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ABSTRACT: An active vibration absorber is utilized in this study for a nonlinear system with unknown 
multi-harmonic frequency disturbance. At first, a function for disturbance force and its first and second 
derivatives are estimated. Then the position of the main system is controlled by feedback linearization 
and sliding mode controllers. A magnetic actuator is designed, which is controlled by a sub-controller. 
Liunberger observer estimates disturbance function, and the feedback linearization and sliding mode 
controllers regulate the main system’s position. Metaheuristic algorithms obtain the controller’s 
coefficients to minimize settling time and errors. Four different techniques, namely, Genetic algorithm, 
Particle swarm optimization, Simulated annealing, and Teaching-learning-based optimization, are 
utilized for the optimization process. A magnetic actuator is designed using Faraday and Lorentz’s law 
for applying the controlling force to the system. Simulation results of the observer have been compared 
to real value, and the results show the excellent effect of active vibration absorbers on vibration 
suppression. Moreover, optimizing the controller coefficient shows an improvement in settling time 
and error. Comparing the algorithms, particle swarm optimization has the best cost function, where 
Teaching-learning-based optimization has the best-averaged results.
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1- Introduction
Nowadays, vibrations are attractive and more applicable. 

Vibration is intentionally used in some systems, like the 
vibratory bowl for automatic feeding, operator interface in 
phones, gaming instruments, etc. In some systems, the goal 
is vibration suppression. In this case, a vibration absorber can 
be used. In general, vibration absorbers can be divided into 
two main categories: passive vibration absorbers and active 
vibration absorbers. Passive vibration absorbers are reduced 
oscillations without control strategy and actuators. But in 
active vibration absorbers, oscillations are reduced using a 
control method in different frequencies.

Vibration absorbers are used in high structures, bridges, 
towers, high voltage cables, etc. Also, vibration absorbers 
are used in rotary systems to prevent the torsion axis. The 
advantage of using active vibration absorbers is to minimize 
the size of the actuators. For example, a bridge to prevent 
vibration without an absorber needs to use a huge actuator. 
Still, when it uses an active vibration absorber, the actuator 
can be very small. For different applications of vibration 
absorbers, exist several types of actuators. In bridges and 
building applications, hydraulic actuators have been used, 
and magnetic or electrical actuators can be used in smaller 
applications. 

Since 1928, the regulation of vibrating absorbing has 

begun by Armstrong and Dan Hatg, and has progressed so far, 
and its applications have expanded [1]. Until the last decade, 
most efforts were made to use passive vibration absorber 
in various applications [2-5], and scientists looked at how 
vibration absorber was used and responsive. For example, the 
vibration absorber in bridges is studied by Chen and Kareem 
[6] in 2003. The use of a vibration absorber combined with 
other methods of reducing vibrations, for example, vibration 
isolation, provides the basis for other work in this field [4, 5]. 
In the following, with the combination of vibration absorbers 
with control systems, an active vibration absorber appeared. 
An active vibration absorber has much more power than a 
passive vibration absorber. Active vibration absorber has 
a more frequency range for control [7-10]. Various control 
methods are used in active vibration absorbers. Each of these 
methods has particular advantages in reducing vibrations. 
These control methods are also performed on the beams. 
Bailly and Hubbard [11] (1985) controlled the vibrations of 
the beam by using piezoelectric sensors and actuators for a 
cantilever beam.  The combination of a vibration absorber with 
control is not enough when the disturbance is in the system. 
The disturbance estimation can be helpful in systems control 
and vibration reduction. Also, an observer can help to estimate 
the system states in control. Mirowich used the Liunberger 
observer in 1985 to estimate the system states. Estimators not 
only gives system states but also can estimate disturbance 
[7, 10, 12, 13]. Oscillation control is one of the important 
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tasks of an active vibration absorber. Due to high frequency 
or unknown disturbance in uncertain vibration systems, using 
robust controllers is necessary. The sliding mode controller is 
the most straightforward and most applicable control strategy 
for uncertain systems [14-17]. Optimizing the coefficients 
of the controllers leads the system to the desired position. 
The integrated control and structure design optimization 
problem have been investigated from a response to the 
disturbance point of view is presented by McLaren and Slater 
in 1993. The output feedback controllers were employed in 
the control strategy, and quantitate results were presented 
[18].  Integrated control and structural optimization design 
model for piezoelectric intelligent truss structures have been 
presented. In Zhao et al.’s [19] study in 2009, the feedback 
gain is optimized. Zhang et al. [20] in 2017 propose a method 
for topology optimization of piezoelectric laminated plates 
for minimizing the energy consumption with active vibration 
control under harmonic excitation. Some more study in 
vibration optimization problems is about designing a passive 
vibration absorber and tuning the mass, spring, and damper 
[21-23]. 

The magnetic actuator has several types and is also 
used in many different fields. In 2000, Howe presented the 
applications of various types of magnetic actuators in aviation 
systems [24]. Linear magnetic actuators are more complex 
than rotational magnetic actuators. Magnetic actuators are 
used in a variety of applications. A simple type of linear 
magnetic actuator is to form magnet arrays [25, 26]. This 
structure is nonlinear, and researchers use different methods 
to improve this actuator to reduce nonlinear effects. Clarke 
et al., in 1995, tried to linearize this type of actuator. Linear 
magnetic actuators are usually presented in innovative ways. 
For example, Kim et al. [29] In 2005 and Li et al.28]  ] in 
2007 presented a very similar actuator that is very effective 
in short course motion. These types of actuators with small 
moves are used in the automatic valves, and due to the high 
nonlinearity nature of these valves, scientists try to control 
these valves using different control [30]. Researches on linear 
magnetic actuators are still ongoing, and various ideas for 
these actuators are presented. For example, in 2009, Lierop 
et al. [31] presented a planar magnetic actuator. In micro 
dimensions, using a magnetic actuator is common because 
these actuators have a very high ability in micro dimensions 
and are more capable of controlling in this field. A study 
in 1996 also showed that magnetic actuators, in the micro 
dimensions, could be used simultaneously as position sensors 
[32]. The combination of active vibration absorbers and 
magnetic actuators can control the vibration systems in the 
presence of disturbance. 

Optimization of the controller’s coefficient based on 
minimizing the settling time is the current study’s goal. To 
this end, the modeling of these systems is presented, and 
the estimator of disturbance is designed. Then, the effects 
of controller coefficients on feedback linearization and the 
sliding mode controllers are investigated, and their optimal 
values are selected using four metaheuristic algorithms. 
Finally, the simulation results are presented for the optimal 

designs of the controller.

2- Modeling
2- 1- Mechanical system modeling

To control a vibration system similar to Fig. 1, an 
active vibration absorber is used, according to Fig. 2. In 
the presented system, the control force u is applied to the 
absorber by a magnetic actuator. In this system, the system 
consists of a mass and linear damper and a nonlinear spring 
that it’s vibrated by the unknown multi-harmonic force ( )f t  
that is joined to a vibration absorber by a linear spring.

Fig. 1 shows the primary system in which vibrations 
are transmitted by a linear spring to the vibration absorber, 
and the damper in the absorber system is joined to the earth. 
The characteristic of nonlinear spring in primary mass as 
shown in Eq. (1), where 1x  is the main mass position, 1k
 is the linear stiffness coefficient of the spring and 1pk  is 
the nonlinear stiffness coefficient of spring, which is in the 
condition 1 0x =  the spring is in the primary length.
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Using Newton’s second law for the primary and absorber 
systems, one can obtain two second-order differential 
equations for primary and absorber systems. According to 
Fig. 2, the mechanical equations are obtained follow as:
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Fig. 1. Primary system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Primary system
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In Eq. (2), 1x  is the main mass position and 2x  is the 
position of the absorber mass, which is equal to zero in 
the primary length. To obtain the state space equations, the 
primary mass position is defined as 1 1z x= , and the absorber 
mass position is defined as 3 2z x= . Then, with the definition 
of 2z  and 4z  as respectively, the primary and absorber mass 
velocity is obtained in state space. So, by inserting 1 1x z=  
and 2 3x z=  and 1 2x z=  and 2 4x z= , the space-state 
equations are obtained:
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2- 2- Electrical system modeling
The electrical system consists of the coil of a magnetic 

actuator and a current-carrying wire. Fig. 3 generally shows 
the actuator.

Concerning Fig. 3, two coils are located near together. The 
magnetic core inside each of the coils increases the intensity 
of the magnetic field and provides an appropriate direction 

for the magnetic field to prevent loss of the field. The current-
carrying wire is in a uniform field. The wire is passed from the 
magnetic field. According to the Lorentz law, it is created a 
force on the wire and the force will be applied to the absorber. 
The modeling of the magnetic actuator generally consists of 
two parts. The first part is calculating the force generated in 
the current-carrying wire that depends on the value of current 
and the intensity of the magnetic field. The second part is the 
circuit modeling of the actuator, which consists of an electric 
circuit with voltage input and a current output that produces 
the desired force according to the first part.

 

 

 
Fig. 2. Primary system and active vibration absorber 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Primary system and active vibration absorber

 

 

Fig. 3. generally structure of an actuator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. generally structure of an actuator
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2- 2- 1- Calculation of the force generated in the actuator
The applied force to the electrical charge is presented in 

Eq. (5) [33].
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where q is the electrical charge and eV  is the velocity of 
the electrical charge, and B  is the density of magnetic field 
intensity. In general, Eq. (5) means that if an electrical charge 
moves in the magnetic field with velocity eV , then the force 

mF  is applied to it. The differential form of Eq. (5), that is the 
applied force on dl , can be written as Eq. (6). 
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where dl is a small element of a conductor with section 
cross S , eN is the number of electrons per unit volume, and 
e is the electron charge. In Eq. (6), the value of  e eN eS V
is equal to the amount of current which passes from the 
conductor, so we can write:
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Eq. (7) is called the Lorentz law. This law shows that if a 
current-carrying conductor is perpendicular to the magnetic 
field, then the force mF is applied to it. Fig. 4 shows how the 
actuator applies the force. This law is in a static situation, and 
when the wire moves in the field, voltage is induced in the 
wires which reduces the current in the wire, so the force is 
generated and absorbs energy from the system. The absorbed 
energy is seen in inducted voltage. The induced voltage can 
be obtained from Faraday’s law. Faraday’s law illustrates if 
a wire moves with velocity eV in a magnetic field, then the 

voltage E  is induced. Eq. (8) calculates the value of the 
voltage induced in the wire with the length  wL [33].
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2- 2- 2- Actuator electrical circuit modeling
The equivalent circuit of the system is shown in Fig. 5, 

where BV is the input voltage of the wire, and eR is the total 
resistance of the circuit, and E is the voltage induced in the 
wire, and L is the self-inductance of the wire.

The relation between current and input voltage is obtained 
using Kirchhoff’s law according to Fig. 5.
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Eq. (9) is a first-order differential equation. BV is input 
voltage as the input of the electric system, and the current is 
a state variable. The state-space equations of the electrical 
system are obtained in Eq. (10).
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2- 2- 3- Calculation of the coils magnetic field intensity
In Eqs. (7) and (8), the value B represents the density of 

the magnetic field in the coils. Fig. 6 shows a rectangular loop 
of the coil. For each part of the wire, the field in the center of 
the rectangular is computed and then the summation of these 
fields is the coil field for one loop.

To calculate the field at a distance r for a wire with 

 

Fig. 4.  Modeling of the actuator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Modeling of the actuator

 

 

Fig. 5. The equivalent circuit of the actuator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The equivalent circuit of the actuator
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length 2L as shown in Fig. 7, first, the magnetic potential is 
obtained. The cylindrical coordinates ( ), ,  r za a aϕ are used to 
calculate the magnetic potential.
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The density of the magnetic field is obtained with regard 
to the magnetic potential as Eq. (12) [33].
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The value of /A ϕ∂ ∂  is zero because the magnetic 
potential is constant at a specific distance from the wire so 
that we can write:
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Eq. (14) shows the field around a wire with length 2L
in distance r .

According to Fig. 6, the field generated by the rectangle’s 
length in its center is obtained as
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Finally; Magnetic force can be obtained according to 

the magnetic field by Eqs. (15) and (10). The wire’s self-
inductance can be considered zero due to the short length of 
the wire and its single ring. The mutual inductance between 
the coil and the wire is also very small for three reasons: the 
current in the coil is constant, the field created by the wire is 
very small, and the magnetic cores in the coils. So the Eq. (9) 
can be expressed as
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According to Eq. (7), we can write:
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Using Eqs. (8), (16), and (17), the magnetic force is 
obtained as follows.
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Substituting Eq. (15) into Eq. (18), Eq. (19) is obtained: 
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Fig. 6. One ring of the coil 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. One ring of the coil

 

 

Fig. 7. Calculation of magnetic field a wire with length 2𝐿𝐿 [33] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Calculation of magnetic field a wire with length 
2L [33]
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Eq. (19) shows the magnitude of the force generated by 
the magnetic actuator which the input voltage can control BV
.

3- Control
A nonlinear control strategy is different based on the 

model uncertainty of the system. When a nonlinear system 
is completely known and certain, the feedback linearization 
control method is the simplest control method that achieves 
the desired response. Derivation of accurate model equations 
is impossible; therefore, the feedback linearization method is 
not suitable for these systems. There are several methods to 
compensate for uncertainties. One of the control methods for 
a nonlinear system, including the uncertainty, is the sliding 
mode control method, which guarantees the system’s stability 
because the sliding mode controller is obtained based on the 
Lyapunov stability theory.

In this study, to control the mass-spring-damper system 
with a vibration absorber, feedback linearization and sliding 
mode control methods are used. These methods require the 
estimation of the disturbance imposed on the system. The 
disturbance is unknown but it is harmonic. Because the 
estimator’s speed and accuracy are essential, the Liunberger 
observer estimates the disturbance force. Actually, the 
Liunberger estimator using the input and output of the actual 
system calculate the disturbance force on the system, which 
is explained in detail in the next section.

3- 1- Disturbance force estimator
As mentioned above, to control the mass-spring-damper 

system with a vibration absorber, an appropriate estimation of 
the disturbance force is first required. The disturbance force 
is the summation of several harmonic forces with different 
amplitudes and frequencies. The disturbance is applied to 
the main mass, according to Fig. 2. The goal of control is 
so that 1   y z= tracks the desired value, to this end, we 
must differentiate from the state space equations such that u 
appears in the output dynamics as Eq. (20). 
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According to Eq. (20), we can obtain the state variables in 
terms of output and its derivatives, derived as Eq. (21).
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Now, substituting Eq. (21) into Eq. (20), ( )4y is obtained 
as Eq. (22).
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In fact, Eq. (23) is the new disturbance function required 
for control, which should be estimated. Indeed, the ξ  
function is estimated to control the system instead of ( )f t . 

Liunberger observer is used to estimating the function ξ
, which uses the Taylor series prediction signal as Eq. (24) 
[10].
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where all ip coefficients are unknown and t  is the time 
variable of the series. The degree of Eq. (25) indicates the order 
of the observer. The accuracy of prediction and processing is 
increased by increasing the order of the observer. 
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where 1   ξ ξ= , 2   ξ ξ= …, and ( )1    r
rξ ξ −= .

Concerning Eqs. (22) and (25), and by defining 1 1    y zη= =
and 2  y η= ..., the developed model of the predictive signal of 
the dynamical system is as follows.

 

 

 

 

 

 

 

(26) 

 

 

 

 

1 2

2 3

3 4

1 2
4 4

1 2

1 2 2 1 2
3

1 2 1 2

2 1 22 2
2

1 2 1 2

2 1 13 21 2
1 1 1 3

1 2 1 2 1

1 2 12 2 2
1 2 1 2 1

1 1 2 1 1

1 2

2 3

1

3

6 3

p p

p p

r r

r

c c
m m

k k k c c
m m m m

c k kc k
m m m m

k k kk k
m m m m m

k c k k u t
m m m m m

 
 
 

 





   

   

 

 

 








 
    

 
 

   
 

 
  

 

  

  







 0
 

 

 

 

 

 

 

 

 

 (26)

 

 

 

 

 

 

 

(26) 

 

 

 

 

1 2

2 3

3 4

1 2
4 4

1 2

1 2 2 1 2
3

1 2 1 2

2 1 22 2
2

1 2 1 2

2 1 13 21 2
1 1 1 3

1 2 1 2 1

1 2 12 2 2
1 2 1 2 1

1 1 2 1 1

1 2

2 3

1

3

6 3

p p

p p

r r

r

c c
m m

k k k c c
m m m m

c k kc k
m m m m

k k kk k
m m m m m

k c k k u t
m m m m m

 
 
 

 





   

   

 

 

 








 
    

 
 

   
 

 
  

 

  

  







 0
 

 

 

 

 

 

 

 

 

According to Eq. (26), we can make the Liunberger 
observer as Eq. (27). We can determine the estimator poles 
by choosing the appropriate values of 0  ... rβ β .
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3- 2- Active vibration absorber
From the control point of view, vibration absorbers are 

divided into two groups: 1- active vibration absorbers 2- 
passive vibration absorbers. Passive vibration absorbers are 
absorbed vibration without any control system and only 
reduce the system’s vibration by absorbing energy and 
applying force at the proper frequency. The active vibration 
absorbers have similar benefits to passive vibration absorbers 
and have an active control system to reduce or control 
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vibrations in different frequencies.
In the proposed control strategy, only the state-feedback 

of the main mass position 1x  is used in the controller and the 
estimator. Fig. 8 shows the block diagram of the system with 
the controllers and the estimator. The output of the estimator 
is the value of the function ( ) tξ . The magnetic actuator 
controller input is the output of the main controller, which is 
adjusted by the actuator voltage that indicates the force value 
of the actuator.

3- 2- 1- Feedback linearization controller
The error dynamics equation in the feedback linearization 

controller determines the behavior of the system. To this end, 
Eq. (28) is used for the error dynamics equation, a fourth-
order differential equation. 
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where 0 3 ... a a are controller coefficients that can be 
determined concerning desired response and behavior. In Eq. 
(28), the error is defined as   de y y= − . In fact, it is the error 
of the main mass position relative to the desired position. By 
substituting Eq. (22) into Eq. (28) and solving in terms of u
, the feedback linearization controller is obtained as Eq. (29).
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where:
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Also, ξ  is the estimated value by the estimator.

3- 2- 2- Sliding mode controller
The sliding mode controller is a robust control method 

used to compensate uncertainties and leads the system to 
the desired states. The sliding mode method is based on 
the Lyapunov stability theory [30]. Concerning Eq. (32), a 
sliding surface, according to Eq. (33), is considered. Based on 
this sliding surface, the sliding mode controller is designed 
for the system.
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Fig. 8. The Control strategy 
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where s is sliding surface, λ  is a constant which is defined 
such that 3 2 2 33 3p p pλ λ λ+ + + are stable  (Hurwitz) 
polynomial and   de y y= − .

The control goal of the sliding mode is defined so that the 
sliding surface converge to zero as follow:
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To realize Eq. (34), the Lyapunov stability theory is used. 
To do this, the Lyapunov function is considered a definite 
positive function.
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Now, for Eq. (34), the value u  must be designed such that 
( )V s  be a negative definite.
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The value of s  is obtained by differentiating from Eq. 
(33).
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Substituting Eq. (32) into Eq. (37) leads to:
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To compensate for the uncertainty, the ( )V s is not only 
smaller than zero but its value is also considered smaller than 
a negative value as Eq. (39).
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where η  is a positive parameter. To find the equivalent 
controller, with regard to Eq. (38), the smust be tended to 
zero, therefore by solving the resultant in terms of u , the 
equivalent controller is obtained as:
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The controller is introduced by Eq. (40) is well if the 
system is completely known and accurate, but if there 
is uncertainty in the system, the values of ( )f y are not 
completely known; so Eq. (40) rewrite based on the known 
value of ( )f y denoted by ˆ( )f y as the following form.
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To compensate for the uncertainties, the value of 
sgn( )k s− is added to Eq. (40), and then the sliding mode 

controller is obtained as Eq. (42).
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where k is a coefficient which is defined such that the V
be negative definite.

In the following, to prove the stability and to find the 
value of k , substituting Eq. (42) and Eq. (38) into the Eq. 
(39) as:
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In the sliding mode method, the uncertainty must be 
bounded, so:
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According to Eq. (43) and Eq. (44), k is obtained as 
follow:
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Finally, the sliding mode controller is rewritten in the 
form of Eq. (46).
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3- 3- Magnetic actuator control
The magnetic actuator is modeled according to Eq. (9).  

Considering the very low self-inductance of the wire, as well 
as the low mutual inductance between the coils and the wire, 
Eq. (9) is rewritten as Eq. (47). 
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The force generated by the magnetic actuator is calculated 
in Eq. (18). By solving Eq. (18) in terms of BV , the controller 
of the actuator is obtained as.
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By reducing the current of the coils, the density of the 
magnetic field is decreased. So we can neglect the effect 
of absorber speed. The controller of Eq.  (48) cannot be 
implemented because there is no feedback from the absorber 
velocity 4z . Therefore, by reducing the current of coils, 
the effect of Faraday’s induction is reduced, therefore the 
controller of Eq. (48) is approximated in the form of Eq. (49).
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Because of the insignificant amount of inductance and the 
ignored effect of absorber velocity, the controller is actually 
a constant gain with the value /eR aB . Another method to 
reduce inductance is related to the form of the coils winding. 
So, the distance between the wires must be very low and the 
wires must be winded together along with the core. Also, the 
magnetic core, as shown in Fig. 9, is designed as a closed-
loop to minimize the loss of flux, which leads to decrease the 
mutual inductance.

4- Numerical Simulation
The performance of the mass-spring-damper system with 

vibration absorber and magnetic actuator with the controllers 
are simulated. The disturbance force is applied into the 
system as a sum of several sinusoidal forces with different 
frequencies, amplitude, and phase as
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Fig. 10 shows the disturbance force, which is applied to 
the system.

The masses, springs, and dampers of the system are 
considered in Table 1. The absorber values are used based 
on Ref. [10]. 

By substituting the values of Table 1 in equations of the 
system and applying the disturbance force, the system’s 
response with and without absorber is obtained. Fig. 11 shows 
the oscillations of the main system without an absorber, and 
Fig. 12 shows the oscillations of the main mass with the 
vibration absorber. 

The controllers’ effect can be observed by adding 
the magnetic actuator and controllers. Table 2 shows the 
parameters and coefficients of the magnetic actuator designed 
for the required control force.

 

Fig. 9. The coil cross and path of magnetic flux 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The coil cross and path of magnetic flux
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4- 1- Estimator simulation results
The estimator helps to control the system by estimating a 

differential function of force disturbance ξ . The Liunberger 
observer estimates the value of ξ , and this value will be 
given for the controller to control the system. Fig. 13 shows 
the real value and estimated value of ξ with a step input.

According to Fig. 13, it can be seen that the estimated 
value is very close to the real value. In Fig. 13, the estimated 
value with the step input by using the feedback linearization 
controller. According to Fig. 13, when the input step is applied 
or accelerates movements, the estimation is accompanied by 
some quickly vanished errors.

4- 2- Magnetic actuator controller
The magnetic actuator controller is obtained by 

eliminating the velocity of the absorber mass in the 
controller of the magnetic actuator and minimizing the 
effect of the inductance in this system. The magnetic 
actuator controller has an appropriate response to the 
desired force which is determined by the main controller. 
Fig. 14 shows the desired force determined by the feedback 
linearization controller and the output force of the actuator 
which is controlled by means of the magnetic actuator 
controller.

 

 

 

 
Fig. 10. The disturbance applied to the system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The disturbance applied to the system

Table 1. The parameters and value of the primary system and absorberTable 1. The parameters and value of the primary system and absorber 

Parameters Signs Values 

Primary mass 1m  10 ( kg ) 

Primary spring stiffness 1k  44 ( N/m ) 

Nonlinear primary spring stiffness 1pk  8 ( 3N/m ) 

Primary damper 1c  0.1 ( Ns/m) 

Absorber mass 2m  0.6 ( kg ) 

Absorber spring stiffness 2k  2 ( N/m ) 

Absorber damper 2c  0.08 ( Ns/m ) 
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Fig. 11. Oscillations of the primary system without absorber 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Oscillations of the primary system without absorber

 
Fig. 12. Oscillations of the primary system with passive vibration absorber 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Oscillations of the primary system with passive vibration absorber
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Fig. 13. Estimation of   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Estimation of ξ  

Table 2. Parameters and value of the magnetic actuator

 

Table 2. Parameters and value of the magnetic actuator 

Parameters Signs Values 

Number of rings N  50 

Vacuum permittivity 0  4𝜋𝜋 ∗ 10−7 ( H/m ) 

The relative permittivity of Iron r  4000 

Current of coils fI  0.5 ( A ) 

Width of coils a  0.04 ( m ) 

Length of coils b  0.5 ( m ) 

Resistance of coil R  2 (Ω ) 
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5- Optimization
5- 1- Metaheuristic techniques

Metaheuristic techniques usually mimic natural, physical 
or cultural events for solving optimization problems. These 
methods can be categorized into four classes: swarm-based, 
evolution-based, human-based, and physics-based techniques 
[34]. The most popular techniques in these classifications are 
shown in Fig. 15. Evolutionary optimization algorithms are 
developed by the rules of natural evolution. The most popular 
evolution-based algorithm inspired by Darwinian evolution 
is Genetic Algorithms (GA) [35], where it is used in many 
optimization problems. The other group, where simulate the 
social behavior of groups of birds, animals, and so on, is 
called swarm-based algorithms. Particle Swarm Optimization 
(PSO), where mimics the bird’s flock’s group relations, is the 
most famous method in swarm-based optimization algorithms 
[36].

Moreover, Physics-based methods simulate physical 
events in nature. The most popular method in this category 
is Simulated Annealing (SA) [37], based on the annealing 
process in material science. In the last category, there are 
some metaheuristic techniques motivated by human and 
social behaviors.

In the current study, four techniques, namely, GA, PSO, 
SA, and Teach-Learn-Based Optimization (TLBO), are 
considered to optimize the optimization problems. It should 
be noted that these algorithms were chosen in different 
groups.

5- 2- Optimizing of the controller coefficients
The controller coefficients in the feedback linearization 

method and the sliding mode method are usually obtained by 

simulation trial and error. In this approach, the coefficients of 
the feedback linearization controllers, including 0 1 2 3, , , a a a a , 
and sliding mode, including λ  is obtained by optimization, is 
optimized by different metaheuristic algorithms. Settling time 
is minimized by calculating these coefficients by algorithms. 
To obtain the controllers’ best coefficients, the cost function 
and the constraints must be defined for optimization. The 
settling time is defined as a cost function and the error is 
defined as constraints. The step input is considered the desired 
input for the system; when the error is lower than 0.5% of step 
input, and the speed, acceleration, and jerk of the system tend 
to zero, the settling time is obtained. Each algorithm is run ten 
times with different coefficient values, and the coefficients 
related to the best run have been selected and are shown in 
Table 3. Ranges of the design variables for all algorithms are 
selected as [ ]0 0,1000a = , [ ]1 0,1000a = , [ ]2 0,200a = , 

[ ]3 0,100a = and [ ]0,100λ = . Table 3 shows the value of 
population, iteration, and probable coefficients for different 
algorithms. 

Fig. 16 shows that the optimization algorithm reduces 
the system response’s settling time with the feedback 
linearization controller.

Fig. 17 shows each algorithm’s best outputs for the 
feedback linearization controller and the effect of changing 
the coefficients in which PSO has the best result. 

The optimization of the sliding mode controller 
coefficient is similar to the feedback linearization coefficients 
optimization. Fig. 18 shows the reduction of the settling time, 
and Fig. 19 shows the best output of each algorithm.

Comparisons of four optimization algorithms are 
represented in Tables 4 and 5. PSO algorithm has the best 
result for the feedback linearization coefficient in the Table 4. 

 

Fig. 14. The actuator and its controller response to the main controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The actuator and its controller response to the main controller
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Fig. 15. Classification of the metaheuristic techniques 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Classification of the metaheuristic techniques

Table 3. The best-used optimization techniques parametersTable 3. The best-used optimization techniques parameters 

Parameter Controller GA PSO SA TLBO 

Maximum Number of Iterations F-L 100 100 100 100 

SMC 40 40 40 40 

Initial Population Size F-L 100 100 100 100 

SMC 10 10 10 10 

Crossover Coefficient F-L 0.9 - - - 

SMC 0.9 - - - 

Mutation Coefficient F-L 0.1 - - - 

SMC 0.1 - - - 

Inertia Term F-L - 0.7 - - 

SMC - 0.3 - - 
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Fig. 16. Decreasing the settling time with optimization algorithms for the feedback linearization controller  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Decreasing the settling time with optimization algorithms for the feedback linearization controller 

 

 
Fig. 17. The optimizing settling time for the step input in case of feedback linearization controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. The optimizing settling time for the step input in case of feedback linearization controller
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Fig. 19. The optimizing settling time for the step input in case of the sliding mode controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. The optimizing settling time for the step input in case of the sliding mode controller

 
Fig. 18. Decreasing the settling time with optimization algorithms for the sliding mode controller 

 

 

 

 

 

 

 

 

Fig. 18. Decreasing the settling time with optimization algorithms for the sliding mode controller 
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Table 4. Comparing results of optimization algorithms for feedback linearization coefficients

 

Table 4. Comparing results of optimization algorithms for feedback linearization coefficients 

 

Algorithm 

Optimal Design variables Cost Function CPU Time (s) 

0a  1a  2a  3a  Best  s  Average  s  Best  s  Average  s  

GA 739.1176 487.3704 138.9523 18.0493 12.653 13.1943 314.1329 365.4614 

PSO 563.9815 390.7921 109.9931 15.394 11.979 12.8033 239.3058 251.494 

SA 1000 704.7331 196.87 25.178 12.38 12.6854 165.7098 169.0135 

TLBO 579.6328 414.7801 118.5773 16.3557 12.355 12.6123 708.8619 772.0213 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a) Cost Function (    Best (s)     Average (s)) 

 
b) CPU time (    Best (s)     Average (s)) 

Fig. 20. Comparison of the optimization algorithms for feedback linearization coefficients 
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Fig. 20. Comparison of the optimization algorithms for feedback linearization coefficients
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Table 5. Comparing results of optimization algorithms for sliding mode coefficient

 

Table 5. Comparing results of optimization algorithms for sliding mode coefficient 

 

Algorithm 

Optimal Design variables Cost Function CPU Time (s) 

  Best  s  Average  s  Best  s  Average  s  

GA 4.6912 13.166 13.2981 11.0297 13.493 

PSO 4.6964 13.161 13.1715 8.9656 12.3612 

SA 4.6964 13.161 13.1656 8.615 8.7320 

TLBO 4.6964 13.161 13.1624 18.9172 23.2915 

 

 

 
a) Cost Function (    Best (s)     Average (s)) 

 
b) CPU time (    Best (s)     Average (s)) 

Fig. 21. Comparison of the optimization algorithms for sliding mode coefficient 
 

 

 

 

 

13.05

13.1

13.15

13.2

13.25

13.3

GA PSO SA TLBO

0

5

10

15

20

25

GA PSO SA TLBO

Fig. 21. Comparison of the optimization algorithms for sliding mode coefficient
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TLBO has not tuned parameter and has the Best average. It 
means that the PSO tuning parameter must be select correctly. 
By comparing the best results and averages, if a suitable tuning 
parameter selects for PSO, it has the best result else TLBO 
is a good choice for this system and feedback linearization 
controller. According to the CPU time in Tables 4 and 5, SA. 
is the fastest, and TLBO is the slowest among four different 
algorithms.

6- Results
Feedback linearization and sliding mode control are 

simulated for two situations: system uncertainty and system 
uncertainty. If uncertainty exists in the system, the estimation 
error is increased because the estimator is based on the 
system’s model.

6- 1- Control simulation (without system uncertainty and 
with force uncertainty)

The feedback linearization strategy controls the main 
mass’s position by applying the control force on the absorber 
mass. Fig. 22 shows the system response in the case of a 
feedback linearization controller due to the step input. The 
feedback linearization coefficients values are derived from the 
PSO algorithm as 0   563.98a = , 1   390.79a = , 2  1 09.99 a =
and 3  1 5.39a = .

Fig. 23 shows the sliding mode response to a step input. 
It can be seen, sliding mode controller without uncertainty 
is provided an appropriate response. The value of λ  in this 

control method is 4.6964, which is obtained from optimization 
algorithms.

6- 2- Control Simulation (with system and force uncertainty)
The feedback linearization controller is not provided a 

proper response in the presence of parametric uncertainty. 
Fig. 24 shows the system response by using the feedback 
linearization controller, including the uncertainty.

Fig. 25 shows the system response with a sliding mode 
controller in uncertainty, which has a suitable response. 

7- Conclusions
An active vibration absorber was utilized in this study for 

a nonlinear one degree of freedom system with an unknown 
multi-harmonic frequency disturbance force. A function 
of disturbance was estimated by the Liunberger observer. 
Then the system was controlled by feedback linearization 
and sliding mode controllers. Finally, the settling time was 
optimized by GA, PSO, SA, and TLBO algorithms.  Some 
results in this study are summarized as follows:

In the absence of uncertainty, feedback linearization is 
faster than the sliding mode controller.

In the presence of uncertainty, the feedback linearization 
has the error, but this error is lower when its coefficients are 
optimal.

In the presence of uncertainty, the sliding mode is slower 
than the case without uncertainty.

The optimization of controller coefficients to reduce the 

 
Fig. 22. The system response in case of feedback linearization controller without uncertainty  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 22. The system response in case of feedback linearization controller without uncertainty 
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Fig. 24. The system response in case of feedback linearization controller with uncertainty  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 24. The system response in case of feedback linearization controller with uncertainty 

 

 
Fig. 23. The system response in case of sliding mode controller without uncertainty 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23. The system response in case of sliding mode controller without uncertainty
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settling time increases the speed and accuracy of the system 
response

Comparing four different optimization algorithms for our 
problem shows that PSO, as a swarm-based algorithm, has 
the best response.

Moreover, TLBO, as a human-based algorithm, is more 
confident because its average is better than the others. 

Furthermore, the SA, as a physics-based algorithm, is the 
fastest method for calculating the controller coefficient.

References
[1] P. Bonello, Adaptive tuned vibration absorbers: Design 

principles, concepts and physical implementation, 
in:  Vibration Analysis and Control-New Trends and 
Developments, InTech, 2011.

[2] E. Caetano, Á. Cunha, C. Moutinho, F. Magalhães, 
Studies for controlling human-induced vibration of the 
Pedro e Inês footbridge, Portugal. Part 2: Implementation 
of tuned mass dampers, Engineering Structures, 32(4) 
(2010) 1082-1091.

[3] A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John 
Wiley & Sons, 2008.

[4] T. Taniguchi, A. Der Kiureghian, M. Melkumyan, Effect 
of tuned mass damper on displacement demand of 
base-isolated structures, Engineering Structures, 30(12) 
(2008) 3478-3488.

[5] J. Ji, N. Zhang, Suppression of the primary resonance 
vibrations of a forced nonlinear system using a dynamic 
vibration absorber, Journal of Sound and Vibration, 

329(11) (2010) 2044-2056.
[6] X. Chen, A. Kareem, Efficacy of tuned mass dampers for 

bridge flutter control, Journal of Structural Engineering, 
129(10) (2003) 1291-1300.

[7] A. Baz, A neural observer for dynamic systems, Journal 
of sound and vibration, 152(2) (1992) 227-243.

[8] J.-S. Bae, J.-H. Hwang, J.-H. Roh, J.-H. Kim, M.-S. Yi, 
J.H. Lim, Vibration suppression of a cantilever beam 
using magnetically tuned-mass-damper, Journal of 
Sound and Vibration, 331(26) (2012) 5669-5684.

[9] E. El Behady, E. El-Zahar, Vibration reduction and 
stability study of a dynamical system under multi-
excitation forces via active absorber, International 
Journal of Physical Sciences, 7(48) (2013) 6203-6209.

[10] F. Beltran-Carbajal, G. Silva-Navarro, Active vibration 
control in Duffing mechanical systems using dynamic 
vibration absorbers, Journal of sound and vibration, 
333(14) (2014) 3019-3030.

[11] T. Bailey, J.E. Hubbard, Distributed piezoelectric-
polymer active vibration control of a cantilever beam, 
Journal of Guidance, Control, and Dynamics, 8(5) (1985) 
605-611.

[12] R. Zhang, C. Tong, Torsional vibration control of the 
main drive system of a rolling mill based on an extended 
state observer and linear quadratic control, Journal of 
Vibration and Control, 12(3) (2006) 313-327.

[13] F. Beltrán-Carbajal, G. Silva‐Navarro, Adaptive‐Like 
Vibration Control in Mechanical Systems with Unknown 
Paramenters and Signals, Asian Journal of Control, 15(6) 
(2013) 1613-1626.

 
Fig. 25. The system response in case of sliding mode controller with uncertainty 

 

 

 

 

Fig. 25. The system response in case of sliding mode controller with uncertainty.



M. AbdolMohammadi et al., AUT J. Mech. Eng., 5(4) (2021) 511-534, DOI: 10.22060/ajme.2021.19740.5962

533

[14] N. Al-Holou, T. Lahdhiri, D.S. Joo, J. Weaver, F. Al-
Abbas, Sliding mode neural network inference fuzzy 
logic control for active suspension systems, IEEE 
Transactions on Fuzzy Systems, 10(2) (2002) 234-246.

[15] Z. Xianmin, S. Changjian, A.G. Erdman, Active 
vibration controller design and comparison study of 
flexible linkage mechanism systems, Mechanism and 
Machine Theory, 37(9) (2002) 985-997.

[16] S.-B. Choi, Y.-M. Han, Vibration control of 
electrorheological seat suspension with human-body 
model using sliding mode control, Journal of Sound and 
Vibration, 303(1-2) (2007) 391-404.

[17] C. Hansen, S. Snyder, X. Qiu, L. Brooks, D. Moreau, 
Active control of noise and vibration, CRC press, 2012.

[18] M. McLaren, G. Slater, A disturbance model for control/
structure optimization with output feedback control, 
Structural optimization, 6(2) (1993) 123-133.

[19] G. Zhao, B. Chen, Y. Gu, Control–structural design 
optimization for vibration of piezoelectric intelligent 
truss structures, Structural and Multidisciplinary 
Optimization, 37(5) (2009) 509.

[20] X. Zhang, A. Takezawa, Z. Kang, Topology optimization 
of piezoelectric smart structures for minimum energy 
consumption under active control, Structural and 
Multidisciplinary Optimization, 58(1) (2018) 185-199.

[21] P. Bisegna, G. Caruso, Optimization of a passive 
vibration control scheme acting on a bladed rotor using 
an homogenized model, Structural and Multidisciplinary 
Optimization, 39(6) (2009) 625.

[22] E. Boroson, S. Missoum, Stochastic optimization of 
nonlinear energy sinks, Structural and Multidisciplinary 
Optimization, 55(2) (2017) 633-646.

[23] I. Venanzi, Robust optimal design of tuned mass 
dampers for tall buildings with uncertain parameters, 
Structural and Multidisciplinary Optimization, 51(1) 
(2015) 239-250.

[24] D. Howe, Magnetic actuators, Sensors and Actuators A: 
Physical, 81(1-3) (2000) 268-274.

[25] S.-M. Jang, J.-Y. Choi, S.-H. Lee, H.-W. Cho, W.-B. 
Jang, Analysis and experimental verification of moving-
magnet linear actuator with cylindrical Halbach array, 
IEEE transactions on magnetics, 40(4) (2004) 2068-
2070.

[26] N. Mikhaeil-Boules, Design and analysis of linear 
actuator for active vibration cancellation, in:  Industry 
Applications Conference, 1995. Thirtieth IAS Annual 
Meeting, IAS’95, Conference Record of the 1995 IEEE, 
IEEE, 1995, pp. 469-475.

[27] S. Evans, I. Smith, J. Kettleborough, Permanent-magnet 
linear actuator for static and reciprocating short-stroke 
electromechanical systems, IEEE/ASME transactions on 
mechatronics, 6(1) (2001) 36-42.

[28] Q. Li, F. Ding, C. Wang, Novel bidirectional linear 
actuator for electrohydraulic valves, IEEE transactions 
on magnetics, 41(6) (2005) 2199-2201.

[29] J. Kim, J. Chang, A new electromagnetic linear actuator 
for quick latching, IEEE Transactions on Magnetics, 
43(4) (2007) 1849-1852.

[30] A.E. Rundell, S.V. Drakunov, R.A. DeCarlo, A sliding 
mode observer and controller for stabilization of 
rotational motion of a vertical shaft magnetic bearing, 
IEEE Transactions on Control Systems Technology, 4(5) 
(1996) 598-608.

[31] C. Van Lierop, J. Jansen, A. Damen, E. Lomonova, P. 
Van den Bosch, A. Vandenput, Model-based commutation 
of a long-stroke magnetically levitated linear actuator, 
IEEE Transactions on Industry Applications, 45(6) 
(2009) 1982-1990.

[32] H. Guckel, T. Earles, J. Klein, J. Zook, T. Ohnstein, 
Electromagnetic linear actuators with inductive position 
sensing, Sensors and Actuators A: Physical, 53(1-3) 
(1996) 386-391.

[33] DK. Cheng, Field and wave electromagnetics, Pearson 
Education India, 1989.

[34] S. Mirjalili, A. Lewis, The whale optimization algorithm, 
Advances in engineering software, 95 (2016) 51-67.

[35] S. Sivanandam, S. Deepa, Genetic algorithms, in:  
Introduction to genetic algorithms, Springer, 2008, pp. 
15-37.

[36] J. Kennedy, R. Eberhart, Particle swarm optimization, 
in:  Proceedings of ICNN’95-international conference on 
neural networks, IEEE, 1995, pp. 1942-1948.

[37] M. Pincus, Letter to the editor—a monte carlo 
method for the approximate solution of certain types of 
constrained optimization problems, Operations research, 
18(6) (1970) 1225-1228.

HOW TO CITE THIS ARTICLE
M. AbdolMohammadi, H. Ahmadi, S. M. Varedi-Koulaei, J. Ghalibafan, Active 
Vibration Control of a Nonlinear System with Optimizing The Controller Coefficients 
Using Metaheuristic Algorithms, AUT J. Mech Eng., 5(4) (2021) 511-534.
DOI: 10.22060/ajme.2021.19740.5962



This
 pa

ge
 in

ten
tio

na
lly

 le
ft b

lan
k


	Blank Page - EN.pdf
	_GoBack




