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Effects of gas temperature rise on steady state behavior of non-circular two-lobe micro 
gas bearings
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ABSTRACT: In this paper, the molecular gas lubrication model is used to analyze the steady state 
behavior of two-lobe non-circular gas lubricated micro bearings. In this way, the effects of increasing 
temperature and gas rarefaction can be considered and then examined and analyzed. Behavior 
characteristics of two-lobe non-circular bearings with very small sizes differ from conventional sizes, 
especially at high temperatures and/or high rotational speeds. At high temperatures, in addition to 
diluting the gas, its viscosity and friction also change, and slippage may occur at the boundaries. The 
nonlinear equation governing the behavior of the gas is discretized using the finite element method and 
then solved together with the static equations of the rotor. Then the effects of temperature increase and 
gas rarefaction on gas pressure profile, load bearing capacity, angle of attitude, eccentricity ratio and 
frictional power loss have been studied and analyzed. The results show that the temperature rise and 
the gas rarefaction have significant effects on the steady state behavior of micro gas bearings. Among 
the results is that with increasing gas rarefaction, the gas pressure and consequently the load carrying 
capacity decrease more, and the attitude angle also increases more.
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1- Introduction
Micro-bearings are an important component of micro-

electromechanical power systems such as micro-motors and 
have received much attention today. To increase power, the 
rotor must work at a very high speed. In order to design high-
reliability rotary devices and prevent hazardous performance 
at such high speeds, it is best to have an accurate prediction 
of system behavior. Due to the small size of the micro-gas 
bearings, the thickness of the gas film is comparable to the 
molecular free path. At this scale, the fluid mechanics of 
these bearings are very different from those of large-scale 
bearings, and this difference affects the performance of the 
bearing. Due to the high rotor speed and high temperature, 
the distance between the surface of the rotor and the bearing 
surface is reduced to about a few microns. Also, the gas film 
between them is rarefied as well as the speed slip occurs at 
the rotor surface. Thus, the velocity distribution in the gas 
film changes and in turn affects the performance of the micro-
bearing. To determine the pressure and force distribution in 
the lubricant gas film, the governing equation in accordance 
with the molecular gas lubrication (MGL)model, along with 
the velocity-slip boundary conditions must be solved. 

In 1999, Piekos and Breuer studied the stability of a 
hydrodynamic journal bearing in a gas micro turbine using 
pseudo-spectral orbit simulations. By comparing the solution 

of the Navier Stokes equations and the Reynolds equation, the 
Reynolds equations are valid for analyzing journal bearing 
with a gas lubricant in the gas micro turbine [1]. In 2004, 
Kim et al. made micro-gas bearings with lithography and 
deep X-rays electroplating and calculated the performance 
of micro-bearings in terms of load parameters and angles of 
attitude using the MGL theory [2].

Of the main disadvantages of gas bearings are low 
stability, which often limits their range of applications. In 
2005, Isomura et al. designed and developed a high speed 
micro bearing for conducting experiments to continue 
developing air bearings for a micro turbine capable of 
stability operating at 870000 rpm [3]. In 2006, Arghir et al. 
dealt with several aspects of the finite-volume numerical 
solution of the Reynolds equation for a compressible 
fluid. The static and dynamic characteristics of cylindrical 
hydrodynamic and externally pressurized hybrid gas bearings 
are presented[4].  In 2009, Zhang derived a new slip model 
by molecular dynamics to investigate the ultra-thin gas 
lubricated slider bearings. He obtained analytical solutions 
for flow rate, pressure distribution, load carrying capacity and 
stream wise location using the modified Reynolds equation 
[5]. Zhang et al. analyzed the characteristics of gas journal 
micro-bearings based on effective viscosity according to 
first-order slip boundary conditions [6]. In 2010, Zhang 
et al. proposed a modified Reynolds equation based on 
Burgdorfer’s first order slip boundary conditions at different 
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temperatures. Their numerical analysis showed that gas film 
pressure and dimensionless load carry capacity decreased 
significantly when increasing the gas rarefaction effect 
[7]. Zhang et al. analyzed the static performance of micro-
bearings using spectral correlation methods. The results show 
that load carrying capacity increases with lower operating 
temperatures, and the dependence of temperature on load 
capacity at higher temperatures becomes weaker [8]. In 2013, 
Zhang et al. coupled the gas film lubrication equation with 
kinetic equations to study the characteristics of rotor-bearing 
systems. They found that the temperature range can be 
divided into two regions: the area with the dominant viscosity 
and the area with the dominant rarefaction effect [9]. In 2015, 
Yan et al. a modified Reynolds equation for bump type gas 
foil thrust bearing established with consideration of the gas 
rarefaction coefficient. Under rarefied gas lubrication, the 
Knudsen number which was affected by the film thickness 
and pressure was introduced to the Reynolds equation. The 
coupled modified Reynolds and lubricating film thickness 
equations were solved using Newton-Raphson iterative 
method and finite difference method. By calculating the 
load capacity for increasing rotor speeds, the lift-off speed 
under certain static load was obtained. Parametric studies for 
a series of structural parameters and assembled clearances 
were carried out for bearing optimization design. The results 
indicate that with gas rarefaction effect, the axial load 
capacity would be decreased, and the lift-off speed would 
be improved. The rarefied gas has a more remarkable impact 
under a lower rotating speed and a smaller foil compliance 
coefficient [10]. In 2016, Zhang et al. extracted the first-order 
modified Reynolds equation with respect to thermal creep, 
which led to a very high thermal gradient in the axial direction, 
and was compared with the simplified energy equation for 
examination of the hydrodynamic characteristics of the 
steady state of micro gas-bearing were coupled. Under the 
iso-thermal conditions, they realized that carbon dioxide gas 
could not only improve the bearing’s stability but could also 
produce a relatively higher load carrying capacity [11]. Chen 
et al. analyzed pressure distribution, capacity, and stiffness 
of the gas film under the rarefied effect in the aerostatic 
thrust bearing. With the increase of gas pressure, the gas film 
capacity and stiffness of bearing would also increase [12]. 
Liangliang Li et al. investigated the sensitivity of MEMS 
gas bearing performance to the wear in different axial and 
circumferential positions in detail. Rarefaction effect is 
considered into the transient and steady lubrication equation, 
and then the finite element method (FEM) is employed to 
solve the equations. The static and dynamic characteristics 
of the bearing in 50 wear conditions are calculated for each 
case [13]. Yao Wu et al. investigated elastic deformation 
and gaseous rarefaction effects in the pressure distribution 
and dynamic stiffness and damping coefficients and also 
friction coefficient. They used the effective viscosity model 
of Veijola, finite element procedure and relaxed iterative 
algorithm. They showed elastic deformation and gaseous 
rarefaction effects have great importance in the static and 
dynamic behavior of gas micro bearings[14]. Yao Wu et al. 

derived the modified Reynolds equations including different 
rarefaction models and solved by the partial derivative 
method and relaxation iteration algorithm. They investigated 
the effects of Knudsen number and bearing parameters on the 
static and dynamic characteristics of micro bearings . They 
showed that the rarefaction effect plays a crucial role in the 
ultra-thin gas film lubrication[15].

In 1975, Pinkus solved the compressible Reynolds 
equation under homogeneous conditions for elliptical and 
three-lobe gas bearings with a working load vector in any 
desired direction in a 360 degrees range. He showed that 
compared to conventional bearings, non-circular designs 
offer significant advances in stiffness [16]. In 1983, 
Chandra examined the static and dynamic characteristics 
of the four configurations of the non-circular gas journal 
bearings. Reynolds equation was solved by finite element 
method, and a comparison of the stability of four non-
circular gas journal bearings was performed [17]. Saha et 
al. theoretically analyzed the steady state performance of 
gas-lubricated two-layered porous journal bearings by an 
iterative method considering three-dimensional flow through 
the porous matrix and two-dimensional flow in the bearing 
clearance. The effect of supply pressure, bearing number, 
feeding parameter and length-diameter ratio on the static 
characteristics are investigated and presented in the form of 
design charts [18]. Rahmatabadi et al. studied the static and 
dynamic characteristics of non-circular gas journal bearings, 
considering the effect of the angle of installation and pre-
load. They have proven that non-circular bearings have 
better dynamic characteristics than circular bearings. They 
also proved that using the appropriate amount of mounting 
angles, the stability margin can be increased [19]. Crosby 
studied static and dynamic characteristics of two-lobe journal 
bearings lubricated with couple-stress fluids. The load 
carrying capacity, the stiffness and damping coefficients, 
the non-dimensional critical mass, and the whirl ratio are 
determined for various values of the couple stress parameter 
[20].  Rahmatabadi et al. investigated the effects of bearing 
preload factor on the static performance characteristics of 
micropolar lubricated two-, three-, and four-lobe bearings and  
solved the modified Reynolds equation for micropolar fluids 
by FEM, to find the fluid film pressure. Then, in turn, bearing 
performance characteristics, namely, load-carrying capacity, 
attitude angle, frictional force, friction coefficient, and side 
leakage flow were calculated [21].  Chauhan et al. carried 
out a comparative study based on the thermal performance 
of elliptical and offset-halves journal bearings. Investigation 
for the rise in oil film temperatures, thermal pressures, load 
capacity, and power loss for three commercially available 
grade oils have been carried out for bearing configurations 
under study [22]. Sharma et al. theoretically studied the 
influence of wear on the performance of a non-circular 2-lobe 
four-pocket multirecess hybrid journal bearing system. The 
Reynolds equation governing the flow of lubricant in the 
clearance space of a non-circular 2-lobe multirecess worn 
hybrid journal bearing system has been solved using FEM 
along with appropriate boundary conditions [23]. Shooroki 
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et al. studied the static characteristics of two lobes, three 
lobes and four lobes non-circular gas bearing systems. They 
analyzed the Reynolds equation using radial basis functions. 
They used a numerical method to solve the system of 
algebraic equations and determined the position of the rotor 
equilibrium without using the trial and error method, which 
was considered as the advantage of their method [24]. Chen et 
al. numerically investigated static performance of the journal 
bearing with rectangular grooves . The resistance network 
method (RNM) was utilized to solve the Reynolds equation 
required in the analysis. Performance parameters including 
pressure distribution P, load force F, stiffness K, and gas 
flow rate Q are examined in the simulations [25].

Due to the work done over the past decades, numerous 
studies have been carried out on non-circular gas-bearing on 
macro-scale, and the results have shown that non-circular gas 
bearings have better performance and stability than circular 
gas bearings. Therefore, considering the fact that in micro-
scale and in micro-motors, despite the high speeds and high 
temperatures, the issue of stability has particular importance, 
it seems that the use of non-circular gas micro-bearings is a 
better option for such machines. Several studies have been 
carried out on micro gas bearings and their types, but no 
research work has been carried out on two lobes non-circular 
micro gas bearings, and its vacancy is tangible. 

In this paper, we try to investigate the nonlinear steady 
state behavior of two lobes non-circular micro gas bearings. 
The molecular gas lubrication model has been used for 
steady state analysis of two-lobe non-circular micro gas 
bearings. The effects of temperature rise and gas rarefaction 
are taken into account. The nonlinear equation governing the 
gas behavior is discretized using the finite element method 

and then solved. The effects of temperature rise and gas 
rarefaction on pressure, micro bearing load carrying capacity, 
angle of attitude, eccentricity ratio, and frictional power loss 
have been studied. The results show that the temperature rise 
and the gas rarefaction have significant effects on micro gas 
bearings steady state behavior.

2- Problem definition and solution
2- 1- MGL model 

The geometric details of the non-circular bearing of 
the two lobes are shown in Fig. 1. The analysis of two-
lobe non-circular micro gas bearing consists of solving 
the governing equations separately for each bearing lobe. 
Each lobe is considered as an independent component of 
the bearing. To extend the analysis to the whole of the 
non-circular bearing, the gas film geometry of each lobe 
is expressed with reference to bearing fixed Cartesian 
axes. At operation, the minimum gas film thickness is 
about a few microns, which is sufficiently effective to 
compare the molecular mean free path. The conventional 
compressible Reynolds equation loses its validity as the 
governing equation. The modified Reynolds equations are 
obtained based on the first or second-order slip conditions 
based on the assumption that the small Knudsen number (

1Kn
h
λ

=  ) is obtained, in while the MGL model obtained 
from the  linearized Boltzmann equation,  It is valid for 
all arbitrary Knudsen numbers. Therefore, this model 
has been used in the analysis of non-circular micro gas 
bearing. The assumptions considered are: flow is laminar 
and isothermal, inertia and body forces are negligible and 
there is no vertical flow across the film. The MGL model 
[26] is as follows:

              

Fig. 1. Geometric details of the two-lobe non-circular micro gas bearings 
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Fig. 1. Geometric details of the two-lobe non-circular micro gas bearings
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where 
z
R

ζ =   is non-dimensional coordinate along bearing 
axis measured from mid span, 

x
R

θ =   is angular coordinate 
measured from X-axis,    

a

pP
p

= is non-dimensional absolute 
gas pressure,  ap  is pressure at a reference position. Λ  is 
bearing number and is as follow	
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that  µ  is gas dynamic viscosity,  ω  is rotational speed of 
the rotor, R is rotor radius and mC  is minor clearance when 
rotor and bearing geometric centers are coincident.

The non-dimensional gas film thickness (H) in the 
clearance space of the first or second lobe with the rotor in 
steady state can be expressed as
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that δ  is preload in the bearing, ( )0 0. j jX Y,( )0 0. j jX Y is coordinates 
of the rotor center in steady state and 0

kθ  is angle of lobe line 
of centers for kth Lobe.

The Q  is non-dimensional flow rate coefficient 
corresponding to different degrees of rarefaction. 1Q =  
represents continuous flow, when gas flow is rarefied, it 
is more than 1, and is equal to the ratio of pQ   (flow rate 
coefficients of the rarefied Poiseuille flow) to cQ  (flow rate 
coefficients of the continuum Poiseuille flow). As follows:
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pQ  and cQ , Fukui and Kaneko[27] is 

given polynomial expressions proportional to numerical 
computation data for the flow coefficient by inverse Knudsen 
number, which are as follows:
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both pQ  and cQ  are related to inverse Knudsen number 
the ( kD ), which changes with temperature as follow
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that T is temperature and gR  is gas constant.
The boundary conditions for solving Eq. (1) are as follows:
gas pressure on both sides of the bearing is equal to the 

ambient pressure. . 1LP
D

θ ± = 
 

,. 1LP
D

θ ± = 
 gas pressure P is continuous. 

0

0P

ζζ =

∂
=

∂
The gas pressure at the leading and the trailing edges of 

each lobe is equal to the ambient pressure ap .

2- 2- Finite element method
The MGL model is a nonlinear partial differential 

equation that can be solved using finite element method. For 
the formulation of finite element [28], the Galerkin’s weighed 
residual of Eq. (1) for an element of the discretized space 
domain as follows:
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here , e
iN   is  approximation function and eA  is  element 

area. In the discretized space domain, in an element e, the 
pressure variable P is approximated as follows:
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in which e refers to an element, en   the number of nodes 
in the element, 'e

jN s  are the shape functions, and jP ’s are 
the nodal values of the pressure variable P. Using the Eq. (8) 
in Eq. (7) and with some integral simplifications, the finite 
element equations for an element of the discretized flow filed 
domain can be obtained as.
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in which the components of the element matrices are as: 
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The assembly of Eq. (9) for all elements of P domain 
yields the global equations:
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where kn  is the total number of nodes.

3- Performance characteristics
3- 1- equilibrium position of rotor center

For the given vertical load, the equilibrium position of 
the rotor center can be obtained by solving the following 
equations
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where exF  and eyF  are the external force components, 

gxF  and gyF  are the gas film force components, and fxF  and 
fyF  are the viscous friction force components. By guessing 

the equilibrium position of the rotor center, Eq. (12) is solved 
using an iterative method and the equilibrium position of 
the rotor center ( )0 0.j jX Y,( )0 0.j jX Y is obtained. The  gxF  and gyF  are 
obtained using the following double integrals:
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L and D are the length and diameter of the bearing, 
respectively. Dual integrals of Eq. (13) are calculated by 
numerical methods and the gas film force is obtained. The 
dimensionless viscous friction force, fF , can be calculated 
as follows:
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hτ  is the shear stress caused by gas viscosity at the rotor 
surface, which can be calculated as follows [29]: 
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3- 2- Load carrying capacity

Load carrying capacity is obtained as follows:
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3- 3- Attitude angle

The attitude angle of the journal center for a given 
eccentricity is determined by an iteration scheme. This 
scheme is based on minimization of the horizontal load 
component ( xF ) so that the resultant load is almost vertical 
(i.e., yF F= ).
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3- 4- Frictional power loss

The friction force for two-lobe non-circular micro gas 
bearing is computed from the following equation:
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The frictional power loss for the bearings is given by
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4-  Result and Discussion
4- 1- Verification

To ensure the accuracy of the analysis and results, first 
assuming that no fraction occurs, i.e. at Q = 1 (continuous flow), 
the rotor equilibrium position is obtained and in table 1, with 
the results of Shuruki et al. [24] as well as Chandra et al. [17] is 
compared. Table 1 shows good agreement between the results.

Then, to ensure the accuracy of the results obtained on 
a micro-scale, since no work has been done on multi-lobe 
non-circular gas-lubricated micro-bearings, the steady-state 
characteristics of circular micro-bearings (one lobe) are 

obtained and compared with the results of Malik [30] in Table 
2. According to Table 2, there is a good agreement between 
the obtained results and the results of Malik [30]. It is worth 
noting that the difference in Kn=0 is due to the larger number 
of elements (about 17,000 elements) in the present study, and 
the difference in the case of Kn=0.1 is due to the use of the 
modified first-order Reynolds equation in Malik’s paper [30], 
while in this research the MGL model is used, which is more 
accurate than other models.

4- 2- Results
In this study, air is considered as a lubricant and bearing 

characteristics are as follows: 
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The non-dimensional peripheral pressure profile in the 
middle section of two-lobe non-circular micro gas bearing is 
presented in Figs. 2 to 4, in which the ratio of the length to 
diameter is 0.1 and the preload ( mC

C
δ = ) is 0.5. The rotational 

speed of the rotor is 100,000, 500,000 and 1,000,000 rpm 
respectively. The results show that increasing the temperature 
has a significant effect on the pressure characteristics so that 
the pressure values in the pressure characteristics increase. 
However, when the effect of gas rarefaction is considered, 
the pressure values in the pressure characteristics are reduced 
relative to the case in which the gas rarefaction is ignored. 
Also, increasing the gas temperature increases the viscosity 
of the gas, which in turn increases the gas pressure.

Fig. 2 shows the pressure profile when the rotational speed 
of the rotor is 100,000 rpm in two cases. When the effect of 
gas rarefaction is considered, the pressure values decrease. 

Table 1. Comparison of the results in steady state with the results of [17, 24] for L / D = 1, δ = 0.5Table 1. Comparison of the results in steady state with the results of [17, 24] for L / D = 1, δ = 0.5 

𝒀𝒀𝒋𝒋𝟎𝟎𝟑𝟑 𝑿𝑿𝒋𝒋𝟎𝟎
𝟑𝟑 𝒀𝒀𝒋𝒋𝟎𝟎𝟐𝟐 𝑿𝑿𝒋𝒋𝟎𝟎

𝟐𝟐 𝒀𝒀𝒋𝒋𝟎𝟎𝟏𝟏 𝑿𝑿𝒋𝒋𝟎𝟎
𝟏𝟏 𝑭𝑭𝒆𝒆 𝜦𝜦 

-0.0027 0.2402 - - -0.002 0.244 0.01 0.1 
-0.0145 0.2381 - - -0.014 0.242 0.05 0.5 

-0.0280 0.2311 - - -0.026 0.236 0.1 1 

-0.0528 0.2097 -0.053 0.224 -0.050 0.217 0.2 2 
-0.1073 0.1524 -0.111 0.166 -0.103 0.16 0.5 5 

-0.1746 0.1229 -0.174 0.122 -0.178 0.126 1 10 

-0.2705 0.086 - - -0.272 0.087 2 20 

1: The results of Chandra [17]   2: The results of Shooroki [24]   3: Present analysis 
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Table 2. Comparison of results in steady state for circular micro gas bearing (L / D = 1, ε = 0.6)

 

Table 2. Comparison of results in steady state for circular micro gas bearing (L / D = 1, ε = 0.6) 

With slip, Kn=0.1 Without slip, Kn=0 
Rseluse 𝛬𝛬 

𝑃𝑃𝐿𝐿  𝑊𝑊0 ∅ 𝑃𝑃𝐿𝐿  𝑊𝑊0 ∅ 

13.39 0.0719 87.55 17.94 0.1243 84.76 1 
0.1 

13.4245 0.0737 86.4306 18.0281 0.1294 83.5709 2 

13.39 0.1438 85.11 17.91 0.2483 79.70 1 
0.2 

13.4242 0.1479 82.6269 17.9755 0.2608 76.9766 2 

13.39 0.3592 78.03 17.74 0.6146 66.78 1 
0.5 

13.4218 0.3652 74.5521 17.7763 0.6306 65.4832 2 

13.38 0.7151 67.58 17.40 1.1829 52.76 1 
1 

13.4158 0.7160 62.9951 17.4120 1.1995 51.9228 2 

13.38 1.3911 52.55 16.90 2.1239 38.56 1 
2 

13.4081 1.3479 49.3922 16.9104 2.1311 38.7655 2 

13.37 2.9349 31.84 16.23 3.8259 22.47 1 
5 

13.4348 2.7577 32.6115 16.2788 3.8832 24.0417 2 

13.35 4.2399 19.43 15.91 4.8935 13.43 1 
10 

13.4994 4.1596 22.2184 15.9611 5.2580 15.5070 2 
1: The results of  Malik [30]                 2: Present analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
(b) (a) 

Fig. 2. Pressure profile in the middle section of the two-lobe non-circular micro gas bearing - ω = 100,000 rpm, ζ = 0. (a) With 
rarefied effect (b) Without rarefied effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Pressure profile in the middle section of the two-lobe non-circular micro gas bearing - ω = 100,000 rpm, 
ζ = 0. (a) With rarefied effect (b) Without rarefied effect
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In the case where the effect of rarefaction is considered, after 
1000 K with increasing temperature, almost no increase in 
the amount of pressure is observed. According to the pressure 
diagrams in the two cases, at 400 K the amount of pressure 
is almost the same which shows that at low temperatures the 
effect of rarefaction is negligible. 

Fig. 3 shows the pressure profile when the rotational speed 
of the rotor is 500,000 rpm in two cases.  As the rotational 
speed of the rotor increases, the pressure values increase. 

When the effect of gas rarefaction is considered, the pressure 
values decrease. At low temperatures, the rarefaction effect 
of the gas film is not significant, as can be seen at 400 K, 
the pressure profile is almost the same in both cases. With 
increasing gas temperature and without considering the 
rarefaction effect of the gas film, the 

Fig. 4 shows the pressure profile when the rotational speed 
of the rotor is 1,000,000 rpm in two cases. As the rotational 
speed of the rotor increases, the pressure values increase. 

 

  

(b) (a) 

Fig. 3. Pressure profile in the middle section of the two-lobe non-circular micro gas bearing - ω = 500,000 rpm, ζ = 0. (a) With 
rarefaction effect (b) Without rarefaction effect 

 

 

 

 

 

 

 

 

 

Fig. 3. Pressure profile in the middle section of the two-lobe non-circular micro gas bearing - ω = 500,000 rpm, 
ζ = 0. (a) With rarefaction effect (b) Without rarefaction effect

  

(b) (a) 

Fig. 4. Pressure profile in the middle section of the two-lobe non-circular micro gas bearing - ω = 1,000,000 rpm, ζ = 0. (a) 
With rarefaction effect (b) Without rarefaction effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Pressure profile in the middle section of the two-lobe non-circular micro gas bearing - ω = 1,000,000 rpm, 
ζ = 0. (a) With rarefaction effect (b) Without rarefaction effect
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When the effect of gas rarefaction is considered, at higher 
temperatures, the higher the temperature, the much lower the 
pressure increase. 

In Fig. 5, the effect of the temperature and the gas 
rarefaction on the attitude angle, ∅  , of the two-lobe non-
circular micro gas bearing has been investigated when the 
rotational speed of the rotor is 100,000 rpm. As can be seen, 
with increasing gas temperature, the attitude angle decreases, 
but when the gas rarefaction is considered, the attitude angle 

decreases with a slight slope. 
In Figs. 6 and 7, the effect of the temperature and the gas 

rarefaction on the attitude angle, ∅  , of the two-lobe non-
circular micro gas bearing has been investigated when the 
rotational speed of the rotor is 500,000 and 1,000,000 rpm 
respectively. As the rotational speed of the rotor increases, 
the amount of attitude angle decreases. With increasing gas 
temperature, the attitude angle decreases, but when the gas 
rarefaction is considered, the attitude angle decreases with a 

 

Fig. 5. The effect of temperature rise and gas rarefaction on the attitude angle - 𝜔𝜔 = 100.000 rpm . 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The effect of temperature rise and gas rarefaction on the attitude angle - ω=100,000 rpm .

 

Fig. 6. The effect of temperature rise and gas rarefaction on the attitude angle - 𝜔𝜔 = 500.000 rpm  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The effect of temperature rise and gas rarefaction on the attitude angle - ω=500,000 rpm  .
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smaller slope. 
In Fig. 8, the effect of the temperature rise and the gas 

rarefaction on the eccentricity of the rotor of micro-bearing 
center has been investigated when the rotational speed of the 
rotor is 100,000 rpm. As can be seen, with increasing gas 
temperature, the eccentricity decreases. When the effect of 
gas rarefaction is considered, more eccentricity is predicted. 
With increasing gas temperature and without considering the 
rarefaction effect of the gas film, the eccentricity decreases 

by 46.83% and considering the rarefaction effect, this value 
is equal to 32.19%. At low temperatures, with the rarefaction 
effect, the eccentricity increases by 3.66%, which at high 
temperatures is equal to 32.21%.

In Figs. 9 and 10, the effect of the temperature rise and 
the gas rarefaction on the eccentricity of the rotor of micro-
bearing center has been investigated when the rotational 
speed of the rotor is 500,000 and 1,000,000 rpm respectively. 
As the rotational speed of the rotor increases, the eccentricity 

 

 

Fig. 7. The effect of temperature rise and gas rarefaction on the attitude angle - 𝜔𝜔 = 1.000.000 rpm  . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The effect of temperature rise and gas rarefaction on the attitude angle - ω=1,000,000 rpm.

 

 

Fig. 8. The effect of temperature change and gas rarefaction on the steady state eccentricity of the journal center - 𝜔𝜔 =
100.000 rpm  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The effect of temperature change and gas rarefaction on the steady state eccentricity of the journal 
center - ω=100,000 rpm.
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decreases. As can be seen, with increasing gas temperature, 
the eccentricity decreases. When the effect of gas rarefaction 
is considered, more eccentricity is predicted. 

In Fig. 11, the effect of the temperature rise and the gas 
rarefaction on the load carrying capacity of the micro gas 
bearing has been investigated when the rotational speed 
of the rotor is 100,000 rpm. As the temperature of the gas 
increases, the load carrying capacity of the bearing increases. 
When the effect of gas rarefaction is considered, a smaller 
amount is predicted for load bearing capacity. As the gas 

temperature increases, regardless of the rarefaction effect 
in the gas film, the load carrying capacity of the micro gas 
bearing increases by 184.8%. If the effect of rarefaction 
is considered, the increase in the load carrying capacity 
decreases to about 97.56%. When the rarefaction effect of the 
gas film is considered, the load carrying capacity decreases, 
with a reduction rate of about 7.9% at low temperatures and 
about 36.11% at high temperatures.

In Figs. 12 and 13, the effect of the temperature rise and 
the gas rarefaction on the load carrying capacity of the micro 

 

 

 

 

Fig.9. The effect of temperature change and gas rarefaction on the steady state eccentricity of the journal center - 𝜔𝜔 =
500.000 rpm  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The effect of temperature change and gas rarefaction on the steady state eccentricity of the journal 
center - ω=500,000 rpm.

 

 

 

 

 

Fig. 10. The effect of temperature change and gas rarefaction on the steady state eccentricity of the journal center - 𝜔𝜔 =
1.000.000 rpm  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The effect of temperature change and gas rarefaction on the steady state eccentricity of the jour-
nal center - ω=1,000,000 rpm.
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Fig. 11.  The effect of temperature rise and gas rarefaction on the load carrying capacity - 𝜔𝜔 = 100.000 rpm  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The effect of temperature rise and gas rarefaction on the load carrying capacity - ω=100,000 rpm.

 
Fig. 12.  The effect of temperature rise and gas rarefaction on the load carrying capacity - 𝜔𝜔 = 500.000 rpm  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. The effect of temperature rise and gas rarefaction on the load carrying capacity - ω=500,000 rpm.

 
Fig. 12.  The effect of temperature rise and gas rarefaction on the load carrying capacity - 𝜔𝜔 = 500.000 rpm  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. The effect of temperature rise and gas rarefaction on the load carrying capacity - ω=1,000,000 rpm.
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gas bearing has been investigated when the rotational speed 
of the rotor is 500,000 and 1,000,000 rpm respectively. As 
the rotational speed of the rotor increases, the load carrying 
capacity increases.  As the temperature of the gas increases, 
the load carrying capacity of the bearing increases. When 
the effect of gas rarefaction is considered, a smaller amount 
is predicted for load bearing capacity. With increasing gas 
temperature and without considering the rarefaction effect 
of the gas film, the percentage increase of the load carrying 
capacity in Fig. 12 is about 183.3% and in Fig. 13 is about 
180.5%. The percentage increase in load carrying capacity 
decreases when the rarefaction effect is considered, which is 
about 97.3% in Fig. 12 and about 97.24% in Fig. 13. At a given 
temperature, taking into account the rarefaction effect, the 
load carrying capacity decreases, with a percentage reduction 
of about 7.9% at low temperatures in Figs. 12 and 13. The 
amount of this percentage reduction at high temperatures in 
Fig. 12 is about 35.84% and in Fig. 13 is about 34.74%.

In Fig. 14, the effect of the temperature rise and the gas 
rarefaction on the frictional power loss of the micro gas 
bearing has been investigated when the rotational speed 
of the rotor is 100,000 rpm. As the temperature of the gas 
increases, the frictional power losses do not change much 
and are almost constant, but if the effect of gas rarefaction 
is considered, the frictional power losses decrease with 
increasing temperature which the reduction percentage, in this 
case, is about 0.12%. Considering the rarefaction effect of the 
gas film, the reduction percentage of frictional power losses 
at low temperatures is about 0.04% and at high temperatures 
is about 0.16%, which indicates that at high temperatures the 
frictional power losses are 4 times higher than losses are at 
low temperatures. 

In Figs. 15 and 16, the effect of the temperature rise and 

the gas rarefaction on the frictional power loss of the micro 
gas bearing has been investigated when the rotational speed 
of the rotor is 500,000 and 1,000,000 rpm respectively. As 
the rotational speed of the rotor increases, the frictional 
power losses are reduced.  As the effect of gas rarefaction 
is considered, the frictional power losses decrease with 
increasing temperature.

5-  Conclusions
In micro gas bearings, due to the need for high speeds 

to increase load carrying capacity, there will be a possibility 
of temperature rise. The high temperature and the small size 
of the micro-bearing will lead to a rarefaction of the gas 
film, and ignoring the effect of gas rarefaction in solving the 
Reynolds equation will result in incorrect results. In this paper, 
the molecular gas lubrication model is used to analyze the 
steady state behavior of two-lobe non-circular gas lubricated 
micro bearings. The effects of temperature increase and gas 
rarefaction on gas pressure profile, load bearing capacity, 
angle of attitude, eccentricity ratio and frictional power loss 
have been studied and analyzed. The results show that with 
increasing gas rarefaction, the gas pressure and consequently 
the load carrying capacity decrease more, and the attitude 
angle also increases more. Some other results are as follows:

1- As the gas temperature increases, the pressure and load 
carrying capacity increase and the attitude angle, eccentricity 
and frictional power losses decrease.

2- At a certain temperature, taking into account the 
rarefaction effect of the gas film, the attitude angle and 
eccentricity increase and the load carrying capacity and 
frictional power losses are reduced.

3- At high temperatures and high rotational speed:
The pressure reduction percentage is approximately 10 

 

 

Fig. 14.  The effect of temperature rise and gas rarefaction on the frictional power loss.  𝜔𝜔 = 100.000 rpm . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The effect of temperature rise and gas rarefaction on the frictional power loss.  ω=100,000 rpm.
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times higher than the reduction percentage at low rotational 
speeds.

The percentage increase in attitude angle is approximately 
10 times higher than the percentage increase in low rotational 
speed.

The percentage increase in eccentricity is 1.3 times higher 
than the percentage increase in low rotational speed.

The percentage reduction in load carrying capacity is 

 

Fig. 16.  The effect of temperature rise and gas rarefaction on the frictional power loss.  𝜔𝜔 = 1.000.000 rpm . 

 

Fig. 16. The effect of temperature rise and gas rarefaction on the frictional power loss.  
ω=1,000,000 rpm.

approximately the same as the percentage reduction in low 
rotational speed.

The percentage reduction in frictional power losses is 
approximately half the percentage reduction in low rotational 
speed.

 The results show that the effect of gas rarefaction has 
great importance and affects all the characteristics of the 
steady state of the two-lobe micro gas bearing.

 

 
Fig. 15.  The effect of temperature rise and gas rarefaction on the frictional power loss.  𝜔𝜔 = 500.000 rpm . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. The effect of temperature rise and gas rarefaction on the frictional power loss.  
ω=500,000 rpm .
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Nomenclature 

A 2-D domain of integration 

C Conventional radial clearance, m 

𝐶𝐶𝑚𝑚 Minor clearance when rotor and bearing geometric centers are coincident, m 

D Journal diameter, m 

𝐷𝐷𝑘𝑘 Inverse Knudsen number 

Fe 𝐹𝐹𝑒̅𝑒 𝑝𝑝𝑎𝑎𝑅𝑅2⁄ , The external load applied to the journal 

𝐹𝐹𝑥𝑥 , 𝐹𝐹𝑦𝑦 𝐹𝐹𝑥𝑥 = 𝑓𝑓𝑥𝑥
𝑝𝑝𝑎𝑎𝑅𝑅2 , 𝐹𝐹𝑦𝑦 = 𝑓𝑓𝑦𝑦

𝑝𝑝𝑎𝑎𝑅𝑅2 , Non-dimensional components of the gas film resultant force on the rotor  

𝐹𝐹𝑔𝑔𝑔𝑔 , 𝐹𝐹𝑔𝑔𝑔𝑔 𝐹𝐹𝑥𝑥 = 𝑓𝑓𝑔𝑔𝑔𝑔
𝑝𝑝𝑎𝑎𝑅𝑅2 , 𝐹𝐹𝑦𝑦 = 𝑓𝑓𝑔𝑔𝑔𝑔

𝑝𝑝𝑎𝑎𝑅𝑅2 , Non-dimensional components of the gas film force on the rotor 

𝐹𝐹𝑓𝑓𝑓𝑓, 𝐹𝐹𝑓𝑓𝑓𝑓 𝐹𝐹𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑓𝑓
𝑝𝑝𝑎𝑎𝑅𝑅2  , 𝐹𝐹𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑓𝑓

𝑝𝑝𝑎𝑎𝑅𝑅2 , Non-dimensional components of the shear force on the rotor  

𝐹𝐹𝑒𝑒𝑒𝑒 , 𝐹𝐹𝑒𝑒𝑒𝑒 𝐹𝐹𝑒𝑒𝑒𝑒 = 𝑓𝑓𝑒𝑒𝑒𝑒
𝑝𝑝𝑎𝑎𝑅𝑅2  , 𝐹𝐹𝑒𝑒𝑒𝑒 = 𝑓𝑓𝑒𝑒𝑒𝑒

𝑝𝑝𝑎𝑎𝑅𝑅2 , Non-dimensional components of the external force on the rotor  

𝐹̅𝐹𝐿𝐿 𝐹𝐹𝐿𝐿𝜇𝜇𝑅𝑅3𝜔𝜔
𝐶𝐶𝑚𝑚

, Friction force, N 

𝑃̅𝑃𝐿𝐿 𝑃𝑃𝐿𝐿𝜇𝜇𝑅𝑅4𝜔𝜔2

𝐶𝐶𝑚𝑚
 , Frictional power loss, watt 

h ℎ = 𝐻𝐻𝐶𝐶𝑚𝑚,  Film thickness, m 

Kn Knudsen number 

L Bearing length, m 

𝑁𝑁𝑖𝑖 Shape function 

𝑛𝑛𝑒𝑒 Number of nodes in an element 

𝑛𝑛𝑘𝑘 Number of nodes in fluid domain 

p 𝑝𝑝 = 𝑃𝑃𝑝𝑝𝑎𝑎, Absolute gas pressure, N m2⁄  

𝑝𝑝𝑎𝑎 Ambient pressure, N m2⁄   

𝑄𝑄 Non-dimensional flow rate coefficient 

𝑄𝑄𝑐𝑐 Flow rate coefficient of continuum flow 

𝑄𝑄𝑝𝑝 Flow rate coefficient of Poiseuille flow 

R Rotor radius, m 

𝑅𝑅𝑔𝑔 Gas constant 

S 1-D domain of integration 

T Temperature, K 

U Peripheral speed of the rotor, m s⁄  

𝑊𝑊0 Dimensionless load carrying capacity 

x, y, z Cartesian axes with the origin at the bearing geometric center, m 

𝑋𝑋𝑗𝑗0. 𝑌𝑌𝑗𝑗0  𝑋𝑋𝑗𝑗0 = 𝑋̅𝑋𝑗𝑗0 𝐶𝐶𝑚𝑚⁄ . 𝑌𝑌𝑗𝑗 = 𝑌̅𝑌𝑗𝑗0 𝐶𝐶𝑚𝑚⁄ , Coordinates of the rotor center in steady state 

 



A. Gharanjik and A. Karami mohammadi, AUT J. Mech. Eng., 5(3) (2021) 343-360, DOI: 10.22060/ajme.2021.18654.5910

358

Greek symbols 
𝛿𝛿 Preload in the bearing, (𝐶𝐶𝑚𝑚 𝐶𝐶⁄ ) 

∅ Attitude angle 

𝛬𝛬 Bearing number 

𝜇𝜇 Ambient dynamic viscosity of the lubricant, pa ∙ s 
𝜃𝜃 Angular coordinate measured from X-axis 

𝜃𝜃0𝑘𝑘 Angle of lobe line of centers for kth Lobe 

𝜃𝜃1𝑘𝑘, 𝜃𝜃2𝑘𝑘 Angles at the leading and trailing edge of the lobe 

𝜀𝜀 𝜌𝜌 𝐶𝐶𝑚𝑚⁄  , Eccentricity ratio 

𝜔𝜔 Rotational speed of the rotor, rpm 

𝜁𝜁 𝜁𝜁 = 𝑧𝑧 𝑅𝑅⁄ , Coordinate along bearing axis measured from mid span 

𝜆𝜆 Molecular mean free path, m 

Subscript 
0 Static equilibrium position of the rotor bearing 

Superscript 
e Element numbers 

k Lobe designation 
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