fig. 13 at various Hartmann numbers. 
In the absence of MHD effects (Ha=0), the distribution of 
nanoparticles is affected by Brownian and thermophoresis 
fluxes. As can be seen, the concentration of particles on the 

hot wall is lower, and on the cold wall is higher, and applying 
a uniform magnetic field has no considerable impact on the 
overall distribution of the nanoparticles.

Fig. 14 shows the influence of Hartmann number on the 
streamlines at 610Ra =  for 0.5ε =  and 0.9ε = . In both po-
rosity ratios, it is seen that at high Hartmann numbers the 
flow is retarded due to the Lorentz forces.

Fig. 15 illustrates the variation of Nu as a function of Ha 
at two Rayleigh numbers and porosity ratios. At 410Ra = , 
there is weak advection therefore, irrespective of the poros-
ity ratio, the applied uniform magnetic field has a negligible 
impact on the rate of heat transfer. Consequently, the mean 
Nusselt number is independent of the Hartmann number and 
is nearly 1.0. At 610Ra =  and higher porosity ratio, the ap-
plied magnetic field declines Nu value. By comparing Figs. 
15 and 10, it can be seen that the MHD and FHD effects on 
the rate of heat transfer are similar. 

 

Fig. 11. Streamlines at different Hartmann numbers for 410Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Streamlines at different Hartmann numbers for  410Ra =
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Fig. 12. Isotherms at different Hartmann numbers for 410Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Isotherms at different Hartmann numbers for 410Ra =   

 

Fig. 13. nanoparticle distribution along the hot wall (left) and the cold wall (right) for 410Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. nanoparticle distribution along the hot wall (left) and the cold wall (right) for 410Ra =  
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Fig. 14. streamlines at various Hartmann numbers for 610Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. streamlines at various Hartmann numbers for  610Ra =

 

Fig. 15. Nu vs. Hartmann number: (a) 410Ra =  (b) 610Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Nu vs. Hartmann number: (a) 410Ra =  (b) 610Ra =

4- 3- Simultaneous impacts of FHD and MHD 
Simultaneously impacts of FHD and MHD on the 

flow variables are discussed in this section. Streamlines at 
410Ra =  and 0.5ε =  are depicted at different magnetic and 

Hartmann numbers in Fig. 16. 
As expected, the flow pattern is more complicated be-

cause of the existence of Kelvin, Lorentz, and buoyancy forc-
es. As can be seen, the main flow structure consists of two 
large counter-rotating vortices. Moreover, there are several 
small vortices near the magnetic sources. As shown, at high 
magnetic numbers the flow is thoroughly driven by the Kel-

vin body forces.
Fig. 17 shows the isotherms for 410Ra =  and 0.5ε =  at 

different Mn and Ha numbers. Since the flow is weak irre-
spective of Mn and Ha values isotherms are parallel, which 
indicates that heat is predominantly transmitted by the con-
duction.

Fig. 18. shows the particle distribution along the hot and 
cold walls of cavity isotherms for 410Ra =  and 0.5ε =  at dif-
ferent Mn and Ha numbers. For specified values of Ha, when 
the Mn increases the nanoparticle void fraction increases 
along the hot walls. 
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Fig. 17. Isotherms at different Ha and Mn values for 410Ra =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Isotherms at different Ha and Mn values for 410Ra =  
 

 

Fig. 19. Nanoparticle distribution along the vertical walls for 410Ra = and various values of Ha and 

Mn  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 Nanoparticle distribution along the vertical walls for 410Ra =   and various values of Ha and Mn 
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Fig. 20. Effect of Mn and Ha on the mean Nusselt number for 410Ra = : (a) 0.5 =  (b) 0.9 =   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Effect of Mn and Ha on the mean Nusselt number for 410Ra =  : (a) 0.5ε =  (b) 0.9ε =    

 

 
 

Fig. 21. Impact of Mn and Ha on the mean Nusselt number for 610Ra = : (a) 0.5 =  (b) 0.9 =  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. Impact of Mn and Ha on the mean Nusselt number for 610Ra =  : (a) 0.5ε =  (b) 0.9ε =   

The mean Nusselt number for 410Ra =  and 0.5ε =  and 
0.9 is plotted at different magnetic and Hartmann numbers in 
Fig. 19. According to the figure and in the range of studied 
parameters it is concluded that at 410Ra =  the heat is essen-
tially transferred by conduction. Therefore, the average Nus-
selt number value is nearly independent of Ha, Mn, and ε .

Fig.20 illustrates the variation of mean Nusselt with Mn 
and Ha for and 410Ra =  at two porosity ratios. As can be 
seen, in comparison with MHD the FHD effects on the heat 
transfer rate are almost negligible. Irrespective of the porosity 
ratio, the rate of heat exchange decreases with an increasing 
Hartmann number.

5- Conclusion
The impacts of FHD and MHD on the natural convection 

of a magnetic nanofluid in a porous enclosure are studied by 
a two-phase model and based on the finite volume method. 
The published literature shows that the magnetic nanofluid 
convection problems have been mostly simulated by the sin-
gle-phase model. In the present work, a two-phase model is 
used to consider the effects of Brownian diffusion, thermo-
phoresis, and magnetophoresis of particles. The influences of 
some critical factors such as Rayleigh, magnetic, and Hart-
mann numbers, and also the porosity ratio of porous media 
on the temperature and flow fields, nanoparticle distribution 
of magnetic nanoparticles, and the mean Nusselt number are 
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BD  Brownian diffusivity, [m2 s-1] 

TD  Thermophoresis diffusivity, [m2 s-1]  

Da  Darcy number, [-] 

H    Intensity of magnetic field, [A m-1] 

Ha  Hartmann number, [-] 

 I     Electrical current, [A] 

J     Flux vector of particles, [kg m-2 s-1] 

K   Permeability, [m2] 

k   Thermal conductivity, [W m-1 K-1] 

Bk  Boltzmann’s constant (=1.38066×10-23), [J K-1] 

          Side length of the cavity, [m] 

L(ε)   Langevin function, [-] 

Le   Lewis number, [-] 

M    Magnetization, [A m-1] 

Mn   Magnetic number, [-] 

pm  Magnetic moment, [A m2] 

BTN Brownian to thermophoretic diffusions, [-]      

Nu   Nusselt number, [-] 

P   Pressure, [N m-2] 

Pr  Prandtl number, [-] 

Ra   Rayleigh number, [-]  

Sc   Schmidt number, [-] 

T   Temperature, [K] 

V velocity field, [m s-1] 

Greek symbols 

α   Thermal diffusivity, [m2 s-1] 

β   Volumetric expansion coefficient, [K-1] 

ε   Porosity, [-] 

ξ   Langevin parameter, [-] 

 μ   Viscosity, [kg m-1 s-1] 

0  Vacuum permeability, [T.m A-1] 

Bohr magneton, [A m2] 

ρ   Density, [kg m-3] 

φ  Void fraction, [-] 

Subscripts 

eff    Effective  

f    Base fluid 

m    Mean 

nf    Nanofluid 

p     Nanoparticle 

s     Solid matrix 
 

 

 

 

 

 

 

 

 

presented. It is found that due to the magnetophoresis effect, 
the magnetic nanoparticle void fraction increases in proxim-
ity to the magnetic sources. Also, thermophoresis effects lead 
to the migration of particles from the hot to the cold wall. Nu-
merical results indicate that at 410Ra =  the heat transfer rate 
is influenced neither by FHD nor by MHD effects. Besides, 
at 610Ra =  FHD effects can be ignored in comparison with 
MHD ones. At 610Ra =  and 0.9ε = , the average Nusselt 
number is decreased from 6.25 to 1.4 and 1.2 due to FHD and 
MHD effects, respectively.  

Nomenclature
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