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Out of Plane Punch of Aluminum Hexagonal Honeycomb Using Flat Nose and 
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ABSTRACT: The energy absorption capacity of metal hexagonal honeycomb under out of plane local 
quasi-static loading is investigated, experimentally. Effects of geometrical parameters, such as the cell 
size and wall thickness of the honeycomb, projectile shape and projectile diameter, specimen height, and 
the loading speed on the perforated zone and the absorbed energy are studied. The perforated zone of the 
honeycomb has not perfectly the same shape of the projectile, but it can be assumed as a skew polygon or 
ellipse, extended in the direction of the honeycomb dual walls. Results show that changing the projectile 
shape from a flat nose to a sphere decreases the absorbed energy approximately to the half value. 
Multiplying the projectile diameter by two increases the mean crushing load of the metal hexagonal 
honeycomb less than four times. On the other hand, it was shown that the honeycomb local energy 
absorption capacity is not perfectly independent of sample height and loading speed. Furthermore, based 
on the modified Wierzbicki’s model in the global loading, a simple theoretical model for the estimation 
of the mean crushing load of a metal hexagonal honeycomb loaded by a flat projectile is presented. Good 
agreement between the theoretical and experimental results is illustrated. 
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1- Introduction
Honeycomb cellular structures, due to their light weights 

and high energy absorbing capability, have been used 
extensively as energy absorbers or cushions to resist external 
loads. Static and dynamic experimental tests, performed by 
Goldsmith and Sackman, showed that the dynamic crushing 
strength of the aluminum honeycomb is between 30% to 50% 
greater than its static one [1]. Wu and Jiang [2] investigated 
the geometrical parameters on the energy absorption capacity 
of aluminum honeycomb and found the important role of the 
cell size; although, their calculations must be modified [3]. 
Klintworth and Stronge [4] studied the behavior of the metallic 
honeycomb to in-plane quasi-static flat projectile loading. 
Galehdari et al. [5] investigated quasi-static and low velocity 
impact in-plane loading on the metal hexagonal honeycombs, 
experimentally, numerically, and analytically. They showed 
that the in-plane plateau stress of the honeycomb can be 
modeled as the “V” deformation mode. Goldsmith and Louie 
[6] performed an experimental investigation on the effects of 
cell size and wall thickness on the honeycomb’s penetration 
limit. Their results showed that both increasing the cell size 
and decreasing the wall thickness decrease the absorbed 
energy. Effect of the geometrical parameters and the degree 
of constraint associated with the bonding of the honeycomb 
to face-sheet on the out-of-plane compressive response of 

stainless steel square honeycombs studied by Cote et al. [7]. 
Heimbs et al. [8] showed that the strain rate has a nonlinear 
effect on the honeycomb strength and in the low velocity 
impact loading can be ignored. Alavi Nia et al. [9] determined 
the ballistic limit of aluminum honeycomb with the different 
cell size and wall thickness, experimentally. Asada et al. [10] 
studied the in-plane flat punch indentation of the honeycomb, 
experimentally and numerically. Khoshravan and Najafi 
Pour [11] using homogeneous and non-homogeneous finite 
element methods, illustrated that the energy absorption 
capacity of aluminum honeycomb increases with decreasing 
cell size and increasing cell wall thickness. Weia et al. [12] 
illustrated that the metallic honeycomb strength under global 
loading is more than the strength of a metal plate with the same 
weight, while in the local loading the metal plate strength is 
more. Low velocity impact tests on polymeric honeycombs 
performed by Petrone et al. [13] showed that the being or not 
being the facesheet is not significant for the high thickness 
specimens. Partovi meran et al. [14] studied the behavior of 
metal hexagonal honeycomb under out of plane global impact 
loading, numerically and showed that crashworthiness 
parameters depend on cell specification and wall thickness 
of the honeycomb structure and are independent of impact 
mass and velocity. Zarei Mahmoudabadi and Sadighi 
[15] investigated the energy absorption characteristics of 
sandwich panels with an aluminum plate as facesheet and 
metal hexagonal honeycomb as the core under quasi-static 
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punch loading using two flat nose and spherical projectiles, 
experimentally. They classified the failure modes as plastic 
hinges, facesheet wrinkling, debonding of the adhesive layer 
between the facesheet and core, facesheet tearing, out of 
plane core crushing, in-plane core folding, core tearing and 
detachment from the support. Wang et al. [16] expanded the 
honeycomb structure panel to cylindrical shell by adopting 
the rolled-up algorithm and discussed on the crushing 
behaviors of the Randomly Honeycomb Cylindrical Shell 
(RHCS) structures under axial loading. They found that the 
deformation modes of RHCS structures are significantly 
affected by thickness-to-diameter ratio and cell irregularity.

Wierzbicki [17] presented a theoretical model for the 
prediction of mean crushing load and half-wavelength of 
folding mode in the honeycomb out of plane quasi-static 
global loading. 

Abramowicz and Wierzbicki [18] illustrated that 
abnegation of stretching mode and only considering the not 
stretching mode for determination of the honeycomb strength 
has not significantly error. Zarei Mahmoudabadi and Sadighi 
[19] modified Wierzbicki’s model by considering the curvature 
effect and flow stress and improved it to study the behavior of 
metallic honeycomb under low velocity impact loading [20]. 
The plastic collapse stress under in-plane static compression 
was investigated mathematically and numerically by Zhen 
et al. [21] results show that the plastic collapse stress in the 
y-direction is larger than that in the x-direction under multi-
cell conditions. However, it turns to be insignificant when the 
crushing velocity reaches or exceeds a critical velocity. They 
extended their theoretical model in the estimation of the mean 
crushing load of the foam filled metal hexagonal honeycomb 
and compared their theory with the experimental data [22].  

It can be seen that most articles in the literature have 
studied the global crushing behavior of metallic honeycombs. 
On the other hand, Identifying the failure modes and 
energy absorption characteristics of hexagonal honeycomb 

under local punch loading is a very important step in the 
perforation and penetration analyses of sandwich panels 
with honeycomb core under out of plane loading by the 
projectile. In this article, the crushing behavior of aluminum 
hexagonal honeycomb under local quasi-static loading 
has been studied, experimentally. Investigated parameters 
are honeycomb cell size, wall thickness, specimen height, 
projectile shape, projectile diameter, and loading speed. In 
addition, a theoretical model has been developed to estimate 
the behavior of these energy absorbers loaded by flat nose 
projectiles. This theoretical model can be extended to study 
the behavior of the honeycomb core sandwich structures in 
the future. 

2- Experiment
The local quasi-static tests have been performed on 

aluminum hexagonal honeycomb specimens using the 
universal testing machine. Variable parameters are the cell 
size and the wall thickness of the honeycomb, projectile nose, 
projectile diameter, specimen height, and loading speed. Table 
1 describes the specifications of each test. Three specimens 
used for each tested condition and the average value of them 
reported ensuring the reliability of tested data. In order to 
determine the contribution of each absorbed energy terms, 
the global out of plane  pressure has been carried out on 
specimens 1 and 2. Samples are placed on a rigid flat plate to 
achieve the fully backed conditions (Fig. 1).

Concertina mode folding has been seen in all of the 
specimens. Fig. 2 shows specimens SM1 and SM2 before 
global compressive loading and after it. 

Load-displacement curves of samples SM1, SM3, SM5, 
SM7, and samples SM2, SM5, SM6, and SM8 have been 
shown in Figs. 3 and 4, respectively. In order to determine 
the dissipated energy terms in local loading, the load-
displacement diagrams of samples SM1 and SM2 have been 
scaled for a circular sample with a diameter of 32 mm.

Table 1. specifications of honeycomb specimens

 

Table 1: specifications of honeycomb specimens 

Sample 
Index 

Cell Size 
(mm) 

Wall 
Thickness 

 mm  

Specimen’s 
Height  mm  Projectile Shape 

Projectile 
Diameter 

 mm  

Loading Speed 
 mm min  

SM1 3.29 0.0254 20.0 Global - 2 
SM2 7.00 0.0508 18.0 Global - 2 
SM3 3.29 0.0254 20.0 Flat 32 2 
SM4 3.29 0.0254 20.0 Flat 16 2 
SM5 7.00 0.0508 18.0 Flat 32 2 
SM6 7.00 0.0508 18.0 Flat 16 2 
SM7 3.29 0.0254 20.0 Sphere 16 2 
SM8 7.00 0.0508 18.0 Sphere 16 2 
SM9 3.29 0.0254 12.7 Flat 16 2 

SM10 3.29 0.0254 12.7 Sphere 16 2 
SM11 3.29 0.0254 20.0 Flat 16 100 
SM12 3.29 0.0254 20.0 Sphere 16 100 
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Fig. 1. Testing conditions of a sample under flat projectile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Testing conditions of a sample under flat projectile.

  
SM1 before global loading SM1 after global loading 

  
SM2 before global loading SM2 after global loading 

Fig. 2. Samples SM1 and SM2 before global compressive loading and after it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Samples SM1 and SM2 before global compressive loading and after it.
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Fig. 3. Load-displacement curves of samples SM1, SM3, SM4, and SM7. 
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Fig. 3. Load-displacement curves of samples SM1, SM3, SM4, and SM7.

 

Fig. 4. Load-displacement curves of samples SM2, SM5, SM6, and SM8. 
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Fig. 4. Load-displacement curves of samples SM2, SM5, SM6, and SM8.
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2- 1- Flat projectile loading 
The front and back views of samples SM3, SM4, and 

samples SM5, SM6 have been shown in Figs. 5 and 6, 
respectively. It can be seen that the perforated zones of the 
honeycomb samples are not perfectly circular, but they are 
similar to skew polygons. However, the perforated zone is 
led to a circle by increasing the projectile diameter. Polygon 
has been extended in direction of the dual walls when the 
major diameter of the polygon is in the dual wall direction, 
but its minor diameter is perpendicular to the dual walls. On 
the other hand, increasing the cell size leads to the in-plane 
distortion of the cells that are established in the polygon major 
diameter direction more than the other cells (See Fig. 6). 

Figs. 3 and 4 show that the load-displacement diagram 
of a metal hexagonal honeycomb under local flat projectile 
loading is typically the same as its global loading, Although, 
the peak load does not appear at the end of the elastic zone, 
the plateau section of the curve is ascendant, and the mean 
crushing force is significantly greater than that of the global 
loading. A shear energy term, required for the perforation of 

the flat projectile into the honeycomb and cutting off the cells, 
increases the total dissipated energy. On the other hand, the 
polygon area is greater than its surrounded circle, therefore 
the crushing energy term increases. Finally, a small energy 
term, dissipated in the in-plane distortion of the cells, can be 
added to the internal dissipated energy.

Comparison between SM3 and SM4, and between SM5 
and SM6 illustrates that multiplying the cross-sectional area 
of the flat projectile by four increases the mean crushing 
load of the aluminum honeycomb less than four times. The 
shear energy term is related to the projectile ambient and 
so related linearly to the projectile diameter. On the other 
hand, increasing the projectile diameter results that the skew 
polygon leads to a circle with a radius nearly equal to the 
projectile radius. 

2- 2- Spherical projectile loading
The load-displacement diagram of the aluminum 

honeycomb loaded by a spherical projectile is different 
from that of the flat projectile (see Figs. 3 and 4). The force 

  
Front view of SM4 Back view of SM4 

  
Front view of SM3 Back view of SM3 

Fig. 5. Front and back views of SM3 and SM4. 

 

 

 

 

Fig. 5. Front and back views of SM3 and SM4.
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increases continuously to a maximum value, corresponding to 
a displacement approximately equal to the projectile radius.  
Increasing the area of the contact zone before that force 
reaches the maximum value causes to increase in the dissipated 
energy. On the other hand, after the maximum point, the load 
decreases smoothly which can be described by attention to 
Fig. 7. Spherical projectile squeezes the honeycomb walls 
near to the projectile ambient in the in-plane direction. Since 
the in-plane honeycomb stiffness is significantly less than 
that of the out-plane one, the load decreases smoothly. In-
plane pressure causes the maximum load of a honeycomb 
under spherical projectile loading to be about only half of the 
maximum load in the flat projectile loading. Fig. 7 shows that 
the perforated zone of the honeycomb loaded by a spherical 
projectile is similar to an elliptical shape, extended in the dual 
walls direction.

2- 3- Effect of sample height
Fig. 8 shows the load-displacement diagrams of 

samples SM9, and SM10. For better comparison, the load-

displacement curves of samples SM4, and SM7 are plotted 
again. It can be seen that the behavior of aluminum hexagonal 
honeycomb is not perfectly independent of sample height, but 
increasing the height decreases slightly the mean crushing 
load of honeycomb. When the displacement in sample SM10 
is near to 6 mm (slightly less than the indenter radius) the 
force reaches its maximum value in this case because the 
sample height is not properly adequate. On the other hand, in 
this sample, the load decreases strongly after the peak value 
that can be the reason for the cutting-off of the honeycomb 
panel.

The front and back views of samples SM9 and SM10 are 
shown in Fig. 9. It can be seen that the skew polygon and 
elliptical shape, both are extended in the dual walls direction, 
are appeared. However, they are not obvious as those of 
samples SM4 and SM7.

2- 4- Effect of loading speed
Effect of loading speed on the behavior of the metal 

hexagonal honeycomb under local loading can be illustrated 

  
Front view of SM6 Back view of SM6 

  
Front view of SM5 Back view of SM5 

Fig. 6. Front and back views of SM5 and SM6. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Front and back views of SM5 and SM6.
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Front view of SM7 Back view of SM7 

  
Front view of SM8 Back view of SM8 

Fig. 7. Front and back views of SM7 and SM8. 

 

 

 

 

 

 

 

Fig. 7. Front and back views of SM7 and SM8.

 

 

Fig. 8. Load-displacement diagrams of samples SM4, SM7, SM9, and SM10. 
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Fig. 8. Load-displacement diagrams of samples SM4, SM7, SM9, and SM10.
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from comparison samples SM11 and SM12 with SM4 and 
SM7. Fig. 10 shows that the effects of loading speed on 
the flat projectile loading are meaningless, while its effect 
on the load-displacement curve of the honeycomb under 
spherical indenter is more. Increasing the loading speed leads 
to cutting-off the honeycomb panel and decreasing the load 
value after the maximum point, although the maximum load 
value is approximately constant. 

The difference between the perforated zone and projectile 
cross-section increases by increasing the loading speed, as 
the polygon changes to a rhombic shape and the difference 
between the major and minor diameters of ellipse increases 
(Fig. 11).

3- Analytical Model
In this section, a semi-analytical model for determining 

the mean crushing load of metal hexagonal honeycomb under 
quasi-static local loading, by a flat projectile, is presented 
using the energy method.

Internal dissipated energy of the metal honeycomb 
under local loading can be determined as Eq. (1), in which 

CrushingE  and shearingE  are the dissipated energy terms in out 
of plane crushing and cutting off of the honeycomb walls, 
respectively.

int Crushing ShearingE E E     (1) 
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Considering a basic folding element shown in Fig. 12, 
CrushingE  can be calculated as Eq. (2), where An  is the 

 

  
Front view of SM9 Back view of SM9 

  
Front view of SM10 Back view of SM10 

Fig. 9. Front and back views of SM9 and SM10. 

 

 

 

 

 

 

 

 

Fig. 9. Front and back views of SM9 and SM10.
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number of crushed folding elements and Basice elemente  is the 
dissipated energy due to crushing of a folding element:

int Crushing ShearingE E E     (1) 
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Dissipated energy due to the crushing of a folding element, 
Basice elemente , has been calculated in Ref. [20] as:
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 in which S and h  are the cell size and the thickness of 
the cell wall, H  is the half-wavelength of the folding mode, 
b  is the small radius of the toroidal shell, and 0M  denotes 
the fully plastic bending moment and can be determined as:
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where 0σ  is the flow stress of the honeycomb material. 
Furthermore, ( )1 0I ψ  and ( )3 0I ψ  can be determined as 
follow:
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Fig. 10. Load-displacement diagrams of samples SM4, SM7, SM11, and SM12. 
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For a hexagonal honeycomb, 
0 6

πψ = . In addition:
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Dissipated energy term in cutting-off of the honeycomb 
walls, shearingE , is written as:
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in which sE  is the fracture energy per unit area of 
honeycomb materials, wn  is the number of the sheared walls, 
and wA is the cross-sectional area of a honeycomb wall that 
can be written as:  
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Fig. 11. Front and back views of SM11 and SM12. 

 

 

 

 

 

 

 

Fig. 11. Front and back views of SM11 and SM12.
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Substituting the crushing and shearing energy terms 
from Eqs. (2) and (9) into Eq. (1) and implementing Eq. (3) 
gives the internal dissipated energy of the metal hexagonal 
honeycomb under local quasi-static loading:
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A schematic lateral view of a honeycomb cell wall’s final 
position, folded through local loading, has been presented in 
Fig. 13. Effective crushing distance, through which the mean 
crushing force, P , acts is ( )2H b−  and the external work 
done by the projectile can be determined as:

 

22 (2 ) 8

4

H H
b b 


   

  (8) 

 

Shearing w w sE n A E  (9) 

 

2wA hH  (10) 

 

 int 1 2 3A w w sE n E E E n A E     (11) 

 

(2 )extE P H b   (12) 

 

   

0

2

1 0 3 0

(2 )

32 4 3 8 2

A

w s

P H b n M

Hb HI S I hHn E
h b

  

  

 
   

 

 (13) 

 

   
2

0 1 0 3 0

1
2

32 4 3 8 2A w s

P
H b

Hb Hn M I S I hHn E
h b

  

 


       
   

 (14) 

 

0, 0P P
H b
 

 
 

 (15) 

 

d d k S   (16) 

 

 (12)

Equalization of the internal energy and the external work 
and using Eqs. (4) and (10) results in:
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Simplification of Eq. (13) in order to calculate P  gives:
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The least possible value of the mean crushing force, P
, can be obtained from minimizing Eq. (14) with respect to 
two unknown parameters, the half-wavelength of the folding 
mode, H , and the small radius of the toroidal shell, b . So:
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4- Calculation of An  and wn
The number of the crushed folding elements, An , can be 

obtained by division of the folded area to the basic folding 
element area. The basic folding element area, shown in Fig. 
12 is 23

4 S . Although the folded zone is a skew polygon, 
the folded area can be estimated as 2

4dπ , where d  can be 
written as:
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in which d  and S  are the diameter of the projectile and 
the cell size, respectively, and k ′  is a constant coefficient. 

 

Fig. 12. A basic folding element 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. A basic folding element

 

Fig. 13. Schematic lateral view of a honeycomb cell wall’s final position [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Schematic lateral view of a honeycomb cell 
wall’s final position [20].
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Therefore, An  can be determined as:

2
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S
    

 
 (17) 
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On the other hand, the number of the sheared walls, wn , 
is written in Eq. (18) where k  is another constant coefficient.
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In order to determine constant coefficients, k  and k ′
, four different cases A, B, C, and D, shown in Fig. 14, such 
as the position of projectile center on the honeycomb, are 
considered. In case A, the projectile and a cell are concentric. 
In case B, the projectile center is located on one of the 
hexagonal corners. Finally, in cases C and D projectile center 
is located in the middle of a single and dual wall, respectively.

A skew polygon is obtained by connecting the cutting off 
positions. Table 2 illustrates the values of constant coefficients 
k  and k ′  for different values of projectile diameter and 
cell size.  Average values of k  and k ′  are 4.73 and 0.63, 
respectively.

5- Results and Discussion
Results of the experiments including the absorbed 

energy, specific energy, displacement of densification, slope 
of the elastic region, peak load value, and displacement 

corresponding to peak load have been shown in Table 3. In 
this article, specific energy is defined as the absorbed energy 
per unit specimen height. In addition, densification strain and 
strain at peak load are defined as the displacement values 
corresponding respectively to the densification and peak load 
per initial height of the sample. Since the loading speed of 
samples, SM11 and SM12, is relatively high, the test could 
not be performed completely and unfortunately, the absorbed 
energy and other data cannot be obtained perfectly.

Comparison between SM3 and SM1 and also SM5 
and SM2 shows that however the densification strain of a 
honeycomb under local loading, for both flat and spherical 
projectiles, is e few more than densification strain under 
global loading, the metal honeycomb, subjected to a quasi-
static loading by a flat projectile, absorbs energy at least 60% 
more than the global loading condition. On the other hand, 
although the maximum load of local loading is more than that 
of the global loading, but the maximum force of the local 
loading occurs at the relatively high strains. 

Comparison SM3 and SM4 and also SM5 and SM6 
illustrate that the absorbed energy is not completely related 
to the square of the projectile diameter. Furthermore, it 
seems that the densification strain increases by increasing the 
projectile diameter. 

It can be seen from SM4 and SM7 and also SM 6 and SM8 
that however, the densification of the spherical projectile 
loading occurs at higher strain, but the absorbed energy and 
maximum load of a honeycomb under spherical projectile 
loading is significantly less than those of the flat projectile 
loading.

Since the heights of specimens SM9 and SM10 are less than 
specimens SM4 and SM7, for better comparison, it is useful to 

 

Fig. 14. Four different cases of the projectile’s position 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Four different cases of the projectile’s position
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compare the specific energy instead of absorbed energy. It seems 
that in the flat projectile loading the specific energy decreases by 
increasing the specimen height, while in the spherical projectile 
loading, specific energy increases by increasing the specimen 
height. On the other hand, for both flat and spherical projectiles, 
densification strain decreases by increasing the specimen height.

Mean crushing load can be calculated by dividing the 
absorbed energy by the displacement of densification. Table 4 
compares the experimental and analytical results for local 

mean crushing loads of samples SM3, SM4, SM5, and SM6. 
All samples are constructed from AL 3003-H18. Results show 
that the presented theoretical model predicts the mean crushing 
load of the metal hexagonal honeycomb under flat projectile 
compression with a 9.3% error. Table 2 illustrated that in the 
small values of d S  ratios, constant coefficients k  and k ′  
depend on the position of the projectile center on the honeycomb 
plane. Therefore, the difference between the theoretical and 
experimental values of SM6 can be in the results of the very 

Table 2. Values of k  and k ′   for different values of projectile’s diameter and cell sizeTable 2. Values of k  and k   for different values of projectile’s diameter and cell size 

No. d
S  Ratio Projectile’s 

Position k  k   

1 3.1 A 5.19 0.99 
2 3.1 B 5.84 0.85 
3 3.1 C 4.55 0.30 
4 3.1 D 3.08 0.30 
5 4.6 A 5.19 0.63 
6 4.6 B 4.33 0.33 
7 4.6 C 4.76 0.67 
8 4.6 D 4.33 0.67 
9 6.2 A 5.19 1.12 

10 6.2 B 4.55 0.69 
11 6.2 C 5.36 0.62 
12 6.2 D 4.55 0.62 
13 8.9 A 4.18 0.36 
14 8.9 B 4.86 0.43 
15 8.9 C 4.63 0.73 
16 8.9 D 4.63 0.73 
17 11.6 A 4.85 0.88 
18 11.6 B 4.59 0.49 
19 11.6 C 4.68 0.62 
20 11.6 D 4.50 0.62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Experimental results of specimens SM1 to SM10Table 3. Experimental results of specimens SM1 to SM10 

Sample 
Index 

Absorbed 
Energy 

 J  

Specific 
Energy 
(J/m) 

Densification 
Strain 
(%) 

Maximum 
Load 
(N) 

Strain at peak 
(%) 

SM1 9.06 453 74.50 809.26 4.00 
SM2 7.38 410 68.33 754.88 4.94 
SM3 14.78 739 82.50 991.42 77.50 
SM4 4.10 205 80.00 312.88 71.00 
SM5 13.73 763 72.22 1321.06 76.39 
SM6 3.42 190 71.11 347.65 52.83 
SM7 2.03 102 82.50 157.22 31.95 
SM8 0.87 48 82.78  89.86 45.44 
SM9 2.70 213 86.61 307.64 71.73 

SM10 1.07 84.3 94.45 171.96 49.06 
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small d S  ratio.
Figs. 15 and 16 show the mean crushing load, required 

for the folding of metal hexagonal honeycomb under 
quasi-static flat projectile punch, in terms of cell size and 
wall thickness, respectively. For better comparison, the 
mean crushing force in the global loading is also shown. 
The mean crushing load decreases by increasing the value 
of cell size, while it increases by increasing the value of 
wall thickness. Furthermore, curves illustrate that the 
difference between the local and global loads is increased 
by increasing the wall thickness, while it is decreased by 
increasing the cell size.

Fig. 17 shows the variations of the mean crushing load 
of a honeycomb specimen, loaded by a flat projectile, in 
terms of projectile diameter. It can be shown that, in the 
global loading, the mean crushing load is a function of 2d
, in which d  is the specimen diameter.

6- Conclusion
In this article, the behavior of metal hexagonal 

honeycomb under quasi-static out of plane punch loading was 
investigated, experimentally and analytically. Experimental 
results show that the absorbed energy is not only a function 
of the geometrical dimensions of honeycomb cells such 
as the cell size and wall thickness, but it is also related to 
the projectile shape and diameter, honeycomb height, and 
loading speed. Absorbed energy increases by increasing the 
honeycomb wall thickness, projectile diameter, and loading 
speed, while it decreases by increasing honeycomb cell size 
and height. 

The perforated zone of the honeycomb samples under 
local out of plane loading are not perfectly circulars, but 
they are similar to skew polygons or elliptic, are extended in 
direction of the dual walls. It leads to the mean crushing force 
of the aluminum honeycomb sample under local loading be 
significantly greater than its global loading. 

Table 4. Comparison between the experimental and theoretical values of mean crushing load

 

Table 4. Comparison between the experimental and theoretical values of mean crushing load 

 Sample 
Index Experimental (N) Analytical (N) Error (%) 

SM3 896 959 7.14 
SM4 256 270 5.47 
SM5 1056 989 6.34 
SM6 263 311 18.25 

 

Fig 15. Variation of theoretical mean crushing load in terms of cell size  

(Local d=32mm +, Global d=32mm o, Local d=16mm *, Global d=16 mm .) 

 

 

 

 

 

 

 

 

Fig. 15. Variation of theoretical mean crushing load in terms of cell size (Local d=32mm +, 
Global d=32mm o, Local d=16mm *, Global d=16 mm .) 
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Fig 16. Variation of theoretical mean crushing load in terms of wall thickness  

(Local d=32mm +, Global d=32mm o, Local d=16mm *, Global d=16 mm .) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Variation of theoretical mean crushing load in terms of wall thickness 
(Local d=32mm +, Global d=32mm o, Local d=16mm *, Global d=16 mm .)

 

 

Fig 17. Variation of theoretical mean crushing load in terms of projectile diameter (Local 

loading *, Global loading .) 

 

Fig. 17. Variation of theoretical mean crushing load in terms of projectile diameter (Local 
loading *, Global loading .)
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In the analytical section, the mean crushing load of metal 
hexagonal honeycomb subjected to the penetration of flat 
nose projectile has been calculated by considering the skew 
polygon surface and the dissipated energy term in cutting-off 
of the honeycomb walls. Results show that the local mean 
crushing load is greater than that of the global one and the 
difference between these two values increases by increasing 
the honeycomb wall thickness and projectile diameter and 
decreasing the honeycomb cell size.
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