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multi-harmonic frequency disturbance. At first, a function for disturbance force and its first and second
derivatives are estimated. Then the position of the main system is controlled by feedback linearization
and sliding mode controllers. A magnetic actuator is designed, which is controlled by a sub-controller.
Liunberger observer estimates disturbance function, and the feedback linearization and sliding mode

controllers regulate the main system’s position. Metaheuristic algorithms obtain the controller’s

coefficients to minimize settling time and errors. Four different techniques, namely, Genetic algorithm,  Keywords:

Particle swarm optimization, Simulated annealing, and Teaching-learning-based optimization, are — , oo oo e o

utilized for the optimization process. A magnetic actuator is designed using Faraday and Lorentz’s law Slidi 4 ol
. . . . 1ding mode contro
for applying the controlling force to the system. Simulation results of the observer have been compared . &
to real value, and the results show the excellent effect of active vibration absorbers on vibration Liunberger

suppression. Moreover, optimizing the controller coefficient shows an improvement in settling time —Metaheuristic optimization algorithms
and error. Comparing the algorithms, particle swarm optimization has the best cost function, where  Magnetic actuator

Teaching-learning-based optimization has the best-averaged results.

1- Introduction

Nowadays, vibrations are attractive and more applicable.
Vibration is intentionally used in some systems, like the
vibratory bowl for automatic feeding, operator interface in
phones, gaming instruments, etc. In some systems, the goal
is vibration suppression. In this case, a vibration absorber can
be used. In general, vibration absorbers can be divided into
two main categories: passive vibration absorbers and active
vibration absorbers. Passive vibration absorbers are reduced
oscillations without control strategy and actuators. But in
active vibration absorbers, oscillations are reduced using a
control method in different frequencies.

Vibration absorbers are used in high structures, bridges,
towers, high voltage cables, etc. Also, vibration absorbers
are used in rotary systems to prevent the torsion axis. The
advantage of using active vibration absorbers is to minimize
the size of the actuators. For example, a bridge to prevent
vibration without an absorber needs to use a huge actuator.
Still, when it uses an active vibration absorber, the actuator
can be very small. For different applications of vibration
absorbers, exist several types of actuators. In bridges and
building applications, hydraulic actuators have been used,
and magnetic or electrical actuators can be used in smaller
applications.

Since 1928, the regulation of vibrating absorbing has
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begun by Armstrong and Dan Hatg, and has progressed so far,
and its applications have expanded [1]. Until the last decade,
most efforts were made to use passive vibration absorber
in various applications [2-5], and scientists looked at how
vibration absorber was used and responsive. For example, the
vibration absorber in bridges is studied by Chen and Kareem
[6] in 2003. The use of a vibration absorber combined with
other methods of reducing vibrations, for example, vibration
isolation, provides the basis for other work in this field [4, 5].
In the following, with the combination of vibration absorbers
with control systems, an active vibration absorber appeared.
An active vibration absorber has much more power than a
passive vibration absorber. Active vibration absorber has
a more frequency range for control [7-10]. Various control
methods are used in active vibration absorbers. Each of these
methods has particular advantages in reducing vibrations.
These control methods are also performed on the beams.
Bailly and Hubbard [11] (1985) controlled the vibrations of
the beam by using piezoelectric sensors and actuators for a
cantilever beam. The combination of a vibration absorber with
control is not enough when the disturbance is in the system.
The disturbance estimation can be helpful in systems control
and vibration reduction. Also, an observer can help to estimate
the system states in control. Mirowich used the Liunberger
observer in 1985 to estimate the system states. Estimators not
only gives system states but also can estimate disturbance
[7, 10, 12, 13]. Oscillation control is one of the important
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tasks of an active vibration absorber. Due to high frequency
or unknown disturbance in uncertain vibration systems, using
robust controllers is necessary. The sliding mode controller is
the most straightforward and most applicable control strategy
for uncertain systems [14-17]. Optimizing the coefficients
of the controllers leads the system to the desired position.
The integrated control and structure design optimization
problem have been investigated from a response to the
disturbance point of view is presented by McLaren and Slater
in 1993. The output feedback controllers were employed in
the control strategy, and quantitate results were presented
[18]. Integrated control and structural optimization design
model for piezoelectric intelligent truss structures have been
presented. In Zhao et al.’s [19] study in 2009, the feedback
gain is optimized. Zhang et al. [20] in 2017 propose a method
for topology optimization of piezoelectric laminated plates
for minimizing the energy consumption with active vibration
control under harmonic excitation. Some more study in
vibration optimization problems is about designing a passive
vibration absorber and tuning the mass, spring, and damper
[21-23].

The magnetic actuator has several types and is also
used in many different fields. In 2000, Howe presented the
applications of various types of magnetic actuators in aviation
systems [24]. Linear magnetic actuators are more complex
than rotational magnetic actuators. Magnetic actuators are
used in a variety of applications. A simple type of linear
magnetic actuator is to form magnet arrays [25, 26]. This
structure is nonlinear, and researchers use different methods
to improve this actuator to reduce nonlinear effects. Clarke
et al., in 1995, tried to linearize this type of actuator. Linear
magnetic actuators are usually presented in innovative ways.
For example, Kim et al. [29] In 2005 and Li et al.28] ] in
2007 presented a very similar actuator that is very effective
in short course motion. These types of actuators with small
moves are used in the automatic valves, and due to the high
nonlinearity nature of these valves, scientists try to control
these valves using different control [30]. Researches on linear
magnetic actuators are still ongoing, and various ideas for
these actuators are presented. For example, in 2009, Lierop
et al. [31] presented a planar magnetic actuator. In micro
dimensions, using a magnetic actuator is common because
these actuators have a very high ability in micro dimensions
and are more capable of controlling in this field. A study
in 1996 also showed that magnetic actuators, in the micro
dimensions, could be used simultaneously as position sensors
[32]. The combination of active vibration absorbers and
magnetic actuators can control the vibration systems in the
presence of disturbance.

Optimization of the controller’s coefficient based on
minimizing the settling time is the current study’s goal. To
this end, the modeling of these systems is presented, and
the estimator of disturbance is designed. Then, the effects
of controller coefficients on feedback linearization and the
sliding mode controllers are investigated, and their optimal
values are selected using four metaheuristic algorithms.
Finally, the simulation results are presented for the optimal
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Fig. 1. Primary system

designs of the controller.

2- Modeling
2- 1- Mechanical system modeling

To control a vibration system similar to Fig. 1, an
active vibration absorber is used, according to Fig. 2. In
the presented system, the control force u is applied to the
absorber by a magnetic actuator. In this system, the system
consists of a mass and linear damper and a nonlinear spring
that it’s vibrated by the unknown multi-harmonic force f (t )
that is joined to a vibration absorber by a linear spring.

Fig. 1 shows the primary system in which vibrations
are transmitted by a linear spring to the vibration absorber,
and the damper in the absorber system is joined to the earth.
The characteristic of nonlinear spring in primary mass as
shown in Eq. (1), where x, is the main mass position, &,

is the linear stiffness coefficient of the spring and k, , I8
the nonlinear stiffness coefficient of spring, which is in the
condition x, =0 the spring is in the primary length.

P(xl):k1x1+k1pxl3 (1)

Using Newton’s second law for the primary and absorber
systems, one can obtain two second-order differential
equations for primary and absorber systems. According to
Fig. 2, the mechanical equations are obtained follow as:

m X1+cxX, +kx, +

()
k1px13_k2 (xz—xl)zf (t)

mzfc'z+c2x'2+k2(x2—x1):u(t) 3)
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Fig. 2. Primary system and active vibration absorber

In Eq. (2), x, is the main mass position and x, is the
position of the absorber mass, which is equal to zero in
the primary length. To obtain the state space equations, the
primary mass position is defined as z, =x, and the absorber
mass position is defined as z ; =x , . Then, with the definition
of z, and z, asrespectively, the primary and absorber mass
velocity is obtained in state space. So, by inserting x, =z,
and x,=z, and X, =z, and X, =z,, the space-state
equations are obtained:

Z,=z,
(k,+k,) k
_ 1Ky » 3
2= 2 -
m, m,
¢ k, 1
—zZ,+—=z3+—f (1)
m, m, m, “4)
Z,=z,
k c k
_ K 2 2
Z,=—*z,——z,——=z,+—u
m, 2 m, m,

2- 2- Electrical system modeling

The electrical system consists of the coil of a magnetic
actuator and a current-carrying wire. Fig. 3 generally shows
the actuator.

Concerning Fig. 3, two coils are located near together. The
magnetic core inside each of the coils increases the intensity
of the magnetic field and provides an appropriate direction

Magnetic
Coils core
» 4

Current carrying
L .
wire

Fig. 3. generally structure of an actuator

for the magnetic field to prevent loss of the field. The current-
carrying wire is in a uniform field. The wire is passed from the
magnetic field. According to the Lorentz law, it is created a
force on the wire and the force will be applied to the absorber.
The modeling of the magnetic actuator generally consists of
two parts. The first part is calculating the force generated in
the current-carrying wire that depends on the value of current
and the intensity of the magnetic field. The second part is the
circuit modeling of the actuator, which consists of an electric
circuit with voltage input and a current output that produces
the desired force according to the first part.

513



M. AbdolMohammadi et al., AUT J. Mech. Eng., 5(4) (2021) 511-534, DOI: 10.22060/ajme.2021.19740.5962

i\

Fig. 4. Modeling of the actuator

2- 2- 1- Calculation of the force generated in the actuator
The applied force to the electrical charge is presented in

Eq. (5) [33].
F,=qV,xB (5)

where ¢ is the electrical charge and V', is the velocity of
the electrical charge, and B is the density of magnetic field
intensity. In general, Eq. (5) means that if an electrical charge
moves in the magnetic field with velocity ¥, , then the force
F is applied to it. The differential form of Eq. (5), that is the
applied force on dl , can be written as Eq. (6).

dF, =—N eS|dI[V,xB ==N S V,|dl xB (6)

where d/ is a small element of a conductor with section
cross S, N, is the number of electrons per unit volume, and
e is the electron charge. In Eq. (6), the value of N eS | v,
is equal to the amount of current which passes from the
conductor, so we can write:

dF,, =1dl xB (7)

Eq. (7) is called the Lorentz law. This law shows that if a
current-carrying conductor is perpendicular to the magnetic
field, then the force F), is applied to it. Fig. 4 shows how the
actuator applies the force. This law is in a static situation, and
when the wire moves in the field, voltage is induced in the
wires which reduces the current in the wire, so the force is
generated and absorbs energy from the system. The absorbed
energy is seen in inducted voltage. The induced voltage can
be obtained from Faraday’s law. Faraday’s law illustrates if
a wire moves with velocity V', in a magnetic field, then the
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Fig. 5. The equivalent circuit of the actuator

voltage E is induced. Eq. (8) calculates the value of the
voltage induced in the wire with the length L [33].

E=(V,xB)L, (®)

2- 2- 2- Actuator electrical circuit modeling

The equivalent circuit of the system is shown in Fig. 5,
where V', is the input voltage of the wire, and R, is the total
resistance of the circuit, and E is the voltage induced in the
wire, and L is the self-inductance of the wire.

The relation between current and input voltage is obtained
using Kirchhoff’s law according to Fig. 5.

di
V,-Ri—-E—-L—=0 9
B el dt ()

Eq. (9) is a first-order differential equation. ¥ is input
voltage as the input of the electric system, and the current is
a state variable. The state-space equations of the electrical
system are obtained in Eq. (10).

e

dr L

di _-Rji E 1
= (1) (10)

2- 2- 3- Calculation of the coils magnetic field intensity

In Egs. (7) and (8), the value B represents the density of
the magnetic field in the coils. Fig. 6 shows a rectangular loop
of the coil. For each part of the wire, the field in the center of
the rectangular is computed and then the summation of these
fields is the coil field for one loop.

To calculate the field at a distance » for a wire with
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Fig. 6. One ring of the coil

length 2L as shown in Fig. 7, first, the magnetic potential is
obtained. The cylindrical coordinates (4, ,a,,,a, ) are used to
calculate the magnetic potential.

2 2
i ,uolhl L +r°+L
4z LI*+r*-L

A (11)

The density of the magnetic field is obtained with regard
to the magnetic potential as Eq. (12) [33].

B =VxA4 (12)

.~ 104
=a,———

r op

;o
? or

B=Vx(d,A) (13)

The value of 04 /O¢ is zero because the magnetic
potential is constant at a specific distance from the wire so
that we can write:

B=g L

C 2L 452

Eq. (14) shows the field around a wire with length 2L
in distance 7 .

According to Fig. 6, the field generated by the rectangle’s
length in its center is obtained as

(14)

AN ul, Na’ +b’
- ()

Finally; Magnetic force can be obtained according to

B (15)
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Fig. 7. Calculation of magnetic field a wire with length
2L [33]

the magnetic field by Egs. (15) and (10). The wire’s self-
inductance can be considered zero due to the short length of
the wire and its single ring. The mutual inductance between
the coil and the wire is also very small for three reasons: the
current in the coil is constant, the field created by the wire is
very small, and the magnetic cores in the coils. So the Eq. (9)
can be expressed as

i=Vs=E (16)
Re
According to Eq. (7), we can write:
F =iaxB (17)

Using Egs. (8), (16), and (17), the magnetic force is
obtained as follows.

(V' —aBV,) (18)

m

F =23
R

e

Substituting Eq. (15) into Eq. (18), Eq. (19) is obtained:

F o 4,uNI:\/a2 +b? o
" Rbrx

(19)
[V 4uNIV Na® +b2J
-
br
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Eq. (19) shows the magnitude of the force generated by
the magnetic actuator which the input voltage can control V',

3- Control

A nonlinear control strategy is different based on the
model uncertainty of the system. When a nonlinear system
is completely known and certain, the feedback linearization
control method is the simplest control method that achieves
the desired response. Derivation of accurate model equations
is impossible; therefore, the feedback linearization method is
not suitable for these systems. There are several methods to
compensate for uncertainties. One of the control methods for
a nonlinear system, including the uncertainty, is the sliding
mode control method, which guarantees the system’s stability
because the sliding mode controller is obtained based on the
Lyapunov stability theory.

In this study, to control the mass-spring-damper system
with a vibration absorber, feedback linearization and sliding
mode control methods are used. These methods require the
estimation of the disturbance imposed on the system. The
disturbance is unknown but it is harmonic. Because the
estimator’s speed and accuracy are essential, the Liunberger
observer estimates the disturbance force. Actually, the
Liunberger estimator using the input and output of the actual
system calculate the disturbance force on the system, which
is explained in detail in the next section.

3- 1- Disturbance force estimator

As mentioned above, to control the mass-spring-damper
system with a vibration absorber, an appropriate estimation of
the disturbance force is first required. The disturbance force
is the summation of several harmonic forces with different
amplitudes and frequencies. The disturbance is applied to
the main mass, according to Fig. 2. The goal of control is
so that y = z tracks the desired value, to this end, we
must differentiate from the state space equations such that u
appears in the output dynamics as Eq. (20).

= ( )

1

Gy +ﬁz3+—f(z>
oom, m,
N (20)
y? = ( ) yy -
m

y+k z +—f(t)
m

w _ k2 , _(k1+k2)y.._

mm, m,
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3kiy2)';_6kiyy2_c_1y<3)
m, my m,
k? k.c k 1 .
Iz ——2 1z +—2u+—f(@t)
mm, mm, mm, m,

According to Eq. (20), we can obtain the state variables in
terms of output and its derivatives, derived as Eq. (21).

=Y
Z,=Y
m, .. G ki +k,
z,=—ty+-Ly+ y+
ky™  k, ky
kp 5 1
S r(
K, y sz() Q1)
2, =Ty b

Now, substituting Eq. (21) into Eq. (20), y ) is obtained

as Eq. (22).

y<4>:_(0_1+0_2Jy<3>_
m, m,

k. +k, k cc .
#4__2_{_# V-
m, m, mm,

k +k
e
1 2 1 2 (22)
k1k2 y _k2k1py3_
mm, mym,
k k
3Ly ly—6—Lyy’ -
1 1
c.k
322 25 4 T2 4 (F)+ E(2
mlmzy Y mlmlu( ) 5( )
where
£ =2 p (1) () (1)
mm, mym, m, (23)
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In fact, Eq. (23) is the new disturbance function required
for control, which should be estimated. Indeed, the &
function is estimated to control the system instead of f' (l‘ ) .

Liunberger observer is used to estimating the function &
, which uses the Taylor series prediction signal as Eq. (24)
[10].

§()=2pit" (4)

where all p, coefficients are unknown and ¢ is the time
variable of the series. The degree of Eq. (25) indicates the order
of the observer. The accuracy of prediction and processing is
increased by increasing the order of the observer.

(25)

where £ =¢, &,=& .., and & =0

Concerning Egs. (22) and (25), and by defining y =7, =z,
and y =1, ..., the developed model of the predictive signal of
the dynamical system is as follows.

n=n,
n, =1,
=1,
C C
774:_[ 1 +_2]774_
m, m,
m, m, mm, (26)
¢,k c, (k1+k2) B
m,m, m,m,
k. k k
iz e 13_3_p7712773
mym, mym, 1
¢k
6—L iy, —3——Lnin, +—2—u (1)+¢

According to Eq. (26), we can make the Liunberger
observer as Eq. (27). We can determine the estimator poles
by choosing the appropriate values of £, ... 5..

771:7?2+:B7(y _)9)
772:7?3"'/86()’ _)9)
773:7?4+ﬂ5(y _)9)

k. +k, k c.c
-1 2, "2, 7172 n, —
m, m, mm,

¢k, +cz(kl+k2) n, -
m,m, mym, ’
ke k k. k k, 27
l2771_ 21p77 3_771773 @)
m,m, mm, m,
k, ¢k
6_771772 32t 7712772+
m, mym,
k,

u(t)"'él ++ﬂ4(y _J;)

i,
E=b 4B (v -7)
=&+ By -7)
é+@( 7)

é4=ﬂo(y )

3- 2- Active vibration absorber

From the control point of view, vibration absorbers are
divided into two groups: 1- active vibration absorbers 2-
passive vibration absorbers. Passive vibration absorbers are
absorbed vibration without any control system and only
reduce the system’s vibration by absorbing energy and
applying force at the proper frequency. The active vibration
absorbers have similar benefits to passive vibration absorbers
and have an active control system to reduce or control
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Fig. 8. The Control strategy

vibrations in different frequencies.

In the proposed control strategy, only the state-feedback
of the main mass position x, is used in the controller and the
estimator. Fig. 8 shows the block diagram of the system with
the controllers and the estimator. The output of the estimator
is the value of the function & (t) . The magnetic actuator
controller input is the output of the main controller, which is
adjusted by the actuator voltage that indicates the force value
of the actuator.

3- 2- 1- Feedback linearization controller

The error dynamics equation in the feedback linearization
controller determines the behavior of the system. To this end,
Eq. (28) is used for the error dynamics equation, a fourth-
order differential equation.

e +a3e(3) +a,é+ae+ae =0 (28)

where a, ...ajare controller coefficients that can be
determined concerning desired response and behavior. In Eq.
(28), the error is defined as e =y, —y . In fact, it is the error
of the main mass position relative to the desired position. By
substituting Eq. (22) into Eq. (28) and solving in terms of u
, the feedback linearization controller is obtained as Eq. (29).

m,m
u=(-y-g&)—-= (29)
k,
where:
v=y 54) —a3e(3) —a,é—agé —age (30)
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m, m,

2

m, m, mm

¢k, +02(k1+k2)]y _

(31
mym, mym,
kk, Jy _(kalp ]y 3
mym, m,m,
3k

1p Jyzy'_[6klp ]yyz _[302—klpjy2y
my m, mym,

Also, & is the estimated value by the estimator.

3- 2- 2- Sliding mode controller

The sliding mode controller is a robust control method
used to compensate uncertainties and leads the system to
the desired states. The sliding mode method is based on
the Lyapunov stability theory [30]. Concerning Eq. (32), a
sliding surface, according to Eq. (33), is considered. Based on
this sliding surface, the sliding mode controller is designed
for the system.

@ _f (VK2 (s
yW=f(») mlmlu( ) (32)
s=eP 1316431% + e (33)
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where s is sliding surface, A is a constant which is defined
such that p’ +3Ap”>+31°p + A’ are stable (Hurwitz)
polynomialand e=y , —y .

The control goal of the sliding mode is defined so that the
sliding surface converge to zero as follow:

s =0—e¥ +316+31% + 1% =0 (34)

To realize Eq. (34), the Lyapunov stability theory is used.
To do this, the Lyapunov function is considered a definite
positive function.

V==5>>0 (35)

_ Now, for Eq. (34), the value # must be designed such that
V' (s) be a negative definite.

V(s)zss' (36)

The value of s is obtained by differentiating from Eq.
(33).

s =y —y 1320 131264 2% (37)
Substituting Eq. (32) into Eq. (37) leads to:

s=yi'=f (v)-
k,

mym,

(38)
u(t)+ 32e%) 13126+ 1%

To compensate for the uncertainty, the ¥ (s)is not only
smaller than zero but its value is also considered smaller than
a negative value as Eq. (39).

14 (S)ZSS' £—77|S| (39)

where 77 is a positive parameter. To find the equivalent
controller, with regard to Eq. (38), the s must be tended to
zero, therefore by solving the resultant in terms of u , the
equivalent controller is obtained as:

(40)
(yé“) —f ()43 437 e+ p% )

The controller is introduced by Eq. (40) is well if the
system is completely known and accurate, but if there
is uncertainty in the system, the values of f (y)are not
completely known; so Eq. (40) rewrite based on the known
value of f () denoted by f () as the following form.

(41)
(yi“) —f (y)+3reV +3p7 ¢+ y% )

To compensate for the uncertainties, the value of
—k sgn(s)is added to Eq. (40), and then the sliding mode
controller is obtained as Eq. (42).

u=u, —ksgn (s) (42)

where k is a coefficient which is defined such that the V/
be negative definite.

In the following, to prove the stability and to find the
value of k , substituting Eq. (42) and Eq. (38) into the Eq.
(39) as:

ﬁzsgﬂ ()

S§ S—77|S| - s’sgn(s)S—n

S P —f (0)-—Eu ()

mm,

32 43226+ A% )sgn (s ) <-7

k
= o)) =f ()= (FE)x )
mm, k,

OW—f(y)+32D +32% 6+ 2%)
—ksgn(s))+32e") +322 6+ 1%6) x

sgn(s) <—n(f ) —f (0 Dsgn(s) +—2—k <

mm,

In the sliding mode method, the uncertainty must be
bounded, so:
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Vo)-f ()|=p (44)

According to Eq. (43) and Eq. (44), k is obtained as
follow:

o+ kg k <-n
mm,
(45)

k S—%(nﬂo)
2

Finally, the sliding mode controller is rewritten in the
form of Eq. (46).

) (46)
(yy) —f (y)+34e®) 3226+ A% +(n+ p)sgn (s ))

3- 3- Magnetic actuator control

The magnetic actuator is modeled according to Eq. (9).
Considering the very low self-inductance of the wire, as well
as the low mutual inductance between the coils and the wire,
Eq. (9) is rewritten as Eq. (47).

Vy=-R,i-E (47)

The force generated by the magnetic actuator is calculated
in Eq. (18). By solving Eq. (18) in terms of V', , the controller
of the actuator is obtained as.

FmRe
V,= g +z,Ba (48)

By reducing the current of the coils, the density of the
magnetic field is decreased. So we can neglect the effect
of absorber speed. The controller of Eq. (48) cannot be
implemented because there is no feedback from the absorber
velocity z,. Therefore, by reducing the current of coils,
the effect of Faraday’s induction is reduced, therefore the
controller of Eq. (48) is approximated in the form of Eq. (49).

y, = (49)
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Fig. 9. The coil cross and path of magnetic flux

Because of the insignificant amount of inductance and the
ignored effect of absorber velocity, the controller is actually
a constant gain with the value R, /aB . Another method to
reduce inductance is related to the form of the coils winding.
So, the distance between the wires must be very low and the
wires must be winded together along with the core. Also, the
magnetic core, as shown in Fig. 9, is designed as a closed-
loop to minimize the loss of flux, which leads to decrease the
mutual inductance.

4- Numerical Simulation

The performance of the mass-spring-damper system with
vibration absorber and magnetic actuator with the controllers
are simulated. The disturbance force is applied into the
system as a sum of several sinusoidal forces with different
frequencies, amplitude, and phase as

f= 0-3sin(2. 145¢ + %) ¥

- (50)
0.4sin(1.826t + %) +0.45 sin(0.49t + ?j

Fig. 10 shows the disturbance force, which is applied to
the system.

The masses, springs, and dampers of the system are
considered in Table 1. The absorber values are used based
on Ref. [10].

By substituting the values of Table 1 in equations of the
system and applying the disturbance force, the system’s
response with and without absorber is obtained. Fig. 11 shows
the oscillations of the main system without an absorber, and
Fig. 12 shows the oscillations of the main mass with the
vibration absorber.

The controllers’ effect can be observed by adding
the magnetic actuator and controllers. Table 2 shows the
parameters and coefficients of the magnetic actuator designed
for the required control force.
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Fig. 10. The disturbance applied to the system

Table 1. The parameters and value of the primary system and absorber

Parameters Signs Values
Primary mass m, 10 (kg)
Primary spring stiffness k, 44 (N/m)
Nonlinear primary spring stiffness klp 8 (N/m’)
Primary damper ¢ 0.1 (Ns/m)
Absorber mass m, 0.6 (kg)
Absorber spring stiffness k, 2 (N/m)
Absorber damper ¢, 0.08 (Ns/m)

4- 1- Estimator simulation results

The estimator helps to control the system by estimating a
differential function of force disturbance & . The Liunberger
observer estimates the value of &, and this value will be
given for the controller to control the system. Fig. 13 shows
the real value and estimated value of & with a step input.

According to Fig. 13, it can be seen that the estimated
value is very close to the real value. In Fig. 13, the estimated
value with the step input by using the feedback linearization
controller. According to Fig. 13, when the input step is applied
or accelerates movements, the estimation is accompanied by
some quickly vanished errors.
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4- 2- Magnetic actuator controller

The magnetic actuator controller is obtained by
eliminating the velocity of the absorber mass in the
controller of the magnetic actuator and minimizing the
effect of the inductance in this system. The magnetic
actuator controller has an appropriate response to the
desired force which is determined by the main controller.
Fig. 14 shows the desired force determined by the feedback
linearization controller and the output force of the actuator
which is controlled by means of the magnetic actuator
controller.
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Fig. 12. Oscillations of the primary system with passive vibration absorber
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Table 2. Parameters and value of the magnetic actuator

Parameters Signs Values
Number of rings N 50
Vacuum permittivity o 47+ 1077 (H/m)
The relative permittivity of Iron )7 4000
Current of coils 1, 0.5(A)
Width of coils a 0.04 (m)
Length of coils b 0.5(m)
Resistance of coil R 2(Q)
T T T T
B —=Zeta
o= i = Observer
[ L ,
0.15 - I "\ I\ i\ 1
1 N\ A | |
,\ 5 I \/\ Al |
o1 || £ 4 (Vi) F A
1 TR o Ak b
oos- | P—R ] i ‘ i
] i ' i \ I \ r \
4 , [ |‘ . 1 ’ | . l
ol | ! i / i \ L
Vo4 ] i ! \ ' \ ’ |
Vi H 1 I U i ’ ‘
-0.05 - \ '.' i i v\ — \ i =
Vo 1 \ qV ¥ LA
0.1F t ot LA Vo ‘l\, VY
WA Vg i VAY; \
L \ \: ‘e
-0.15 Y \/ i \j
0.2 =
al: | 1 | 1
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Time (s)

Fig. 13. Estimation of &
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Fig. 14. The actuator and its controller response to the main controller

5- Optimization
5- 1- Metaheuristic techniques

Metaheuristic techniques usually mimic natural, physical
or cultural events for solving optimization problems. These
methods can be categorized into four classes: swarm-based,
evolution-based, human-based, and physics-based techniques
[34]. The most popular techniques in these classifications are
shown in Fig. 15. Evolutionary optimization algorithms are
developed by the rules of natural evolution. The most popular
evolution-based algorithm inspired by Darwinian evolution
is Genetic Algorithms (GA) [35], where it is used in many
optimization problems. The other group, where simulate the
social behavior of groups of birds, animals, and so on, is
called swarm-based algorithms. Particle Swarm Optimization
(PSO), where mimics the bird’s flock’s group relations, is the
most famous method in swarm-based optimization algorithms
[36].

Moreover, Physics-based methods simulate physical
events in nature. The most popular method in this category
is Simulated Annealing (SA) [37], based on the annealing
process in material science. In the last category, there are
some metaheuristic techniques motivated by human and
social behaviors.

In the current study, four techniques, namely, GA, PSO,
SA, and Teach-Learn-Based Optimization (TLBO), are
considered to optimize the optimization problems. It should
be noted that these algorithms were chosen in different
groups.

5- 2- Optimizing of the controller coefficients
The controller coefficients in the feedback linearization
method and the sliding mode method are usually obtained by
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simulation trial and error. In this approach, the coefficients of
the feedback linearization controllers, including a,,q,,a,,a;,
and sliding mode, including A is obtained by optimization, is
optimized by different metaheuristic algorithms. Settling time
is minimized by calculating these coefficients by algorithms.
To obtain the controllers’ best coefficients, the cost function
and the constraints must be defined for optimization. The
settling time is defined as a cost function and the error is
defined as constraints. The step input is considered the desired
input for the system; when the error is lower than 0.5% of step
input, and the speed, acceleration, and jerk of the system tend
to zero, the settling time is obtained. Each algorithm is run ten
times with different coefficient values, and the coefficients
related to the best run have been selected and are shown in
Table 3. Ranges of the design variables for all algorithms are
selected as a, =[0,1000], a, =[0,1000], a, :[0,200],
a, = [0,100] and A= [0,100] . Table 3 shows the value of
population, iteration, and probable coefficients for different
algorithms.

Fig. 16 shows that the optimization algorithm reduces
the system response’s settling time with the feedback
linearization controller.

Fig. 17 shows each algorithm’s best outputs for the
feedback linearization controller and the effect of changing
the coefficients in which PSO has the best result.

The optimization of the sliding mode controller
coefficient is similar to the feedback linearization coefficients
optimization. Fig. 18 shows the reduction of the settling time,
and Fig. 19 shows the best output of each algorithm.

Comparisons of four optimization algorithms are
represented in Tables 4 and 5. PSO algorithm has the best
result for the feedback linearization coefficient in the Table 4.
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Fig. 15. Classification of the metaheuristic techniques

Table 3. The best-used optimization techniques parameters

Parameter Controller GA PSO SA TLBO
Maximum Number of Iterations F-L 100 100 100 100
SMC 40 40 40 40
Initial Population Size F-L 100 100 100 100
SMC 10 10 10 10
Crossover Coefficient F-L 0.9 - - -
SMC 0.9 - - -
Mutation Coefficient F-L 0.1 - - -
SMC 0.1 - - -
Inertia Term F-L - 0.7 - -
SMC - 0.3 - -
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Fig. 16. Decreasing the settling time with optimization algorithms for the feedback linearization controller
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Fig. 17. The optimizing settling time for the step input in case of feedback linearization controller
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Fig. 18. Decreasing the settling time with optimization algorithms for the sliding mode controller
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Fig. 19. The optimizing settling time for the step input in case of the sliding mode controller
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Table 4. Comparing results of optimization algorithms for feedback linearization coefficients

Optimal Design variables Cost Function CPU Time (s)
Algorithm
a, a, a, a, Best (S) Average (S) Best (S) Average (S)
GA 739.1176  487.3704 138.9523 18.0493 12.653 13.1943 314.1329 365.4614
PSO 563.9815 390.7921 109.9931 15394 11.979 12.8033 239.3058 251.494
SA 1000 704.7331 196.87 25.178 12.38 12.6854 165.7098 169.0135

TLBO 579.6328

414.7801

118.5773  16.3557 12.355 12.6123 708.8619 772.0213

13.2

13
12.8 -
12.6
12.4
12.2
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Fig. 20. Comparison of the optimization algorithms for feedback linearization coefficients
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Table 5. Comparing results of optimization algorithms for sliding mode coefficient

Optimal Design variables Cost Function CPU Time (s)
Algorithm
A Best (S) Average (S) Best (S) Average (S)
GA 4.6912 13.166 13.2981 11.0297 13.493
PSO 4.6964 13.161 13.1715 8.9656 12.3612
SA 4.6964 13.161 13.1656 8.615 8.7320
TLBO 4.6964 13.161 13.1624 18.9172 23.2915
_a—
13.3 7
13.25 -~
13.2 A
— E— B R —
1315
131 47
13.05 T T T 1
GA PSO SA TLBO

a) Cost Function ( @ Best (s) @Average (s))

25 - _A—
20 - P
15 a—
_a—
/—- —
10 A A= e
PSO SA

GA

TLBO
b) CPU time ( ®Best (s) @Average (s))

Fig. 21. Comparison of the optimization algorithms for sliding mode coefficient
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Fig. 22. The system response in case of feedback linearization controller without uncertainty

TLBO has not tuned parameter and has the Best average. It
means that the PSO tuning parameter must be select correctly.
By comparing the best results and averages, if a suitable tuning
parameter selects for PSO, it has the best result else TLBO
is a good choice for this system and feedback linearization
controller. According to the CPU time in Tables 4 and 5, SA.
is the fastest, and TLBO is the slowest among four different
algorithms.

6- Results

Feedback linearization and sliding mode control are
simulated for two situations: system uncertainty and system
uncertainty. If uncertainty exists in the system, the estimation
error is increased because the estimator is based on the
system’s model.

6- 1- Control simulation (without system uncertainty and
with force uncertainty)

The feedback linearization strategy controls the main
mass’s position by applying the control force on the absorber
mass. Fig. 22 shows the system response in the case of a
feedback linearization controller due to the step input. The
feedback linearization coefficients values are derived from the
PSO algorithm as a,=563.98, a,=390.79, a,=109.99
anda, =15.39.

Fig. 23 shows the sliding mode response to a step input.
It can be seen, sliding mode controller without uncertainty
is provided an appropriate response. The value of A in this
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control method is 4.6964, which is obtained from optimization
algorithms.

6- 2- Control Simulation (with system and force uncertainty)
The feedback linearization controller is not provided a
proper response in the presence of parametric uncertainty.
Fig. 24 shows the system response by using the feedback
linearization controller, including the uncertainty.
Fig. 25 shows the system response with a sliding mode
controller in uncertainty, which has a suitable response.

7- Conclusions

An active vibration absorber was utilized in this study for
a nonlinear one degree of freedom system with an unknown
multi-harmonic frequency disturbance force. A function
of disturbance was estimated by the Liunberger observer.
Then the system was controlled by feedback linearization
and sliding mode controllers. Finally, the settling time was
optimized by GA, PSO, SA, and TLBO algorithms. Some
results in this study are summarized as follows:

In the absence of uncertainty, feedback linearization is
faster than the sliding mode controller.

In the presence of uncertainty, the feedback linearization
has the error, but this error is lower when its coefficients are
optimal.

In the presence of uncertainty, the sliding mode is slower
than the case without uncertainty.

The optimization of controller coefficients to reduce the
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Fig. 25. The system response in case of sliding mode controller with uncertainty.

settling time increases the speed and accuracy of the system
response

Comparing four different optimization algorithms for our
problem shows that PSO, as a swarm-based algorithm, has
the best response.

Moreover, TLBO, as a human-based algorithm, is more
confident because its average is better than the others.

Furthermore, the SA, as a physics-based algorithm, is the
fastest method for calculating the controller coefficient.
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