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Buckling Analysis of Stiffened Cross-Ply Laminated Conical Shells under Axial
Compression Using Generalized Differential Quadrature Method
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ABSTRACT: This study aims to determine the global buckling load of stiffened composite conical
shells under axial compression. Stringers stiffen the conical shells in longitudinal and rings in
circumferential directions. The boundary conditions are assumed to be simply supported at both ends.
At first, the equilibrium equations are obtained using the first-order shear deformation theory and the
principle of minimum potential energy. Effects of stiffeners (longitudinal and circumferential directions)
are considered using the smearing technique. The resulting equations are solved using the generalized
differential quadrature method to obtain the critical buckling load. The acquired results are compared
with the finite element method results and other researcher’s results available in the literature, and
good agreement is observed. The influence of the number of stiffeners and rings, length, radius, semi-
vertex angle of the cone, and shear deformation on the shell’s buckling behavior is studied. Finally, the
optimum number of stiffeners (longitudinal and circumferential directions) to achieve the maximum
global buckling load in a cross-ply composite conical shell with various stacking sequences for a specific
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weight and overall geometry is investigated.
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1- Introduction

Buckling of cylindrical and conical shell structures is one
of the most complicated phenomena in many engineering
branches, such as mechanical and civil engineering. Because
of their outstanding capability in bearing loads for their
weights, the study on stability and buckling of shells subjected
to compressive forces is of great interest.

Many researchers have studied the buckling of the
isotropic and composite conical shell under various loading
conditions. A simple formula was derived for long isotropic
conical shells under axial compression with simply supported
boundary conditions by Seide [1]. Singer [2] studied the
buckling of unstiffened conical shells under external pressure
based on the stability equations for thin conical shells derived
by Seide. Morgan et al. [3], and Seide and Weingarten [4]
studied the stability of unstiffened conical shell under axial
compression and external pressure. Tani [5] studied the
buckling of unstiffened conical shells in large deformation
under combined thermal loading and uniform pressure using
the finite difference method. Zhou and Liu [6] derived an
analytical formula for buckling of an unstiffened shell under
uniform external pressure. Sofiyev [6] presented an analytic
formula for the buckling of an orthotropic conical shell with
continuously varying thickness. Using Galerkin’s method
Sofiyev and Schnack [7] studied the buckling of cross-ply
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laminated orthotropic truncated circular conical thin shells
subjected touniform external pressure. Baruch etal. [8] studied
buckling loads of axially compressed unstiffened conical
shells with various boundary conditions using the Galerkin
method. Tong and his co-workers [9-11] used numerical
integration technique and multi-segment method to obtain
linear buckling analysis of unstiffened orthotropic and cross-
ply laminated conical shells under uniform pressure and axial
compression with various boundary conditions. Castro et al.
[12] presented semi-analytical models for the linear buckling
analysis of unstiffened laminated composite cylinders and
cones under axial, torsional, and pressure loads (individually
or combined) with flexible boundary conditions. This study
used both of the classical laminated shell theory and the
first-order shear deformation theory to derive the buckling
equations. Based on the first order shear deformation theory,
the analytical solutions of buckling behavior of Functionally
Graded Material (FGM) cylindrical shells under mechanical
loads are studied by Khazaeinejad and Najafzadeh [13]. In
this study, the critical buckling loads’ dependence on the
material properties’ variations is investigated. Buckling of
a truncated conical composite sandwich panel using first
order shear deformation theory is investigated by Fard and
Livani [14]. Boundary conditions of the panel were assumed
to be simply supported or fully clamped and the loading was
considered to be axial compression and external pressure.
The results were compared with Finite Element (FE) results.
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Sofiyev and Kuruoglu [15] by using the Galerkin method, studied
the buckling analysis of non-homogeneous orthotropic truncated
conical shells with simply supported boundary conditions.
The conical shell was subjected to combined loading of axial
compression and external pressure. They investigated the effects
of cone semi-vertex angle and other geometrical parameters on
the critical load. An analytical approach was used for buckling
analysis of generally laminated conical shells with various
types of boundary conditions, subjected to axial pressure by
Sharghi et al [16]. They used classical shell theory along
with trigonometric functions in circumferential and power
series in longitudinal directions. A closed-form solution
for buckling of heterogeneous orthotropic truncated conical
shell under external pressure was obtained by Sofyev [17].
First order shear deformation theory is used in the theoretical
model and partial differential equations were solved by
Galerkin method. Demir et al. [18] studied critical buckling
loads of truncated conical panels made of isotropic, laminated
and FGM materials. This study is based on the Donnell's shell
theory and governing differential equations for buckling of
the panel were solved using the method of Discrete Singular
Convolution (DSC). Talebitooti [19] presented an analytical
method for the buckling analysis of composite sandwich
conical shells with clamped ends under external pressure. By
using the Galerkin method, the equations of buckling load
were achieved, and finally, the results of the analytical method
for the critical pressure were verified in comparison with
the results of the Finite Element Method (FEM). Torsional
buckling of generally laminated conical shell subjected to
uniform torsion with simply supported boundary conditions
was studied by Shakouri et al. [20]. In this study, by using
the Ritz method, governing equations were solved and critical
buckling loads are obtained. Hu and Chen [21] investigated
buckling of laminated truncated conical shells subjected
to external hydrostatic compression using FEM. Kazemi
et al. [22] presented the buckling of truncated laminated
conical shells with linearly variable thickness under axial
compression. By applying power series method, governing
equations were solved and the results has been verified in
comparison with the results of Galerkin method.

Goldfeld [23] studied the elastic buckling of stiffened
conical shells and investigated the stiffeners’ influence on
the buckling load. In this study, a smeared approach is used,
and only global buckling behavior is considered. Spagnoli
and Chryssanthopoulos [24, 25] studied the buckling and
post-buckling of stiffened conical shells. The buckling of the
stiffened conical shells under hydrostatic pressure was studied
by Baruch and singer [26]. Weingarten [27] investigated the
free vibration of a ring-stiffened simply supported conical
shell using the Galerkin method. Ross et al. [28] presented
a numerical (FEM) and an experimental investigation of
vibration of ring-stiffened thin-walled conical shells under
external pressure. Experimental and numerical results are in
agreement. Farkas et al. [29] analyzed the optimum design
of a ring-stiffened conical shell loaded by external pressure.
By using the Galerkin method, Dung et al. [30] studied
buckling of an eccentrically stiffened sandwich truncated
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conical shell with FGM coating and core layer. In this study,
shells were reinforced by stringers and rings subjected to an
axial compressive load and an external uniform pressure.
Buckling of functionally graded truncated conical shell was
investigated by Van Dung and Chan [31]. In this study, the
conical shell was reinforced by orthogonal stringers and rings
and subjected to axial compressive load and external uniform
pressure. The partial differential equations are derived based
on the First-order Shear Deformation Theory (FSDT) using
the smeared stiffener technique and were solved using the
Galerkin method. Chan et al. [32] studied mechanical and
thermal buckling of functionally graded material truncated
conical shells, subjected to thermal load and axial compressive
load with simply supported boundary conditions. The conical
shells in this study are stiffened by stringers and rings. The
equilibrium equations are obtained using the first order shear
deformation theory and the Galerkin method is applied to
obtain the critical buckling load.

The Generalized Differential Quadrature (GDQ) method
is a compelling method to solve various equations based
on the Differential Quadrature Method (DQM). Its main
applications in engineering are discussed in detail by Shu
[33]. Wu and Chen [34] used the GDQ method to study the
buckling analysis of a multilayer anisotropic conical shell.
Results are validated using ABAQUS, and the convergence
is very fast. Shakouri and Kouchakzadeh [35] investigated
the effects of semi-vertex angles and meridional lengths
on the buckling load of two joined isotropic conical shells
under axial compression with simply supported boundary
conditions. Abediokhchi et al. [36] studied the buckling
of cross-ply laminated conical shell panels with simply
supported boundary conditions at all edges and subjected to
axial compression using the GDQ method. Ansari and Torabi
[37] investigated the buckling analysis of axially compressed
functionally graded conical panels using DQM within the
FSDT. By employing DQM, the thermal environment’s effect
on the vibration of functionally graded truncated conical shell
panels within the FSDT was examined by Jooybar et al. [38].

There are some studies on the buckling of truncated
conical shells using the classical shell theory or first-
order shear deformation theory. However, most previous
investigations are concerned with unstiffened conical shells,
and the buckling behavior of stiffened laminated conical shell
needs to be further studied.

Using the GDQ method, this paper discusses the buckling
of moderately thick truncated conical shells stiffened by
stringer and ring with simply supported boundary conditions
at both ends and subjected to axial compression. The smeared
stiffeners technique establishes the general form for force and
moment resultants of stiffened truncated conical shells. The
governing equations are obtained using FSDT and the theorem
of minimum potential energy. Using the GDQ method, the
governing partial differential equations are transformed into
a set of linear algebraic governing equations. Imposing the
boundary conditions, the standard eigenvalue equation is
formed, and critical buckling load is calculated. The results
are validated with the available results in the literature,
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Fig. 1. The geometry of a conical shell

and good agreement is observed. The influences of various
parameters such as are clarified in detail.

2- Theoretical Formulation

The geometry of a conical shell is shown in Fig. 1. The
parameters R, and R, are respectively the radii of the cone
at its small and large edges, « is the cone semi-vertex angle,
and L is the length. The orthogonal coordinate system (x , 8,z )
with its origin on the shell’s reference surface is shown in Fig.
1. Displacements with reference to this orthogonal coordinate
system are denoted by u, v, and w in the x, 6, and z directions,
respectively. The radius of the cone at any point along its
length is given by

R(x)=R,+xsinax @)

The equilibrium equations of motion in terms of the force
and moment resultants are obtained using the principle of
minimum potential energy. These equations can be written
as [11]

N (S0D (v _y,)+
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in which N _, is the pre-buckling load defined as

_ —P
Neo = 27R (x )cos(ax) 3)

The parameters N, and M, are the force and moment
resultants defined as

N s @
N, t=2["0o, ¢ d, (4-2)
NxH e O-xH
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M o (k)

* Y Zk+ !
M, =" o, zd, (4-b)

1Y%k
Mx 6 o Gv 0
The transverse shear force resultant is
(k)
N Zk+1 O-xz
{Q"}:KSZI { } dz. (5)

0, k=1"7k (Op,

where N is the total number of layers in the laminate
The stress—strain relations in the global coordinate system
for the kth ply of the laminate are

O, “ _Q_l 1 Q_l 2 Q_l 6 "
Oy = Q_IZ Q_zz Q_ze x
Oyo _Q_16 Oy O

& K,

(6)

&y +z Ky ,
KVQ

& 1A A T% (.0
{O-Hz} _ O Q45i| {7&}
~t T o (-
O-xz _Q45 QSS }/ Xz
where ¢, y, and x are normal strain, shear strain, and
curvature, respectively, while

0,, =0,,cos'p+
2(0,, +20,)sin’*gcos’ ¢ +Q,,sin* @,
0, = (0, +0,, —40,, )sin’gcos’ ¢ +
0,,(sin*¢+cos*g),

Q_zz =Qnsin49+
20, + ZQ(,(,)Sin2¢COSZ¢ +Q220084¢3

Q_IG =0, 01, =204 )Sin¢0053¢+
(©1, =0, +20 )sin’peos g,

(7
Q_ze = @II _le - 2Q66 )Sin3¢cos¢+

(le _sz + 2Q66 )sin¢cos3¢,
Q_66 =0, +0,-20, _2Q66)Sin3¢cos¢+

Qg (sin’ g+ cos’g),
Q_44 = Q44COSZ¢ +Q55sin2¢,

538

Q.5 = (Qss =0, )singcos g,
Q_ss = QSSCOSZ¢ +Q44Sin2¢'

where ¢ is the angular orientation of the fibers. The
material constants Q. are defined as

E E
0, = i, 0, = 2,
1_‘/12‘/21 1_V12V21
E v E v 8
0, s, 0, = S 0, =0, ®
1=v,vy 1-v,vy,
O =Gy, 0,=06,, 055 =G5

in which, £, and E,, are Young’s moduli,G,,, G,, , G,
are the shear moduli, and v,,, v,, are the Poisson’s ratios of
the material.

According to FSDT representation of Donnell type [39]
for conical shells, the mid-surface strains and curvature
changes are expressed as

efza—u,
Ox
T
Ox
0 1 ov .
&y =——(—tu,sm(a)twcos(x)),
= Ry (g FHesin(@ weos(@)
1 oy, .
K,=—— +y sin(a)),
o R(x)(6¢9 y, sin(a))
1 ov ©
Y = ——(—-vsin(a)) +—2,
7»9 R(x)(69 4 ( )) ax
1 al//x . al/ja
—ysin(a)) + —=.
X0 R(x)(60 ,sin(a)) ox
o 1L ow_ v
Y TRy 00 Rx) 7
0o 0w
7/xz ax l//x’
where w_ and y, are the rotations of a transverse

normal about 8 and x axes, respectively. By assumption
of Classical Shell Theory (CST) for thin shells, the rotations
are considered as

(10)
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By substituting Eqs. (6) to (9) into Egs. (4) and (5), the
force, moment, and shear resultants can be obtained as

N, 4, 4, A 5;?
Ny, =14y A4y, Ay 53 +
Ny Ag Ay 66 7/)?0
(11-a)
B, B, B K,
B, By, By |1k, >
By By By ||k
M, B, B,, By | 5)(:
M, t=|B, B, By 52 +
M., Bs, By B 7.35
(11-b)
D, D, D K,
D, D,, Dy |1k ¢>
Dy Dg Dy || Ko
0, _ Ass A, 7)(;
=K, 0 [ (11-c)
O, Ay Ay |7

where 4, , B, and D, are the extensional, coupling, and
bending stiffnesses, respectively, which are defined as

hi2 — L
(Al.j,Bl.j,Dl.j):Lh/le.j.(l,z,zz)dz, ij=126 (12

and A4

o Ays, and 4, are

2= = =
(A44,B45 ,D55) = J:h/z(Q44:Q45:Q55 )dz (13)

The present work can be used for both internally and
externally eccentric stiffeners in a general position. The shell
is assumed to be closely stiffened. Therefore, there is no
probable local buckling between stiffeners, and it is possible
to “smear” the stiffeners [26], so the stress resultants and
moment per unit length are given by

A7 shell Stiff
Nl.j —Nij +Nl.j "

M, =M)"+M;"". (9

where N ;h"” and M ;he” are the stress resultants and
moments per unit length of the shells’ sheet. N ;”'ff and M ;’W
are the stiffeners’ contributions to the load-carrying capacity
of the shell (per unit length). These contributions are based on
the assumptions of Ref. [40]. Based on these assumptions, the
internal forces and moments resultants, due to the stiffeners
only, are created as functions of the strains and the curvatures
of the reference surface in the direction of the stiffeners

[N, T [a, 00 b, 0 07 ¢
N, 000 0 0 0/¢&
N, o000 0 0 0f,e
M, “lby 00 d, 0 0 |
M, 000 0 0 0|,
|(M,+M,)/2) [0 0 0 0 0 dyllg,
where
E A E_Ae
WETg T =TT
d, :%> d :(l)% "
d 4 d

where G is the shear modulus of elasticity of the
stiffener, 4, is the cross-sectional area of the stiffener, e is
the distance of centroid of the stiffener cross-section from the
reference surface, /_, is the moment of inertia of the stiffener
cross-section about the line of reference, and /,, is the torsion
constant of the stiffener cross-section. The parameter d is
the distance between the stiffeners for a generally stiffened
conical shell. It depends on the shell’s coordinates d (x ,8)
[40].

For optimization purposes, the geometrical characteristics
of the cross-section of the stiffeners can be chosen to be a
function of x and 6. Therefore, a,, b, , d”, and d are strong
functions of the shell’s coordinate. Hence, the contribution
of stiffeners to stiffness matrices expressed in the basic
coordinates system of the shell (x,#) is given by [40]

stfft _ stff _
A =ayJ,,  B™ =bJ,

) 17
D" =d, J, +dL,. {17

where
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ct C’s* C’S
J,=|Cc?s* st CS? |, (18)
c’s ¢s® C’s?

4c’s? —~4C’S* -20S(C*-S?)
L =| -4CS> 4c’s? 205(C2-S%) | (19)
_2CS(C?-8%) 20S(C>-S%)  (C?-82)

and C =cos[f(x,0)], S =sin[f(x,Hd)]and [ is the
angle of inclination of the stiffeners and is a function of x and
6, which depends on the chosen position of the stiffeners [40].

In this work, the inclination angle is considered to be
L=0 and B=r/2 for the case of stringers and rings,
respectively.

The distance between the stringers d_, (x) is given by

str

2R (x
d (r)=22RE) (20)
str
and for the rings
L
d =—
. 1)

where n_ ,n. are the number of stringer and ring,

str 2>

respectively.
Substituting Egs. (9) and (11) into Eq. (2) leads to
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Ly L, Ly L, Ljs| u
Ly Ly Ly Ly Ly|v
Ly Ly, Ly Ly Ly||w |=0 (22)
Ly Ly Ly Ly Lis||v.
| Ls Ly, Ly Ly Ly || Wy |

where the linear partial differential operators L are
expressed in “Appendix A.”

The SS3 or S84 simply supported boundary conditions are
considered at each edge of the conical shell as

SS3: v=w=y,=N_=M_ =0,

X xx

SS4: v=w=y,=u=M_ =0.

xx

(23)

The Generalized Differential Quadrature Method
(GDQM) is especially appropriate for considering global
characteristics such as buckling analyses [33, 36]. The
numerical accuracy of the GDQM is outstanding, and its
performance is reliable. The GDQM is developed based on
the assumption that the partial derivation of a function with
respect to a space variable of a given discrete point can be
expressed as a weighted linear sum of the function values
at all discrete points in the domain of that variable. Thus,
applying the GDQ rules on the constitutive equation and
boundary conditions, a set of simultaneous linear equations
are obtained as

et ey i) e
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Table 1. Buckling ratio for anti-symmetric cross-ply laminate with SS4 boundary conditions (R, /t =100).

L/R, 0.2 0.5 1.0

a(’) N Present Tong and Present Tong and Present Tong and
study Wang [11] study Wang [11] study Wang [11]

2 0.16612 0.1665 0.07908 0.07926 0.06975 0.0699

4 0.22127 0.2218 0.10985 0.1101 0.10188 0.1021

10 6 0.22530 0.2258 0.11165 0.1119 0.10678 0.1070

16 0.22647 0.2270 0.11124 0.1115 0.11045 0.1107

0.18230 0.1827 0.08371 0.08389 0.09363 0.0938

30 0.24367 0.2442 0.11037 0.1106 0.12236 0.1226

0.24835 0.2489 0.11258 0.1128 0.12455 0.1248

16 0.24986 0.2504 0.11246 0.1127 0.12445 0.1247

0.21275 0.2131 0.08691 0.08703 0.09369 0.0938

45 0.28533 0.2858 0.11483 0.1150 0.12245 0.1226

0.29071 0.2912 0.11713 0.1173 0.12465 0.1248

16 0.29283 0.2933 0.11645 0.1166 0.12456 0.1247

2 0.28273 0.2831 0.09370 0.0938 0.07028 0.07034

4 0.38156 0.3820 0.12248 0.1226 0.11180 0.1119

o0 6 0.38905 0.3895 0.12467 0.1248 0.11918 0.1193

16 0.39263 0.3931 0.12469 0.1247 0.12448 0.1246

where A is non-dimensional buckling load and A > 2 2
. _2zE\t"cos”(a)
demonstrate the modal vector. The subscripts 5 and d By=—fF/——— (26)
represent the grid points at the boundary and remaining grid V30-v3)
points, respectively. By eliminating A, and then solving

the generalized eigenvalue problem, buckling loads are ) ) o ) )
determined [33]. The coefficients in the constitutive equations for anti-

symmetric cross-ply laminate are

3- Validation
To show the accuracy of the present analysis, two 1

comparisons are made with the available results in the A, =4y = E(Q“ +0 ),
literature and the FEM. The initial comparison is made with A, =0t A, =01
Ref. [11] for an anti-symmetric cross-ply conical shell with 2= 66— =667
S54 boundary condition as shown in Table 1. This structure is
an unstiffened conical shell.

1 2
= — =4 —_
The non-dimensional buckling load ratio p, is defined in By==By=% AN ©1,-0x)0"

i 27
the following form B, =0, B, =0, (27)
P 1 3
_ Tecr D = D = — + t 5
Py = PC, (25) 11 2 24 (Qn sz)
1
D12:EQ12t3: Dy =0.
where P, is the value of critical buckling load for a
conical shell with simply supported boundary condition
suggested by Seide [1] The material of lamina is assumed to be graphite/epoxy
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Table 2. Buckling ratio for various semi-vertex angles
for SS4 boundary conditions (R,/h =20, L/R, = 2)

a(’) GDQ FEM
5 0.1861 0.1889
10 0.1839 0.1871
20 0.1664 0.1691
30 0.1423 0.1453
40 0.1160 0.1186
50 0.0810 0.0833
60 0.0481 0.0497
70 0.0218 0.0225
80 0.0109 0.0113

with the following material properties [11]

E,=E; :E11/407
G, =G13 =0.6E,, (28)
G,, =0.5E,, v,=025

Table 2 presents the comparison of this study’s results
with the FEM for cross-ply laminated conical shells which
R/t =20 and L/R,=2. The FE analysis is performed
using ABAQUS software with S4R shell element with S54
simply-supported boundary conditions at both ends. Axial
compression is applied, the convergence of the results for
different element numbers is checked, and linear buckling
for various semi-vertex angles is investigated. As shown
in Table 2, a very good agreement is observable between
the FEM results and the estimated buckling load, using the
proposed model, which shows that the model is performing
successfully.

For upcoming results, the following non-dimensional
buckling load ratio are considered

Lo

By

<y

P = (29)

where P, is the buckling load obtained, and P, is the
classical value of the buckling load for a long cylindrical
shell with simply supported boundary conditions

27E, t’

p, =Ll
o i) G0
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4- Numerical Results

4- 1- Effect of semi-vertex angle on the critical buckling load
The effects of semi-vertex angle and length to radius

ratio on the buckling load of the conical shell stiffened with

rings and stringers are studied in this section. For cross-

ply laminated conical shells, the following properties are

considered

E,=E;; :E11/40a G, =G,; =0.6E,,

G,,=05E,, v,=025, a1
R, =02m, R/t =20,

h,=h =00lm, b, =b, =0.009m

Fig. 3 shows the buckling load ratio of a simply supported
(8S3), cross-ply laminated conical shell [0/90/0] for
various semi-vertex angles in different lengths to cone radii.
The radius to thickness ratio is fixed at R, /t =20 . It is seen
that the buckling load decreases with increasing the semi-
vertex angle. In addition, the buckling load is reduced in
longer cones.

Fig. 4 shows the buckling load ratio for cross-ply
laminated conical shells with various stacking sequences in
whichR, /t =20, L/R,=0.5. As expected, the buckling
load of conical shells with different stacking sequences
decreases with increasing the semi-vertex angle.

4- 2- Effect of the shear deformation on the critical buckling
loads

In this section, the critical buckling loads with first-
order shear deformation theory and classical shell theory are
studied. Table 3 summarizes the results of critical buckling
load using FSDT and CST theories for the cross-ply laminated
thin truncated conical shell [0/90/0] with simply supported
edges (SS3) for different cone radii to thickness (R, /)
and constant semi-vertex angle (a =30). The mechanical
properties of the material and geometrical parameters of the
stiffeners are as in Eq. (31).

As expected, the critical buckling load ratios based
on FSDT and CST are close in thin shells. The difference
increase with shell thickness. For example, for a thick shell
(i.e. R,/t =5), the CST buckling load ratio is 0.8158, which
is about 4.08% greater than the result of FSDT.

4- 3- Design and optimization of laminated conical shells for
buckling

One of this study’s main objectives was to find the
optimized number of stiffeners to bear maximum axial load
in constant weight and geometric properties. To compare
the results, an unstiffened cross-ply laminated conical shell
is considered with R/t =20, L/R =2, and a =30
. The buckling load of this case is P_***«! Then, various
numbers of stiffeners in both longitudinal and circumferential
directions are considered to find the optimum number
of stiffeners. The weight of the structure is assumed to be
constant and geometrical properties of stiffeners are 4, = h =
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Fig. 3. Variation of buckling load ratio versus semi-vertex angle a, for SS3, cross-ply laminated

conical shell [0/90/0] with R, /t =20
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Fig. 4. Variation of buckling load ratio versus semi-vertex angle , for SS3, cross-ply laminated coni-

cal shells with various stacking sequences with R, /f =20 , L/R, =0.5 .
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Table 3. Comparisons of buckling load ratio p, of cross-ply laminated [0/90/0] conical
shell for SS3 boundary condition with CST and FSDT

Orthogonal (n, =n, =20)

Orthogonal (n, =n, =30)

R/t
CST FSDT CST FSDT
5 0.8158 0.7838 0.9079 0.8659
10 0.3684 0.3615 04118 0.3597
20 0.1439 0.1424 0.1598 0.1563
50 0.0251 0.0250 0.0278 0.0276
100 0.0083 0.0083 0.0091 0.0090
60
50 1.12
1.11
D 40
 —
S 1.10
L
° | 1.09
g 30p
K]
& 1.08
>
=

N
o
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1.07

1.06

1.05
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Number Of Stringer

Fig. 5. Variation of buckling load ratio p; versus the number of stringers, for SS3, cross-ply lami-

nated conical shell [0/90/0] with R, /t =20 ,L/R, =2 and a =30

0.01m, b, =b_=0.009m. According to the Fig. 1, the weight
of the conical shell is obtained as

M =V .p

=[§-7r'L(R12+R1-R2 +R22)cosa}.p 32)

Where V and p are the volume of the truncated cone and
mean density of the cone, respectively. The weight of each
stiffener is [41]

Weight s = hy, by X1 X Pyige (33)
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So that / is the length of the stringer. The weight of the
conical structure must be kept constant in the stiffened
and unstiffened configurations. For this purpose, as the
weight of the stiffeners increases, the thickness of the
conical shell should decrease. Now, as the number (and
weight) of stiffeners increases, the critical load values are
calculated until the shell is not able to tolerate the load.

As already mentioned, in the present work, a smearing
approach is adopted. Therefore, only global buckling
behavior is considered. For a specific weight, Fig. 5
presents the effects of the number of stiffeners on the
buckling ratio p|, = Py7e! [prifeed  for  cross-ply
laminated conical shell [0/90/0]. The buckling load of
the structures increases with the increase in the number
of stiffeners. However, since the structure’s weight is
constant, the main shell’s thickness decreases with an
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Fig. 6. Variation of buckling load ratio p, versus the number of stringers, for SS3, cross-ply lami-
nated conical shell [0/90], with R /t =20 ,L/R, =2 and a =30

increase in stiffeners’ numbers, and an optimum condition
occurs. The results show that the optimum numbers of
stiffeners are n, =33, n, =28. In this case, the structure
can bear the axial loads, which are 12 percent more than
the unstiffened conical shell. In Fig. 6, the effects of
stiffeners’ number on the buckling load ratio for cross-ply
laminated conical shell [0/90] are shown. In this case,
the optimum numbers of stiffeners are n,  =18,n, =14,
and the stiffened structure can tolerate 8§ percent more
axial load under the same conditions than an unstiffened
structure.

5- Conclusion

The buckling of reinforced composite conical shells under
axial compression is investigated by the generalized differential
quadrature method. Shells are reinforced by stringers and
rings, and the boundary conditions are assumed to be simply
supported. The governing equations and boundary conditions
are obtained using FSDT, smeared stiffener technique, and
minimum potential energy principle. The results show that the
buckling load of cross-ply laminated conical shell decreases
with increasing the semi-vertex angles and length. The results
of CST show lower accuracy for thick shells, and there is an
optimum number of stiffeners to achieve the maximum buckling
load in the composite conical shell for a specific weight.
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The quantities 4

str?

A, are the cross-section areas of stiffeners and /

I are the second moments of inertia of the

str?

stiffener cross-sections relative to the shell middle surface are defined

Astr = bxtr h.\‘tr > Ar = brhr >
b, h
_ Tstr' str 2
str T 12 + Asz‘restr >

where n

str?

direction); h, and b, are the thickness and width of the ring ( @ -direction). Also, d

between two stringers and two rings, respectively; and e

str?

3
= b.h, +A,,er2,
12

(A.6)

n, are the number of stringer and ring respectively; A, and b . are the thickness and width of stringer (x-

(x)and d, are the distances

str

e, present the eccentricities of stiffeners with respect to

the middle surface of shell; the torsional rigidity of the stiffener cross-section is neglected (/,, =0).
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