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Vibration analysis of piezoelectric graphene platelets micro-plates
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ABSTRACT: Free and forced vibration analyses of micro-plates reinforced with graphene platelets
integrated with piezoelectric layers are presented. For thermo-electrical vibration examination, a
uniform temperature field and a constant external electric field along the thicknesses of the piezoelectric
layers are considered. On the other hand, a uniform in-plane load is regarded along the micro-plate
edges for a mechanical free vibration analysis. The Halpin—Tsai micromechanical model is used to
estimate the material properties of each layer of the graphene platelets of core layer. A convergence
examination is conducted to reach a functionally graded dispersion of graphene platelets layers despite
the implementation of several individual graphene platelets layers. Four different distribution patterns
of graphene platelets are considered to examine the vibration features for simply-supported boundary
condition employing Navier’s technique. Several numerical studies are accomplished to demonstrate the
effects of the weight fraction, the distribution pattern, the width and the length of the graphene platelets
besides the material length scale parameter, the thickness of the piezoelectric layers, the micro-plate
length to the core layer thickness ratio, the applied voltage, the temperature change and the in-plane
force on the natural frequencies and the time history response. The results demonstrate that in thermal
environment not only reinforcing with graphene platelets does not improve the structural stiffness but
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also deteriorates it.

1- Introduction

Nowadays, micro-plates are a concern of many researchers
in various scientific branches because of their widespread
applications in numerous industrial fields serving as micro-
resonators and micro actuators. On the other hand, the
application of graphene platelets (GPLs) as a reinforcement
material for improving the mechanical properties of other host
structures is developed thanks to their high tensile strength
and Young’s modulus. Hence, investigating the vibration
characteristics of isotropic micro plates as a basic element
reinforced with the GPLs integrated with piezoelectric layers
(piezoelectric GPL micro-plates) seems necessary.

Some available studies in the realm of free vibration of
micro and macro piezoelectric plates and GPL plates are
as follow. To show the novelty of the current research the
presented papers are categorized into three different groups.
First, a background on the researchers which have analyzed
the mechanics of macro-plates with piezo-layers is presented.
Next, the papers on macro-plates reinforced with GPLs are
reviewed. Finally, some more related researches about micro-
plates which in their formulations the size dependency is
incorporated are discussed.

Many researchers have worked on the vibrations of plates
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with attached piezo-layers employing the classical continuum
theories for plates. Askari Farsangi et al. [1] studied the free
vibration of moderately thick multi-layer piezoelectric plates.
The governing equations were established resorting the
Mindlin theory assumptions for the plates. Levy’s technique
was implemented to estimate the natural frequencies. The
piezoelectric layer thicknesses, as well as the plate aspect
ratio influences on the natural frequencies, were examined.
They indicated that the natural frequencies are impressed by
the elastic stiffness elements in the closed circuit condition
while the piezoelectricity exhibits its significance in the open
circuit condition. Free vibration analysis of carbon nanotube
(CNT) reinforced plates integrated with piezoelectric layers
was examined by Kiani [2]. The governing equations were
on the basis of the first order shear deformation theory for the
plates. The Ritz technique was employed to extract the natural
frequencies. The piezoelectric layers thicknesses, the CNT
volume fraction and the CNT dispersion profile influences
on the natural frequencies were studied. The outcomes
demonstrated the stiffening effects of the piezoelectricity
in the open circuit conditions. Bouazza and Zenkour [3]
examined the linear natural frequencies of CNT reinforced
composite plates employing a refined higher order theory.
Recently, the vibration analysis of GPL macro-plates is
also in the spotlight of researchers. Shen et al. [4] examined
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the nonlinear free vibration of functionally graded (FG)
GPL plates formulated on the basis of the higher order shear
deformation plate theory in thermal environment. A two-step
perturbation approach was employed to derive the nonlinear
natural frequencies. The findings revealed a reduction
treatment for the nonlinear natural frequencies owing to
the increment of the temperature as well as the foundation
stiffness decrement. The free and forced vibration analyses
of FG GPL plates formulated based on the first order shear
deformation theory were presented by Song et al. [5]. The
Halpin-Tsai micromechanical model was employed to define
the GPL layer effective Young’s modulus while the rule of
mixtures determined the effective mass density as well as
the Poisson’s ratio of the GPL layer. Resorting the Navier’s
technique the numerical results were achieved. The outcomes
demonstrated that the natural frequencies and the vibration
amplitude are impressed significantly by adding a small
amount of GPL weight fraction. Garcia-Macias et al. [6]
presented the bending and the free vibration analyses of plates
reinforced with CNTs versus the GPLs. By the implementation
of the Mori-Tanaka micromechanical model the mechanical
properties of the structure were obtained. Making use of
the finite element (FE) approach the numerical results were
extracted. The outcomes demonstrated that the GPL plates
are stiffer than the CNT plates when the same amount of
reinforcement weight fractions is implemented. Gholami
and Ansari [7] examined the nonlinear forced vibration of
GPL rectangular plates subjected to harmonic excitation.
The governing equations were developed employing the
third order shear deformation plate theory. The time periodic
discretization was applied to the discretized equations of
motion achieved by the Galerkin approach to obtain a set of
nonlinear algebraic equations. This set of nonlinear algebraic
equations was treated by the pseudo arc-length continuation
technique beside the modified Newton-Raphson method. The
results revealed that the GPL reduces the vibration amplitude
and increases the natural frequencies especially in adding
low-order amount of the GPL weight fraction. Qaderi et al.
[8] investigated the free vibration of GPL plates in thermal
environment. The equations of motion were on the basis of
the higher order shear deformation theory. The Halpin-Tsai
micromechanical model was employed to determine the
mechanical properties of the GPL layers. The results indicated
that the natural frequencies enlarge by reinforcing the matrix
regardless of the GPL distribution pattern. The free vibration
analysis of GPL plates was examined by Pashmforoush [9] on
the basis of the Reddy third order shear deformation theory.
The Halpin-Tsai micromechanical model was implemented
to estimate the GPL layers mechanical properties. The FE
approach was applied the governing equations to obtain
the natural frequencies. He declared that the GPL weight
factions, as well as the plate boundary conditions, are the
two significant parameters in the determination of the GPL
plate natural frequencies. Stability and the vibration of porous
GPL plates with piezoelectric layers undergo supersonic
flow were considered by Saidi et al. [10]. The first order
shear deformation plate theory defined the displacement
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field relations. The Galerkin approach was applied on the
governing equations to extract the numerical outcomes. The
findings illustrated that the open loop natural frequencies are
greater than the closed loop ones. Moreover, the stability of
the GPL plate developed significantly in consequence of the
increment of the GPL weight fraction.

The versatility of MEMS such as micro resonators has
pushed the topics of researches to analyze the mechanics
of microplates. On the other hand, sub-size plates behave
differently in some aspects with respect to the macro-
plates. In this respect, non-classical continuum theories
have been established based on experimental and computer
simulations or even continuum mechanics science to have
more precise models confirming the real treatment of micro
plates. Chen and Li [11] developed a new modified couple
stress theory (MCST) for composite laminated Kirchhoff
plates. The proposed theory considered two more length
scale parameters than the ad-hoc MCST for fiber and matrix.
Nonlinear bending examination of circular microplates
subjected to a transverse uniform load was studied by Wang
et al. [12] on the basis of a size-dependent Kirchhoff plate
theory. Yue et al. [13] proposed a nonclassical Kirchhoff plate
theory including the surface effects in the framework of strain
gradient theory and surface elasticity theory. They inferred
that the surface-induced internal residual stress impact is on
the other side of the influences of the length scale parameter
as well as the surface residual stress. The Kirchhoff plate
theory was implemented by Li and Ma [14] to study the free
vibrations of FG microplates with thermoelastic damping.
They inferred that minimum thermoelastic damping can be
defined by the adjustment of the physical and geometrical
properties of the FG microplate. Abbaspour and Arvin
[15] studied the vibrations and thermal buckling of FG
micro-plates with centrosymmetric piezoelectric facesheets
employing the consistent couple stress theory. They deduced
that the flexoelectricity enhances the structural stiffness and
consequently the natural frequency, as well as the critical
thermal buckling temperature, steps up. They proposed a
closed form relation which defines the natural frequencies.
Arefi et al. [16] investigated the size dependent free vibration
of FG micro plates integrated with piezo-magnetic layers
resting on the Pasternak foundation. The MCST alongside the
first order shear deformation plate theory was implemented
to derive the governing equations. The Navier’s approach
was applied on the equations of motion to achieve the natural
frequencies. The findings revealed an ascending trend for the
natural frequencies by the growth of the core layer thickness
to the piezoelectric layers thickness ratio due to its stiffening
impact on the structural flexural rigidity.

Considering the literature review, we can see that the
mechanics of MEMS reinforced with GPLs have not been
examined yet. On the other hand, these micro-structures are
usually coupled with piezo-layers in order to be capable for
mass sensing purposes and also in various micro-actuators.
Accordingly, a study on the free and forced vibration
attributes of micro plates reinforced with graphene platelets
with piezoelectric layers (piezoelectric GPL micro plates) is
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required to find out the significant impression of the GPLs
reinforcements in thermo-electrical loading conditions of
such structures usually employed in MEMS. Hence, this
paper deals with the mechanical free vibration and the
thermo-electrical free and forced vibration investigations
of piezoelectric GPL micro plates. The Halpin—Tsai
micromechanical model is employed for the determination of
the effective mechanical properties of the GPL layers. The
governing equations are developed based on the Kirchhoff
plate theory assumptions in accompany with the MCST to
enrich the equations of motion with the size effects. The
Navier’s technique is utilized to derive the free and forced
vibration aspects of simply-supported piezoelectric GPL
micro plates. A comparison of the current outcomes with the
available results in the literature reveals the validity of the
current formulation and the findings. A convergence study is
accomplished to achieve a continuous variation of the GPL
layers mechanical properties along the micro plate core layer
thickness, i.e. FG distribution of GPLs, even with making use
of few GPL layers. The effects of the temperature difference,
the external voltage, the in-plane load, the GPL distribution
pattern, the GPL weight fraction, the GPL layer length, the
GPL layer width, the piezoelectric layers thicknesses to the
host layer thickness ratio, the micro plate length to the host
layer thickness proportion and the host layer thickness to
the material length scale parameter ratio on the fundamental
natural frequency and the time history response are
investigated.

2- Mathematical Modeling
2- 1- Fundamental relations

In order to enrich the governing equations with the size
effects, the MCST is employed. Accordingly, the strain
energy for a structure occupying volume V, including the
electrical effects, can be expressed by [2, 17]:

U=%IV(0y3v+myZv -D,E, )dv M

where (')ij, Ejs My, Xy D, and E, represent the
stress tensor, the strain tensor, the deviatoric part of the
symmetric couple stress tensor, the symmetric curvature
tensor, the electric displacement vector and the electric field
vector, respectively.

The deviatoric part of the symmetric couple stress tensor
is defined by [17]:

m; =2,u12;(ij ()

in which / and g indicate the length scale parameter and
the shear modulus, respectively. The symmetric curvature
tensor is determined through [17]:

Xij =%(911 +0j,i) (3)

where 6; is the rotation vector described by [17]:

1
‘91' :Eeijkuk,j 4)

in which #, and €k denote the displacement field
vector and the permutation tensor, respectively.

The stress tensor components for the plane stress condition
are determined by [18]:

O-xx Qll Q12 O gxx
O, 1= 0, 0, 0 (T
O-xy O 0 Q66 7xy

[0 0 e, |(E,
0 0 e, NE, r— 5)
0 0 0 ]|E

z

O, 0On 0||qyAT

0, 0O, 0|jo,AT
0 0 0 0

in which e;; and e,, point out the piezoelectric
constants and Q ;j S represent the effective orthotropic
elastic coefficients for the plane stress condition presented
in Eq. (A.5) in Appendix. Moreover, AT is the temperature
change and ¢, and «,, stand for the thermal expansion
coefficients.

The strain tensor is defined through the Green-Lagrange
strain displacement relation [18]:

1
& =E[ui,j tu,, +uk,[uk,j] (6)

Furthermore, the electric displacement vector components
are described by [18]:
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Fig. 1. Geometry of an FG GPL (A-Pattern) micro plate integrated with piezoelectric layers.
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in which p, ’s and k ;s are the pyroelectric coefficients
and the dielectric permittivity constants, respectively.

2- 2- The micro plate geometry

The geometrical view of a three-layered simply-supported
rectangular micro plate undergoes external voltages, V, is
depicted in Fig. 1. a, b and A, are, respectively the length, the
side and the total thickness of the micro plate. The x- and the
y- axes are oriented along the micro plate length and width,
respectively, while the z-axis is directed along the micro plate
thickness. The origin of the (x,y,z) coordinate system, i.e. O,
is located at the left corner of the micro plate mid-plane. The
host layer is made of epoxy reinforced with FG GPLs. The
bottom and the top surfaces of the host layer are integrated
with two piezoelectric layers with thicknesses equal to h1
and h,, respectively.

The electric field vector is determined by [2]:

E, =-@, ®)

in which @ is the electric potential. It is assumed that,
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the bottom and the top piezoelectric layers are subjected to
external voltages, V' . According to [19], the spatial form of
the electric potential division for each piezoelectric layer can
be considered as (Eq. (6a) in [19]):

2 (x,y »Z ) =
4 (2 ) (x o0 )4V (=) ®
2 (x sV ,Z ) =
(10)

& (2 )y (x,0)+Vf5(2)

in which y, (x Y ) and y, (x Y ) are, respectively, the
in-plane dispersion of the bottom and the top piezoelectric
layers electric potentials while ¢ (z) and f, (z) denote,
respectively, the distribution of the electric potential and
the external voltage along with the piezoelectric layer
thicknesses. Consistent with Eq. (6a) in [19] the electric
potential may be considered as a combination of a half-cosine
and a linearly varying term to satisfy Maxwell’s equation. The
half-cosine term must vanish at the bottom and top surfaces
of the piezolayer and becomes minus one at the mid-plane
of the piezolayer. On the other side, the linear term must
vanish at the mid-plane of the piezolayers and becomes one
and minus one, respectively, at the top and bottom surfaces of
the piezolayers. In this respect, the distribution of the electric
potential and the external voltage along the bottom and the
top piezoelectric layers thicknesses can be considered as

¢(z)= —cos(ﬂ(%ﬂn ;

w2
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Fig. 2. FG GPL distribution patterns.
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2- 3- The effective mechanical properties of a GPL layer
Four considered different FG GPL distribution patterns
are depicted in Fig. 2.

Due to manufacturing matters, it is hard to access an
FG GPL distribution pattern. Hence, a number of GPL
layers with different GPL volume fraction are assembled to
reach something like continuous mechanical properties. A
convergence examination which is presented in Sect. 4.2.1
reveals how many layers are required to havs: this continuity.
The kth layer volume fraction, i.e. VGPL, for different
distribution patterns is prescribed by [20, 21] as:

U —Pattem V) =y, (11)
X — Pattern :
k) _op * |2k 1|/ (12)
VGPL_ VGPL| _NL_|NL
O — Pattern :
(k) * (13)
Vsl =2 (1-2k =N, 1|/ N )

A — Pattern :

. (14)
VG(JISL) =Ven (|2k _1| /NL)

where N, 1s the total number of the GPL layers of the
host layer and VGPL is the total GPLs volume fraction in the
host layer assigned by [20]:

* WGPL

VGPL = GPL
(15)
WGPL +(ppmJ(1_WGPL )

in which W, , pGPL and p" stand, respectively, for

the GPL weight fraction and the GPL and the matrix mass
densities.

Employing the rule of mixture, the GPL layers Poisson’s
ratio and the thermal expansion coefficient can be presented,
respectively, by [20]:

* GPL m
v=Vep v’ +V, v (16)

m

GPL
a=V o +V, o (17)

in which v and v" are, respectively, the GPL
and the matrix Poisson’s ratios and %* and " are,
respectively, the GPL and the matrix thermal expansion
coefficients. Furthermore, Vm indicates the matrix volume
fraction which is related to the GPL layer volume fraction, i.e.
V opr » as follows [20]:

Vi +V,, =1 (18)

According to the Halpin-Tsai micromechanical model,
the GPL layer effective Young’s modulus read as [20]:

31+§L77L GIL [ 4
81— Y em

5 1+ &V on E,

8 1- Y em

(19)
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in which £ is the matrix Young’s modulus and the
other parameters are defined by [20]:

E = i & = 2bGPL 20)
GPL LGpr
E., /E, -1
m=—""757 .z
Eop |E, +&, .
- EGPL /Em -1 @b

77T EGPL /Em+§T

where E, is the GPL Young’s modulus and @,
, bgp, and t,, are the GPL length, width and thickness,
respectively.

2- 4- Deriving the governing equations

According to the assumptions of the Kirchhoff plate
theory, the displacement field components can be expressed
by [18]:

ow (x.y)
ox

ow (x,y) (22)
oy

u, :uo(x,y)—z

uy =v,(x,y)-z

Uy =w (x,y)

where u, and v, are, respectively, the in-plane
displacements of the core mid-plane along the x and y axes
while W is the transverse deflection of the core mid-plane.

The substitution of Eq. (22) into Eq. (6) in accompany
with the von-Karman strain-displacement assumptions [18],
delivers the non-zeros strain components:

_ 0 1 _
gxx - I:gxx :|+Z {gxx } =

ou, 1(ow Y w
— 4= | |[*zy-=
ox 2\ ox ox

[ .0 1) _
gyy _I:gyy:|+z {gyy}_

(23)
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0 1 .

where & and & (i,j =xandy ), denote,
respectively, the membrane and the flexural strains.

The substitution of Eq. (22), into Eq. (4) reveals the
rotation vector components:

) _ow ,
o)
ow
o, =-2
g ox (@)

g = L[ P04y
o2l oy

Thereafter, the deviatoric part of the symmetric couple
stress tensor is achieved making use of Egs. (2), (3) and (24).

Accordingly, the consideration of the non-zero strain and
the symmetric curvature tensor components develops the
strain energy, Eq. (1), to:

1
U= 5 .[ v(G’”‘ &, to,¢€,+20 6, +

My Ko T X, +2m y +

2m, y,. +2m_x, )V +
(25)

1

EJV(_Dlelx _DlyEly -
Dlelz _D3xE3x _D3yE3y -
D3zE3z )dv

Eventually, the strain energy for the piezoelectric GPL
micro plate is released by the substitution of Egs. (5), (7),
(23) and the resulting nonzero components of the deviatoric
part of the symmetric couple stress tensor into Eq. (25).

n the other hand, the kinetic energy in keeping with
T =E.|.vp,~u}2d V [22] in which p; is the mass density of the
ith layer, read as:

_1 b pa .2 .2 aw 2
T ‘EUO 1gi +1y 2 +1, (5) + Q6
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. \2 .
M ez =21 [, 2 i, D ey
y " ox oy

where [ j ’s stand for the micro plate inertial coefficients

defined by:

:Izzplz ’dz +J.23pzzjdz +
? Z2 (27)
I 'pyz’dz (j =0,land2)

h

in which z, :—%Z—hl, sy=ta s e ana g T

=—2+h
2

Resorting the Hamilton’s principle [22], i.e.
Ii(ﬁf —6U )dt =0, the nonlinear governing equations of

motion are derived:

M, O°M M

pad Xy
ox’ oy’ Ox Oy
2 2 2
NN, Y oy O
ox Yooy Y Ox Oy
2 2 2
azYxx aYyy _an)/ aYXJ’ —

+ 2 + 2
Ox0y Ox0y Oy ox

2 .. 2 e ..
Iyi 1, [Z—Wﬁg—@jul [88”0 + %V;j
X )y X

(28)

ON. ON, 107,

XX Xy

+
ox o 2 oy’

l 82sz =1y —1, (%j
2 Ox Oy ox

(29)

oN, ON, 107,

pad xy

+ R -
oy ox 20x0y
152Y ow
——— =1y 11(_j
y

(30)

2 Ox?

w

a A2
33 ¢3z (¢32W3 +Vf3

2
J~z4 _¢3 [kll 8 l//3 +k a W3J

G

0’ 0
e

2
kD8 (dv,+Vf)(2))-p4. AT
2 2
1 Eg)(%j ED[V |-
2 ox oy

WP, g0 P,
ox oy

o'w o'w
Hy) Z =5+ HY) —
ox oy

dz

(32)

0

where M, N; and Y, are the moment and the axial
force resultants and the hlgher-order moment resultants
defined, respectively, in Egs. (A.2), (A 1) and (A.7) in
Appendix. In addition, EY) and H /are related the
piezoelectric constants and the dlstrlbutlon of the electric
potential along the piezoelectric layer thicknesses determined
by:

(E3(;?),H§;/)) = Iz4e§{) (l,z )¢j’zdz ,
i=L2and; =13

(33)

For the sake of brevity, the associated boundary conditions
and also the displacement form of the governing partial
differential equations are presented, respectively, in Egs.
(A.15)-(A.34) and (A.10)-(A.14) in Appendix.

3- Solution strategy

To extract the free and forced vibration analysis outcomes
for an immovable simply-supported piezoelectric FG GPL
micro plate, the Navier’s solution is employed. In this respect,
according to the considered type of boundary supports for the
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micro plate, some essential and natural conditions must be
satisfied. The essential conditions for the displacement field
components and the in-plane electric potential may be written
as:

@x =0,au,=w =y, =y, =0
(34)

@y =0,bw,=w =y, =y, =0

while for the sake of brevity the natural boundary
conditions are presented in Eqs. (A.15)-(A.34) in Appendix.
For satisfying the mentioned boundary conditions and the
natural boundary conditions reported in Appendix the
displacement field components and the in-plane electric
potential distributions are regarded, respectively, as:

x,p.t) ZZUW ) (35)

x,y.t) ZZVW ) (36)

xyt

=22V (N, (x.y) (37)
x,y.t) ZZPW x,y) (38)

X,y,t) ZZPW (x,») (39)

where (x,y):sin(m”x jcos(n”y}
a b
mrx \ . (nxy
N (x,y)=cos sin )
)= 2 a5
(mrx\ . (nxy
N , = s
. (x.y) sm( ; )sm( ; j
andNW(x,y):sin(mﬁ

xjsin(n” ] nd U,..V,.
b
P, and P,

N/ S wmn are the time dependent amplitude
of the in-plane and transverse displacements and the time
dependent amplitude of the in-plane electric potential
dispersions, respectively. Moreover, m and n are related to
the natural frequency mode number. It should be pointed out
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that in the case of the immovable boundary conditions the
mechanical in-plane load is considered zero and only the
symmetric GPL distribution patterns are examined.

3- 1- Free vibration analysis

In the case of the thermo-electrical free vibration analysis
a harmonic variation for the displacement and the electrical
amplitudes are considered such as u(z):ﬁsin(a)t)
and y(t)= ¢/7sin(wz) in which w=[0U,,.V,, 7, ]T
s = [ P and @ is the corresponding natural
frequency. C0n51der1ng the aforementioned harmonic
variations for the displacement and the electrical amplitudes,
Egs. (35)-(39) are substituted into the left hand side of the
linearized version of the governing equations, Eqgs. (A.10)-
(A.14). The weighted residual technique [22] is applied
on the ensuing relations. Accordingly, a proper weighting
function is multiplied to each ensuing relation and the
resultant is integrated on the domain of the micro-plate. In this
regard, respectively, N (x , Y ), N, (x Y ), N, (x ,V ),
N, (x , Y ) and N v (x Y ) are the appropriate weighting
functions for these five resulting relations. For example, for
Eq. (A.10) we have:

ensuing relation by the substitution of
dydx =0

INEACED

Eqs.(35) to (39) into the linearized version
of the left hand side of Eq.(A.10)

Consequently, a set of equations which delivers the natural
frequencies is deduced:

kit

- _ |+

0 O|\wy
K, K, |(u 0 (40)
B

in which M is the mass matrix, K
matrix, K,, is the piezoelectric matrix, K
K,, is the permittivity matrix.

In this paper, two different electrical boundary conditions
are examined; the open and the closed circuit electrical
conditions. In the open circuit condition, the electric potential
amplitude vector is obtained from the second row of Eq. (40)

is the elastic
_ T
e = KW and

as y=-K ’1><Kwﬁ. Replacing the resulting electric
potential vector into the first row of Eq. (40) delivers a
standard eigen-value problem which releases the natural
frequencies for the open circuit condition:

=

(K.. —K,, K, 'K, Ji=0’M,, (41)

On the other hand, for the closed circuit condition in
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which the piezoelectric layers surfaces are short-circuited, the
electric potential amplitude vector is i = 0 and subsequently,
from Eq. (40), the eigen-value problem which leads to the
natural frequencies for the closed circuit conditions read as:

K un=0M

uu uu

=1

(42)

For the evaluation of the free vibration features in
terms of the external in-plane load the movable boundary
conditions are adjusted and all four GPL dispersion patterns
are analyzed. Meanwhile, the temperature change and the
external applied voltage are considered zero. In this case, the
in-plane axial displacement read as:

uy (x,y,0)=
mzax \ . (nxy (43)
;;Umn(t)cos( : jsm( é j
vo(x,y,t)z
. (mnrx nmy (44)
;;/mn(t)sm[ » jcos( 5 )

Moreover, the following adjustment for a uniform
compressive in-plane force is required to apply on Eq. (28),
N,=N, =-N, and N _=0.The same route which was
expressed for the thermo-electrical free vibration examination
leads to the closed and the open circuit conditions natural
frequencies.

3- 2- Forced vibration analysis
A distributed external transverse force is considered

as F(x,y,t)=F(t)sin[m‘]sin(:’Z)) to
a
n

forced vibration aspects. this condition, the micro

analyze the
plate is motivated to vibrate in its (m,n)th mode shape

configuration. Subsequently, the implementation of the
Navier’s technique results in:

ki
Pad i1
inwhich F {o 0 j;j’;p(x,y,t)sin[%jsin[%%ydx T

Eq. (45) consists of 5 ordinary differential equations (ODEs)
although a similar procedure as Sect. 3.1. reduces this set of

(45)

ODEs to 3 coupled ODEs for both the closed and the open
circuit conditions. Assuming zero initial conditions, the
forced vibration response can be determined through the
methodology released in Sect. 4.10 of [22].

4- Results and Discussion
4- 1- Verification

In order to validate the free vibration results, a square
simply-supported FG GPL plate with piezoelectric layers
formulated based on the Reddy third order shear deformation
plate theory assumptions is considered [23]. The polygonal
FE formulation method has been implemented in [23] to
extract the natural frequencies. The core layer is made of
Copper as the matrix phase which is reinforced by the GPLs.
The number of the GPL layers is N, =10. Moreover, the
Young’s modulus, the mass density and the Poisson’s ratio
of the Copper are, respectively, 130 (GPa), 8960 (kg/m*)
and 0.34 [23]. Furthermore, the Young’s modulus, the mass
density and the Poisson’s ratio coefficient of the GPL are,
respectively, 1010 (GPa), 1062.5 (kg/m®) and 0.186 [23].
The piezoelectric layers are made of PZT-4 with the following
electro-mechanical properties:

E, = E; =81.3(GPa).v,, =0.33,6, = E1___306(GPa)

2(1+v,)

. p=7600 (kg/m’ ), dy, =dy, =-1.22x10"° (m/Volt),
ky =k, =1475¢,(Fm),  k, =1300&,(Fm)  and
&, =8.85x107" (F/m)[23]. The plate geometrical data are a=b=1
(m), /1, =50 (mm), h, =hy =1 (mm), ay, =2.5 (im), bgp,
=1.5 (i m) and Z;,, =1.5 (nm). The first natural frequency for

the closed circuit condition and for the two cases of the GPL
weight fraction, 0.5 % and 1 % are presented in Table 1. A
difference percent below 1 indicates a good agreement. Hence
the outcomes illustrate the authority of the current results in
GPL reinforcing modeling.

The second validating study is the assessment of the current
formulation in preserving the size dependency. The sample is
a square simply-supported single layer micro plate modeled
based on the Kirchhoff plate theory alongside the MCST [24].
The Levy’s solution has been implemented in [24] to extract the
natural frequencies. The plate is made of Epoxy with Young’s
modulus, the mass density and the Poisson’s ratio, respectively,
equal to 1.44 (GPa), 1220 (kg / m?®) and 0.38. The geometrical
data and the material length scale parameter are, respectively,

a=b=10 (mm) and /=17.6. pum The first natural frequency for
two cases of the micro plate thickness, i.e. 7=/ and #=10/, on
the basis of the classical continuum theory (/=0) and the MCST
assumptions are presented in Table 2. It should be pointed out
that the results from [24] are extracted from Fig. 6 of the above-
mentioned reference. Excellent conformity is achieved.

4- 2- Parametric studies and discussions

After the authentication of the current outcomes, some case
studies for a simply-supported piezoelectric FG GPL micro
plate are carried out in this section. The host layer is made of
several Epoxy layers reinforced with different GPL weight
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Table 1. The current first natural frequency for a square simply-supported piezoelectric FG GPL
plate versus the corresponding value reported in [23] (Hz).

Present results

212.807 235.532

U-Pattern Results of [23]

X-Pattern Results of [23]

211.560 234.182
Difference % 0.59 0.58
Present results  228.148 262.329

226.503 260.176
Difference % 0.73 0.83

Present results

212916 232.258

A-Pattern Results of [23]

211.677 231.014

Difference %

0.58 0.54

Table 2. The present first natural frequency for a square micro plate versus the corresponding value re-
ported in [24] (rad/s).

Classical theory results (/=0)

MCST results

Current [24] Current [24]
1177.9 1176.2 2559.1 2560.4
hi/l=1
Difference % 0.14 0.05
11776.2 11776.2 11993.3 119954
h/l=10
Difference % 0.00 0.02

fractions. Both of the piezoelectric layers on the bottom and
the top of the host layer are made of PZT-5A. The Young’s
modulus, the mass density, the Poisson’s ratio and the thermal
expansion coefficient of the Epoxy are, respectively, 3 (GPa),
1200 (kg /m?*), 0.34 and 60 (x107°/K) [20]. Furthermore, the
Young’s modulus, the mass density, the Poisson’s ratio and the
thermal expansion coefficient of the GPL are, respectively,
1010 (GPa), 1062.5 (kg/m?*), 0.186 and 5x107°/K [20]. In
addition, the GPL geometrical data and weight fraction are,

respectively, %6p =2.5 um , by =1.5 um and ¢, =1.5
(nm) and W o =0.3% [20]. The shear modulus for the host

layer is Q= [20]. Moreover, the Young’s modulus,
14

2(1+
the shear modulus, the mass density, the Poisson’s ratio

and the thermal expansion coefficient for the PZT-5A are,
respectively, 63 (GPa), 24.2 (GPa), 7600 (kg/m?), 0.35, 0.9
(x107°/K) and the piezoelectric coefficients are e, =e,;, =

7209 (C/m?), ey =e;5=12322 (C/m*), k, =k, =

370

1.53x10° (W/m°K), k,,=1.5x10" (W/m°K) [25]. On

the other hand, the geometrical features for the micro plate
h

h . .
are: a/b=1,b/h, =25, hp = Y and p, // =1 in which

[=17.6 pm . Furthermore, the temperature change, AT , is
set to zero. Henceforth, the preceding geometrical attributes,
thermal loading condition and the MCST as a base theory are
assumed for the current extracted outcomes for the FG GPL
micro plate unless new values or theories are prescribed in
specific investigations.

4- 2- 1- Convergence analysis

Atfirst, to have an accurate FG GPL model with continuity
in the mechanical properties as well as the vibration treatment
instead of a multi-layered GPL layers with discontinuity in the
aforementioned features, a convergence analysis is established
here. Hereafter, the presented findings are for the open circuit
condition when V' # 0 and for the closed circuit condition
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Table 3. The first natural frequency (Mrad/s) for a square piezoelectric multi-layered GPL micro plate
on the basis of the MCST for different dispersion patterns and external voltages versus the number of
the GPL layers incorporated in the assemblage of the core layer.

Circuit condition Og{en 5 T Cl(;(sed 5
V' =-=50 Volt 4.043 4.043 4.043
N, =2 V =0 Volt 3.874 3874 3874 3.874 3.874 3.874
V =50 Volt 3.698 3.698 3.698
V =-50 Volt 4.043 4.057 4.029
N, =4 V' =0 Volt 3.874 3.888 3.860 3.874 3.888 3.860
V =50 Volt 3.698 3.712 3.683
V =-50 Volt 4.043 4.059 4.028
N, =6 V =0 Volt 3.874 3.891 3.858 3.874 3.891 3.858
V =50 Volt 3.698 3.715 3.680
V' =-50 Volt 4.043 4.060 4.026
N, =8 V=0 Volt 3.874 3.892 3.856 3.874 3.892 3.856
V =50 Volt 3.698 3.716 3.679
V =-50 Volt 4.043 4.061 4.026
N, =10 V =0 Volt 3.874 3.892 3.856 3.874 3.892 3.856
V =50 Volt 3.698 3.717 3.679

when V' =0. The first natural frequency on the basis of the
MCST for different numbers of GPL layers included in the
core layer is presented in Table 3 and graphically in Fig. 3. It
is found that for N, =10 the convergence is occurred for
both the open and the closed circuit conditions. Consequently,
in the future all the outcomes for the piezoelectric FG GPL
micro plate are calculated and depicted for N, =10.

4- 2- 2- Free vibration analysis

Micro plate geometrical characteristics analysis In this
section, the variation of the fundamental natural frequency
with respect to the micro plate geometrical features is
assessed.

The variation of the first natural frequency on the basis of
the MCST and the classical theory (CT) (I =0) in terms of
the piezoelectric layers thicknesses to the host layer thickness
ratio, i.e. /1 » /h 4 » 1s demonstrated in Fig. 4 for different GPL
distribution patterns when V=50 (Volt). It should be noted
that the host layer thickness has been kept constant and only
the thickness of the piezoelectric layers increases identically.
It is perceived that by the increase of the & » /h , ratio, the
fundamental natural frequency increases. This trend is due
to the stiffening of the structure which is followed by the
enhancement of the piezoelectric layer thicknesses. The other
implication is that always the X-, U-, A- and O-Patterns,

have, respectively, the maximum to the minimum natural
frequency owing to the specific intensity division of various
FG GPLs. Moreover, the FG GPL distribution pattern impact
on the natural frequency is more distinctive for the lower
magnitudes of the A » /h , Tratio especially when there is no
piezoelectric layers attached to the host layer. Although the
distinction between the FG GPL patterns is more apparent
for the CT results, Furthermore, the MCST predicts higher
natural frequency.

The first natural frequency versus the core layer thickness
to the material length scale parameter ratio, i.e. / B /1, is
shown in Fig. 5. It can be seen that by the growth of the
h, /1 ratio, the natural frequency declines as a result of the
stiffening influence of the material length scale parameter
on the structure. Moreover, the first natural frequency is
more impressed by the FG GPL dispersion pattern with the
augmentation of the /1, /[ ratio.

The changeability of the first natural frequency in terms
of the micro plate length to the core layer thickness ratio, i.e.
a/ h, ,is depicted in Fig. 6 based on the CT and the MCST. A
descending trend for the natural frequency is observed since
the increment of the a / h , Tatio, makes the structure thinner
and subsequently reduces the structural stiffness.

GPL attributes analysis After the assessment of the
micro plate geometrical characteristics impacts on the first
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Fig. 3. The first natural frequency (Mrad/s) for a square piezoelectric multi-layered GPL micro plate on the
basis of the MCST for different dispersion patterns versus the number of the GPL layers incorporated in the
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Fig. 4. The first natural frequency (Mrad/s) for a square piezoelectric multi-layered GPL micro plate in terms
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Fig. 6. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate in terms of the

micro plate length to the host layer thickness ratio, a / &, , based on the (a)-CT and the (b)-MCST, (V=50
(Volt)).

natural frequency, the GPL geometrical aspects as well as
the GPL weight fraction effects on the fundamental natural
frequency for three different external voltages, i.e. V=-50, 0
and 50 (Volt), are examined in this section.

The influence of the GPL side, bGPL , on the first natural
frequency is demonstrated in Fig. 7. It can be observed that
the increment of bGPL is accompanied with the ascendant
of the natural frequency. On the other hand, by the growth

of bGPL the FG GPL dispersion pattern impact is boosted.
Moreover, by the enhancement of the external voltage, the
natural frequency reduces thanks to the resulting electric
compressive force which makes the structure weaker. It
is worth to note that, according to Eq. (A.l1) presented
in Appendix, the sign of the resulting electric force is
negative (positive) as a consequence of positive (negative)
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voltages and the sign of e;, and e,, which are negative
here. Subsequently, a positive (negative) voltage generates a
compressive (tensile) axial force.

The variation of the fundamental natural frequency versus
A;p; is shown in Fig. 8. The figure indicates an ascending
trend for the first natural frequency by the augmentation of
Ap; - Moreover, although by the increment of @, the GPL
distribution pattern impact on the natural frequency is more
noticeable however this feature is not comparable with bGPL
variation influence.

The fundamental natural frequency versus the GPL weight

374

based on the MCST (a)- V=-50 (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt).

fraction, W ., , is depicted in Fig. 9. As a result of the GPL
weight fraction augmentation the natural frequency increases.
Furthermore, the significance of the GPL dispersion pattern is
manifested with the growth of the GPL weight fraction.
Thermo-electrical free vibration analysis In this section
the simultaneous interaction of the temperature change and
the external voltage on the fundamental natural frequency is
examined in Fig. 10. The Fig. predicts a descending treatment
for the natural frequency as a result of the temperature
augmentation. Consequently, at a threshold value of the
temperature change depends on the external voltage
magnitude the fundamental natural frequency degenerates.
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This phenomenon is directly associated with the thermo-
electrical buckling of the FG GPL micro plate. Although, the
aforementioned threshold value for the temperature change
can be postponed by a negative external voltage.

For more illustration the voltage influence on the
fundamental natural frequency of an FG-X GPL micro plate
for two different magnitudes of the temperature change
is shown in Fig. 11. The figure indicates that the natural
frequency reduces by the augmentation of the external
voltage due to the similar reason explained in the opening of
Sect. 4.2.2.

Mechanical free vibration analysis The effect of
the nondimensional uniform compressive in-plane load,
N,= N 0“23 , on the fundamental natural frequency is examined
in Fi%?’hﬂz. As afore mentioned in Sect. 3. the present
outcomes are for a movable simply-supported micro plate
and the temperature change and the external voltage are equal
to zero. As expected the natural frequency decreases as a
consequence of stepping up the nondimensional in-plane load
from a tensile in-plane load (at left) to a compressive load
(at right) which consequently yields to the buckling of the
micro plate. The nondimensional critical buckling load, N ,,

for the U-, X-, O- and A-Patterns, respectively, is determined
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Fig. 9. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the GPL

weight fraction, W, ,

equal to 95.748, 96.638, 94.861, 95.665.

4- 2- 3- Thermo-electrical forced vibration analysis
The forced vibration analysis is addressed here.

The external transverse force distribution is assumed as

F(x,y,t)=Fu (t)sinﬂsinﬂ to directly excite the first

mode in which y (¢ is the step function. The nondimensional

amplitude of the external force is taken as £y =5 where
ﬁ _ F0a2

0 3
center "(x',y)=(a/2,b/2) for an immovable piezoelectric

. The time history response of the micro plate

376

based on the MCST (a)- V=-50, (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt).

GPL simply-supported micro plate in terms of the
. . . 1 .
d 1t =—J(E,/p,)t f t-reinfi
no.n imensional time 7=- (E,/p,) ' or a no' reinforced
micro plate, W, =0, and for GPL weight fraction equal to

W ep =0.3% is depicted in Fig. 13. The presented results are
calculated for a U GPL distribution pattern. It can be seen
that when the temperature change is zero and the external
voltage is zero or not the reinforced micro plate is stiffer and
subsequently the micro plate deflection as well as the time
period of the response is slightly smaller or in other words
the fundamental natural frequency is larger in consistent with
Fig. 9. Moreover, a positive external voltage always weakens



F. Abbaspour and H. Arvin, AUT J. Mech. Eng., 5(3) (2021) 361-386, DOI: 10.22060/ajme.2021.18655.5911

—%—U\=50(volt) ——UV=0 —e—UV=50(volt)
4 =X -=X;V=-50(volt) =--=-=-XV=0 -®-XV=50(volt) -
3OV =-50(volt) e 0-V=0 - 0V=50(volt)

0 200 400 600 800 1000
AT(°K)

Fig. 10. The first natural frequency (Mrad/s) for a square piezoelectric FG GPL micro plate versus the tempera-
ture difference, AT , based on the MCST (a)- V=-50 (Volt), (b)- V=0 (Volt) and (c)- V=50 (Volt).
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Fig. 11. The first natural frequency (Mrad/s) for a square piezoelectric FG-X GPL micro plate versus the exter-
nal voltage, V, based on the MCST.
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Fig. 13. The time history response of the micro plate center (x,y )= (a/2,b /2) for a square immovable simply-

supported piezoelectric U-GPL micro plate in terms of the nondimensional time based on the MCST (w_,, =0:

thin lines; p

reinforced or not-reinforced structures approximately in the
same way. On the other hand, when the temperature emerges
the story is different because of its contribution to induce a
compressive axial force which inclines to decline the structural
stiffness in contrast with the GPL weight fraction tendency.
The GPL weight fraction enhancement improves to some
extent the flexural rigidity comparing with the axial rigidity.
Alternatively according to Eq. (A.6) the growth of the latter

378

. =0.3% : thick lines).

mutually boosts up the thermal resultant axial force when the
micro plate is reinforced with the GPLs and consequently,
in the thermal environment the GPL reinforcing decays the
structural stiffness.

The GPL side, bgp, , impact on the time history response
of the micro plate center is examined in Fig. 14. The same
implication as the previous study can be made. Although the
GPL side augmentation stiffens the structure however the
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Fig. 14. The time history response of the micro plate center (x,y )=(a/2,b /2) for a square immovable
simply-supported piezoelectric U-GPL micro plate in terms of the nondimensional time based on the MCST

(bgp, =1.5um : thick lines; b, =3 m : thin lines).

stiffening is smaller than the decline caused by the thermal
resultant axial force which is manifested by the GPL side
enlargement. Subsequently, the micro plate deflection and the
time period of the response are getting greater.

For more illustration, the two preceding time history
response analyses are collected in Fig. 15. In each division
of the figure the same external voltage, as well as the thermal
loading, is considered. The outcomes lead to the same
inference.

5- Conclusions

The mechanical free vibration and the thermo-electrical
free and forced vibrations of simply-supported piezoelectric
functionally graded graphene platelets micro plates were
examined. The modified couple stress theory alongside
the Kirchhoff plate theory assumptions were employed to
derive the governing equations by the implementation of the
Hamilton’s principle. Resorting the Navier’s approach the
free and forced vibration outcomes for the closed and the open
circuit conditions were extracted. The findings demonstrate:

A positive voltage as well as temperature increment
declines the structural stiffness and consequently the
fundamental natural frequency decreases and the deflection

amplitude and the time period of the forced vibration response
increases.

For immovable boundary conditions stepping up the
temperature leads to the degeneration of the fundamental
natural frequency which is directly interrelated with the
destabilization of the micro plate due to the buckling
occurrence. Although the destabilization can be postponed to
higher temperature by a negative voltage.

Enlarging the GPL attributes may not always lead to
boosting up the structural stiffness and it depends also on the
thermal loading condition.

Enlarging the GPL attributes such as the GPL side,
the GPL length and the GPL weight fraction improves the
structural stiffness which subsequently results in a larger
fundamental natural frequency in the absence of thermal
loading.

The increment of the GPL features decays the structural
stiffness when the micro plate is in thermal environment.

The GPL dispersion pattern contribution develops
considerably by the reduction of the piezoelectric thickness
and the material length scale parameter as well as the
augmentation of the GPL weight fraction and the GPL side.
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Fig. 15. The time history response of the micro plate center (x,y )= (a/2,b /2) for a square immovable
simply-supported piezoelectric U-GPL micro plate in terms of the nondimensional time based on the MCST,

based on the MCST (a)-AT =0 and V=0 (Volt), (b)-AT =0 and V=50 (Volt), (¢)- AT =500 K and V=0

(Volt) and (d)- AT =500 K and V=50 (Volt).
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Appendix

The force and the moment resultants:

XX 3 O-)Ei{) All AIZ O 8)(c)x Bll B12 0 gxx
2k k
N, =ZL o tdz =\ 4, 4, 0 |3+ B, B, 0 ]3¢,
k=1 "k
N, o) 0 0 Ag|led] L0 0 Bgllel
EV+EQ|  (ESQwi+EJw,| (NI
1 EY+EQ W +1EQu +EQy, (=N,
0 0 0
M ol B, B, 0]1(e2) [D. D, 07[e
XX 3 XX 11 12 XX 11 12 XX
M, = j o) tzdz =|B,, B, 0 [\&’ (+|D, D, 0 |[{&,
k=1 %
. O—)E;‘ ) 0 0 Bglle, 0 0 Dglla,
HY+HY | |HYw+H Dy, (M7
+ HY +HY W+ HYy, +H Yy, (=M,
0 0 0

where E 3(11) and H 3(11) are defined, in Eq. (33) and E 3(11) and ]‘} 3(11) are determined as

3i

(EA'(j),ﬁg)) =Ijje§{) (l,z )fj' (z )dz

and
3
(Aif B, D, ) - ;j.‘Qﬁ") (I’Z -z Z)dz
in which
00 (z) = ERY(z) O (z) = EZY(z)
=00 (2 )08 () V08 (2 )08 ()
O (2) = v (2)E (=) o ()=—F (z)
12 - 222 66 -
1=V (2 )0 (2) 2(1+v39(2))
EI(IZ)(Z) ,Qz(j)(z)— Ez(i)(z)

Q(Z) z )= - ’
1 ( ) 1—vf§)(z)V§f)(Z) 1—v1(22)(z)vg)(z)
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EI(IZ)(Z)

COT e Y o )

T
N XTX and N ,y are the thermal force resultants read as:

NI =2 (1ev0)olaatdz + [ (1402 ()0l (2 )a® (z ) ATdz

+ (1+v )oiVaVaTd:

(A6)
N =[P (100 )olaaTds + [ (1+v2) (2))0R) (2 )a® (= ) ATz

2

+j (1+v ol e 'atd:

The higher order moment resultants are as follow:

)

(k)
m,,

3 e
o =2 ) m) e (A7)

. m k)

Xz

(k)
yz myz

~ ~ ~ =~ ~

where they are reshuffled to:

2 2 2 (A.8)
C, ov, _6u§ ,sz:lC 8v0 Ouy
oxoy Oy 4 ox>  Oxoy
3
c, =2 M (2)1,7dz (A9)

The final nonlinear governing partial differential equations of the micro plate:
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