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Computational fluid dynamics modeling and multi-objective optimization of flat tubes 
partially filled with a porous layer using ANFIS, GMDH, and NSGA II approaches 

E. Rezaei*, A. Abbassi

Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

ABSTRACT:  In this work, the fluid flow in flat tubes armed with a porous layer is modeled and multi-
objectively optimized utilizing computational fluid dynamics methods, Adaptive-network-based fuzzy 
inference system, grouped technique of data handling type artificial neural network, and non-dominated 
sorting genetic algorithm II. The variables design includes the tubes’ two geometrical parameters, porous 
layer thickness ratio, tube flattening, porosity, entrance flow rate, and wall heat flux. The purposes 
are to minimize the pressure drop and to maximize the convection heat transfer coefficient. Initially, 
utilizing computational fluid dynamics methods the problem is solved numerically in different flat tubes 
to calculate two objective parameters in tubes. Using numerical results of the preceding step, and are 
modeled through adaptive-network-based fuzzy inference system and grouped technique for handling 
the data. Then, Pareto-based multi-objective optimizing will be performed employing grouped technique 
of data handling model and non-dominated sorting genetic algorithm II. The results revealed that a better 
predicting is obtained by the adaptive-network-based fuzzy inference system model compared to the 
other approaches and the significant design information is included in the attained Pareto solution on 
flow parameters in flat tubes partly with porous insert. Based on the findings, the best configuring for 
the highest heat transfer and the least pressure loss is Hp= 0.75 and H=4mm.
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1- Introduction
Today, with the improvement of industries and utilization 

of equipment with higher efficiency and greater thermal 
energy production, it is necessary that the heat transferability 
of cooling equipment be more efficient. Therefore, traditional 
heat transfer methods will not meet future needs, and the 
necessity of new methods is feeling.

The use of a special type of flat tubes, which has less 
thermal resistance than conventional circular pipes, is a 
way to increment heat transfer in tubes. Another way for 
increasing the heat transfer is adding a porous medium to 
the tubes, which, by reducing the hydrodynamic boundary 
layer, causes the heat transfer increments. Combining the two 
methods of increasing the heat transfer and finding optimal 
flow conditions for making cooperation between pressure 
drop and heat transfer is the main subject of the current study. 
Numerous studies exist in the literature on forced convection 
in a porous tube filled partially and ducts. 

Alazmi and Vafai [1] within a numerical research 
investigated 2 various constant heat flux boundary conditions 
with 7 sub-models. Moreover, the impacts of Darcy number, 
Reynolds number, porosity, inertia parameter, solid-to-
fluid conductivity ratio particle diameter were analyzed. 
In a numerical research, Mohammad [2] studied the flow 

heat transfer improvement in a pipe and channel fully and 
partly occupied with porous medium. The influences of 
porous layer thickness and Darcy number investigated.  Pavel 
and Mohamad [3] presented numerical and experimental 
investigations of the effect of metallic porous inserts in a pipe 
with uniform heat flux and the impacts of porous diameter, 
porosity, thermal conductivity, and Reynolds number on the 
pressure drop and heat transfer rate are assessed. The findings 
indicated that greater heat transfer rates can be obtained 
utilizing porous inserts causing a rational pressure drop. 

Shokouhmand et al. [4, 5] assessed a channel’s thermal 
performance and conducted a comparison with two 
configurations. They found that the porous insert’s location 
significantly affects the channel’s thermal behavior. 

In the Local Thermal Equilibrium (LTE) model, the 
continuity of heat flux and temperature can be used as 
the interface boundary circumstances. Since the different 
temperatures for solid and fluid phases in porous media for 
Local Thermal Non-Equilibrium (LTNE) model, an extra 
thermal boundary condition is required at the interface. 
Three different interface models were presented for the 
first time by Yang and Vafai [6] for the heat flux bifurcation 
within a composite system under LTNE circumstances. They 
considered the restrictions of each model and obtained the 
Nusselt number for the relevant factors. Yang and Vafai in 
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another study [7] investigated an exact solution for 5 basic 
forms of thermal circumstances at the interface between a 
porous medium and a fluid under LTNE condition. Ming 
et al. [8] assessed numerically the laminar fully established 
flow in the tube occupied by porous medium and investigated 
the effect of Reynolds number and porous radius on the 
temperature and velocity profiles, flow resistance coefficient, 
Performance evaluation criteria (PEC) value, and Nusselt 
number. 

Another method for heat transfer increment is to use 
flattened tubes rather than circular tubes. In comparison 
to the circular tubes, the flat tubes include a greater surface 
area to cross-sectional area ratio that is utilized to increment 
the compactness and improve the heat transfer. Vajjha et al. 
[9] numerically assessed nanofluid flow in an automobile 
radiator’s single flat tube. They utilized the convection heat 
transfer coefficient for the wall boundary condition and 
ultimately provided the association for the friction factor 
and local Nusselt number of the automobile flat tube. Razi 
et al. [10] took into account pressure drop and heat transfer 
of CuO–oil nanofluid empirically in different flat tubes and 
lastly provided associations for nanofluid flow’s pressure drop 
and Nusselt number in horizontal flat tubes. A nanofluid flow 
was simulated by Abbassi and Safikhani [11] numerically in 
various flat tubes possessing constant heat flux and assessed 
the impacts of tube flattening on the heat transfer and fluid 
dynamic. Safikhani et al. in another research [12] optimized 
nanofluid flow in flat tubes utilizing Computational fluid 
dynamic (CFD), Genetic algorithm, and Artificial Neural 
Network (ANN). The design variables included internal 
height, flat tube, heat flux, volumetric flow rate, nanoparticles 
volume fraction, and nanoparticles’ diameter and the final 
objective was to increment concurrently the heat transfer 
coefficient and to decrease the pressure drop in flat tubes.

Recently research was also concentrated on practical tube 
applications in terms of developing both soft computing fields 
such as computational intelligence and CFD. The Adaptive-
Network-Based Fuzzy Inference System (ANFIS) [13] is 
one of the leading artificial neural networks for predicting 
outcomes in some engineering problems. For example, the 
ANFIS technique was utilized to predict the energy systems’ 
performance like ground-coupled heat pump systems [14-16], 
solar systems [17] thermal energy storage [18], refrigeration 
systems [19-22], modeling the performance in heat exchangers 
[23-28] Heating, ventilation, and air conditioning (HVAC) 
systems [29]. ANN and ANFIS were used for predicting the 
natural convection in a triangular closed system by Varol et 
al. [24]. It was observed that the ANFIS process yields more 
significant value to the actual one compared to ANN. Rezaei 
et al. [27] utilized ANFIS for predicting the free convection 
in a partitioned cavity containing an adiabatic partition. 
Experimentally, the training data were attained to optimize 
the ANFIS structure and for the best ANFIS structure, 
moreover, the mean relative errors of the test and train data 
were obtained as 1.73% and 0.05%, respectively. In the case of 
heat transfer in tubes, Kumar and Das Swain [30] researched 
the applicability of ANFIS for modeling the flow boiling heat 

transfer over a tube bundle. The mass flux, row height, and 
heat flux are investigated as the input and the heat transfer 
coefficient as output. The model predicted the experimental 
heat transfer coefficient within an error of ±5%. Tahseen et 
al. [28] used the ANFIS to predict the pressure drop and heat 
transfer for in-line flat-tube configuration in a crossflow. The 
mean relative error for pressure drop and average Nusselt 
number were obtained less than 2.97% and 1.9%, respectively. 
Hasiloglu et al. [31] studied is the usefulness of ANFIS to 
predict transient heat transfer of circular duct flow with 
varying inlet temperature. The findings indicate that the 
ANFIS can be utilized to model the transient heat transfer 
within ducts. Mehrabi et al. [32] investigated the ANFIS to 
model the fluid flow and heat transfer features of helicoidally 
double-pipe heat exchangers using some experimental data 
for testing and training the data. The outcomes showed that 
the proposed modeling by ANFIS was effective and reliable.

Normally, incrementing the quantity of heat transfer 
results in an increased pressure drop. Hence, an arbitrary 
configuration with the least pressure loss and highest heat 
transfer was obtained by a multi-objective enhancement. 
A significant share of research has been devoted to heat 
exchangers. The ultimate goal in optimizing each heat 
exchanger is to maximize heat exchange while minimizing the 
pressure drop of fluids. By doing so, the initial and operational 
costs of these exchangers can be reduced and a small size of 
heat exchangers could be used. Wang et al. [33] provided a 
kind of shell-and-tube heat exchangers with fold baffles. 
The second-order polynomial response surface method and 
multi-objective genetic algorithm were adopted. A group of 
Pareto-optimal points was achieved, and a good consistency 
was found by the optimizing results with CFD simulation 
data containing the relative deviation of less than ±3%. The 
experimental associations of the friction coefficient and 
Nusselt number were acquired with the adjusted coefficient 
of 0.999 and 0.943, respectively. Liu et al. [34] developed CFD 
simulation and multi-objective optimizing a plate-fin heat 
exchanger for the hydraulic retarder. The Non-dominated 
Sorting Genetic Algorithm II (NSGA-II) was employed. This 
research was only concentrated on improving the heat transfer 
behavior and the other parameter such as cost, maintenance, 
etc. was not considered. In a numerical simulation, Zheng 
et al. [35] assessed the thermal-hydraulic performance of a 
heat exchanger tube with vortex rod inserts. For achieving 
the best outline of the highest heat transfer improvement 
with the least pressure drop, multi-objective optimization was 
applied and the optimal Pareto front was obtained. Wang et 
al. [36] by combining multi-objective genetic algorithm and 
genetic aggregation response surface investigated the impacts 
of configuration parameters of the heat exchanger between 
the tube and shell. The average heat transfer coefficient of the 
enhanced configuration is improved by 2.93% while reducing 
the average pressure drop by 40.27%. 

In this research, by considering geometrical elements 
like the porous layer thickness ratio, tube flattening, porosity 
of porous layer, wall heat, and entrance flow rate a multi-
objective enhancement was performed for maximization of 
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the heat transfer and minimization of the pressure drop in 
a flat tube. To do this, some flat-tube geometries have been 
numerically solved by the use of the CFD approach. The 
findings were utilized to acquire the polynomials of the Group 
Method of Data Handling (GMDH) type neural network. The 
GMDH neural network as the heuristic self-organization 
technique models complex systems and is mostly used to 
convert discrete data to incessant functions [37]. Using 
the regression method, this technique creates quadratic 
polynomial functions within a feed-forward network. The 
method was used by many researchers [12, 38-41]. This 
neural network’s outputs are applied as inputs for optimizing 
NSGA-II multi-objectively. NSGA II algorithm is one of the 
most comprehensive and the best multi-objective optimizing 
algorithms utilized in this study as well. Deb et al. [42] 
initially introduced this algorithm and recently it is utilized 
in different engineering-related applications [38-39, 43]. A set 
of optimal solutions, called Pareto solutions is obtained using 
multi-objective optimizing. 

In the current study, the simultaneous impacts of a 
porous layer and flattening the tube on pressure drop and 
flow heat transfer are investigated using the CFD technique. 
The tube partly was filled with a porous medium while the 
wall is exposed to the constant wall heat flux. The flow field 
in the different flattened tube with The Darcy–Brinkman–
Forchheimer model is utilized. ANFIS model was employed 
for accurately predicting the pressure drop and heat transfer 
in the tube. For training the ANFIS model, we used CFD 
data from the previous section. ANFIS model developed 
with five input parameters and two outputs for predicting the 
pressure drop and Nusselt number. Then, using genetically 
enhanced GMDH-type neural networks, polynomial models 
are acquired. The attained simple polynomial models are 
then employed in a Pareto-based multi-objective optimizing 
method for finding the best possible combinations of p 
and, namely as the Pareto front. The GMDH findings were 
compared to those of the ANFIS. In the optimizing procedure, 
the minimum friction factor and maximum heat transfer were 
treated as the multi-objective optimizing problem owing to 
the existence of two conflicting objectives. The tube flattening, 
the porous layer thickness ratio, porosity of porous layer, wall 
heat fluxes and entrance flow rate were design parameter 
variables. Some significant design principles are established 
by the equivalent variations of design variables, identified as 
the Pareto set. 

2- Problem Statement
In this study, the thermal flow is taken into account within 

a horizontal flat tube with constant heat flux and partly full by 
a porous medium. The present simulations’ geometry includes 
5 horizontal flat tubes with various flattening and the same 
porous layers and perimeter (Fig. 1). The porous substance is 
put alongside the centerline of the tube. The same perimeter 
is a restriction found by the other researchers studying flat 
tubes [10, 11]. Table 1 compares some imperative geometrical 
parameters of flattened tubes. The fluid flow enters the tube 
with uniform and constant temperature and velocity.

It should be stated that considering the different 
tubes’ hydraulic diameters, hence, the findings should not 
be expressed in the non-dimensional form. Thus, non-
dimensional parameters like Nu, Cf, Re, Hp/Dh, and H/Dh are 
not used rather their dimensional elements like h, Qin, 

''
wq , H 

and Hp are utilized. In this work, to compare the behaviors of 
various flat tubes, the peripherally averaged values of factors 
like wall shear stress and heat transfer coefficient are compared.

2.1. Governing equations and boundary conditions
The thermos-physical features of fluid and solid phases are 

supposed to be constant. Steady, incompressible and laminar 
regime was considered and natural convection, gravitational 
effects and radiative heat transfer are ignored. The Darcy-
Brinkman model is used for modeling the momentum 
equation in porous substance, isotropic and homogeneous 
characteristics are supposed for the porous structure, LTNE 
model, Yang and Vafaei [6] between the fluid and solid phases 
in the porous medium are considered.

Under these conditions the governing equations are 
expressed [44]. These yields, continuity

. 0V∇ =


                                                                                     (1)

momentum in the void region

 

Fig. 1. Schematic of Flat tube with Porous layer 

  
Table 1. Geometrical parameters of flattened tubes and porous layers 

Flat tube 
No. 

 
H (mm) 

 
W (mm) 

 
Dh 

1 10 0 10 
2 8 3.14 9.6 
3 6 6.28 8.4 
4 4 9.42 6.4 
5 2 12.56 3.6 

Porous Layer ratios 
No. 

 
Hp 

  

1 0   
2 0.25H   
3 0.5H   
4 0.75H   
5 H   

 

  

Fig. 1. Schematic of Flat tube with Porous layer

Table 1. Geometrical parameters of flattened tubes and porous 
layers
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2( . )V V P Vρ µ∇ = −∇ + ∇
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momentum in the porous region based on the Brinkman-
Forchheimer-extended Darcy equation

2
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∇ =

−∇ + ∇ − −

 

   

 

(3)

where, F is the inertial coefficient, ε  is the porosity and 
K is the permeability of the porous media. K can be written as 
[45]: 

3 2

2150(1 )
pd

K
ε

ε
=

−  
(4)

where dp is particle diameter. The inertial coefficient is 
expressed as follows:

3/2

1.75
150

F
ε

=
 

(5)

fluid phase of energy equation in the clear region:

2.V T Tα∇ = ∇


 (6)

fluid phase of energy equation in the porous region:

( ) .

.( ) ( )
ff

fe f sf sf s f

c V T

k T h a T T

ρ ∇ =

∇ ∇ + −



 

(7)

solid phase of energy equation in the porous region:

0 .( ) ( )se s sf sf s fk T h a T T= ∇ ∇ − −
 

(8)

The subscripts ‘f’ and ‘s’ denote the fluid and solid 
phases, respectively. T is temperature, V is the fluid velocity 
and P is the pressure. fρ ,  µ and pC  are  respectively 
density, viscosity and specific heat capacity of the fluid. The 
effective conductivities of the porous media and the fluid are 
respectively kse and kfe.  These two geometrical functions of 
the porous media are expressed as follows:

(1 )se sk kε= −

fe fk kε=
 

(9)

The specific surface area in the energy equations declared 
as:

6(1 )
sf

p

a
d
ε−

=
 

(10)

The fluid-to-solid heat transfer coefficient is expressed as:

1/3 0.6[2 1.1Pr Re ] /sf f p ph k d= +
 

(11)

Pr is the Prandtl number and Rep is Reynolds number of 
particle:

Re /p i pV dρ µ=
 

(12)

At the entrance, Z = 0, T = Ti and V = Vi. The gradients of 
V in X and Y direction are zero. In summary, the boundary 
conditions are:

At Z=0:

0
z i

x y

i

V V

V V
T T

=

= =

=

 

 

 

(13)

At wall: 

0

w
w

V
Tq k
n

=

∂′′ = −
∂



 

(14)

At the interface between the fluid and porous media:

,

,

x x y y

x x y y

V V V V

T T T T
− + − +

− + − +

= =

= =

   

 

(15)

The conditions for heat transfer at the boundary between 
the fluid and porous medium expressed as:

int
1
2

fs
se fe erface

TTk k q
n n− −

∂∂
= =

∂ ∂
 

(16)

where qinterface is the heat flux at the interface of solid and 
fluid. The shear stress condition at the interface is:

0f f
eff f

V V
n n

µ µ
− +

∂ ∂
= =

∂ ∂
 

(17)

Based on the hydraulic diameter and the velocity in 
the range of laminar flow regime, exit conditions can be 
considered fully developed:

At Z=L

0yx VV
z z

∂∂
= =

∂ ∂  
(18)

p

T P qcte
z A UCρ

′′∂
=

∂

3- Numerical Simulation
The numerical simulation is carried out utilizing the 



453

E. Rezaei and A. Abbassi, AUT J. Mech Eng., 4(4) (2020) 449-464, DOI: 10.22060/ajme.2020.16836.5836

finite volume technique. The governing equations were 
transformed into algebraic equations through a control-
volume-based method so that these equations can be solved 
numerically. The second-order upwind outline is utilized for 
the space discretizing of the convective terms in energy and 
momentum equations, and to couple the velocity and pressure, 
the Semi-Implicit technique for Pressure Linked Equations 
(SIMPLE) algorithm is utilized. A second-order scheme is 
also used for the space discretizing of pressure. For all solved 
variables’ normalized residuals, the convergence criteria 
are limited to be less than 10-6. The sub-relaxation iteration 
technique is employed for CFD simulations, to guarantee the 
convergence of the simulation. Furthermore, the detailed data 
of simulations are provided in Table 2.

3.1. Grid size selection
For verifying the grid independence and for arriving at 

the least number of factors yielding precise computational 
outcomes, the grid independency test is performed. 
According to Fig. 2, four-line sections were taken into account 
by G1, G2, G3 and G4, respectively indicating the number 
of points alongside the flat part’s width, the flat section’s 
length, the semi circles’ perimeter and alongside the tube’s 
length. Here, 4 different grid systems are examined including 
mesh I: 30×40×350×50, mesh II: 50×60×400×40, mesh III: 
50×60×450×70 and mesh IV: 60×70×500×80. The 4 meshes 
were examined through comparison of the axial velocity, heat 
transfer and temperature coefficient for laminar flow in the flat 
tube with H = 6 mm occupied with porous media with Hp=0.5 
(Fig. 3). The temperature and velocity in x and y directions 
attained from mesh I, do not accommodate to the findings 
from the other 3 kinds of meshes. The highest variation of 
V in Z direction between the Mesh II and other meshes of 
I, III and VI are 0.03%, 0.01% and 0.01% respectively. The 
greatest difference of h between Mesh II and other meshes 
are 15.25%, 3.77% and 3.33% respectively for Mesh I, III and 
VI. Consequently, mesh II is selected and all calculations 
were performed with this grid. The total number of hexagonal 
nodes was 2,621,925. Fig. 4 represents the created mesh for a 
flat tube utilizing the stated grids. Based on this mesh grid, the 

temperature difference between fluid and solid phase at the 
end of the flat tube cross-section and also pressure drop along 
the tube illustrated in the Figs. 5 and 6.

For checking the solution’s validity, without any former 
study regarding flat tubes with a porous layer, two comparisons 
were examined between the findings obtained by the existing 
program and the findings of the other scholars. At first, the 
circular tubes are compared with a porous layer inserted in 
the selected tube’s core. Fig. 7 compared the solution attained 
by the existing and the numerical solution of  Karimi and 
Mahmoudi [45] (for the Nusselt number of laminar flow in 
a tube partly occupied with porous substance). Based on the 
comparison, it is showed that the highest deviation and the 
average deviation found by Karimi and Mahmoudi [45] for 
the average Nusselt number are 3.1% and 2.9 % respectively. 
Within the second comparison, flat tubes in the absence of 
porous layer investigated by Abbassi and Safikhani [11], are 
compared and provided in Fig. 8. Comparing average heat 
transfer coefficient versus flattening indicates that the highest 
deviation and the average deviation from the data of Abbassi 
and Safikhani [11] for local heat transfer coefficient are 2.8% 
and 1.9 % respectively. Hence, it is found that the regarded 
computational model exists for solving the flow and laminar 
heat transfer problem for a flat tube with a porous insert.

4- Modeling of h and dP 
In this section, the discrete points obtained from CFD 

Table 2. Detailed information of simulations 

Solver Pressure Based Fluid  
Velocity formulation Relative Water  

Viscous Laminar/Standard K-ε Density (kg/m3) 998 
Properties Piecewise-Polynomial Heat capacity (J/kg K) 4182 

Porous Zone Non-Equilibrium Thermal conductivity (W/m K) 0.6 
Solution Method  Porous  

Scheme SIMPLE Aluminium  
Spatial Discretization  Density (kg/m3) 2719 

Gradient Least Squares Cell-Based Heat capacity (J/kg K) 871 
Pressure, Momentum, Energy Second-order Upwind Thermal conductivity (W/m K) 202 
Under-Relaxation Factors  Wall heat flux (W/m2) 2000-10000 

Pressure 0.3 Flow rate (m3/hr) 0.0024-0.0218 
Momentum 0.7 Inlet temperature (K) 300 

Density, Body Force, Energy 1   
 

  

Table 2. Detailed information of simulations

 

Fig. 2. Line segments used for Grid size selection 

  

Fig. 2. Line segments used for Grid size selection



E. Rezaei and A. Abbassi, AUT J. Mech Eng., 4(4) (2020) 449-464, DOI: 10.22060/ajme.2020.16836.5836

454

solutions were used in multi-objective optimization by neural 
networks are presented. In other words, the neural network 
will be able to receive design variables as inputs and calculate 
pressure drop and heat transfer coefficient as outputs.

4.1. Adaptive neuro-fuzzy inference system
The artificial neural network is a calculating instrument 

utilized to examine the data and to make a model by these 
data. ANFIS [46, 47] is an adaptive network making it possible 

 

 

Fig. 3. Grid independency test for H = 6 mm, (a) velocity distribution in x direction, (b) velocity 

distribution in y direction, (c) velocity distribution in z direction, (d) temperature distribution in x 

direction, (e) temperature distribution in y direction and (f) local heat transfer coefficient distribution in z 

direction. 

Fig. 3. Grid independency test for H = 6 mm, (a) velocity distribution in x direction, (b) velocity distribution in y direction, (c) velocity 
distribution in z direction, (d) temperature distribution in x direction, (e) temperature distribution in y direction and (f) local heat 

transfer coefficient distribution in z direction.
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to implement the neural network topology, along with fuzzy 
logic [48]. By combining these two systems, a proper result 
may be quantitatively and qualitatively achieved including 

either calculative capabilities or fuzzy intellect of the neural 
network and using the advantages of both methods. The 

 

Fig. 4. Grid layout used in the present numerical computation 

  

 

 

Fig. 5. Fluid and solid temperature profiles at the exit cross-section 

  

 

 

Fig. 6. Pressure drop distribution along the flat tube 

  

Fig. 4. Grid layout used in the present numerical computation

Fig. 5. Fluid and solid temperature profiles at the exit cross-
section

Fig. 6. Pressure drop distribution along the flat tube

 

Fig. 7. Comparison between the present study and Mahmoudi and Karimi [45] 

  

Fig. 7. Comparison between the present study and Mahmoudi 
and Karimi [45]

 

 

 

Fig. 8. Comparison between the present study and Safikhani and Abbassi [11] 

  

Fig. 8. Comparison between the present study and Safikhani and 
Abbassi [11]
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ANFIS’s main target is to discover a model able to model 
inputs with the outputs accurately. We run a Takagi–Sugeno 
fuzzy inference system containing an architecture with five 
layers. Fig. 9 shows the diagram of this architecture and the 
suggested ANFIS model. For making simple, supposing that 
the fuzzy inference system includes two inputs of x and y and 
an output f which related to the following rules:
Rule 1 If (x is A1) and (y is B1) then f1=p1x+q1y+r1
Rule 2 If (x is A2) and (y is B2) then f2=p2x+q2y+r2

in which Ai, Bi and fi are fuzzy sets and output of the system 
respectively. pi, qi and ri are designing factors attained over 
the learning procedure. Each layer’s output in the ANFIS 
network consider as Oij (ith node output in jth layer) so the 
functions of the different layers of this network explain as: 
Layer 1 

In this layer, each node is equivalent to a node’s output and 
fuzzy set in the respective fuzzy set corresponding to the input 
variable membership grade. Each node’s parameters define 
the membership function form in the fuzzy set described by a 
Gaussian function, so we will have: 

2

1( )
1 | |

A
bii

i

x x c
a

µ =
−

+
 

(19)

where ai, bi and ci denote the premise factors.   
Layer 2 

In this layer, multiplying the values of each node’s input 
signals by each other, a rule firing strength (wi) is calculated. 

2, ( ) ( ) 1, 2i i Ai BiO W x y iµ µ= = =
 

(20)

where μAi shows the membership grade of x in Ai fuzzy set 
and μBi represents the membership of y in the fuzzy set of Bi.
Layer 3 

In this layer, each node approximates the ratio (wi) of 
firing strength of the ith rule to the summation of all rules’ 
firing strength. They normalize the firing strength of the 
former layer. Here, each node’s output is: 

3, 1 2/ 1, 2i i iO W W W W i= = + =
 

(21)
This layer’s outputs are known as normalized firing 

strengths.  
Layer 4 

In this layer that name is rule layer, each node’s output is 
the product of the formerly obtained relative firing strength of 
the ith rule by first-order polynomial Sugeno fuzzy rule: 

4, )( 1, 2i i i i i i iO W f W p x q y r i= = + + =
 

(22)

where pi, qi and ri show design elements. This layer’s output 
is the compression of a linear mixture of inputs multiplied by 
the normalized firing strength W.  
Layer 5

Layer 5, this layer is the network’s last layer and includes 
one node and adds up all node’s inputs. It calculates the total 
output as the sum of all incoming signals from layer 4: 
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The ANFIS output is calculated utilizing the resultant 
parameters in the forward pass. For the adaption of premise 
parameters, the output error is used through a standard back-
propagation algorithm. It was confirmed that this hybrid 
algorithm is greatly effective in training the ANFIS. Table 3 
represents the ANFIS’s parameters utilized in this work. More 
details about the ANFIS algorithm can be found in references 
[13, 14]. In general, the networks’ performances are appraised 
utilizing the statistical coefficient of correlation coefficients 

 

Fig. 9. ANFIS architecture based on Takagi–Sugeno. 

  

Fig. 9. ANFIS architecture based on Takagi–Sugeno.  

Table 3. Optimal architecture and specification of the proposed ANFIS model. 

Type Takagi-Sugeno 
Inputs 5 

Outputs 2 (1 at a time) 
Number of input membership function 10 for all inputs 

Number of output membership function 8 
Input membership function Types Gaussian 

Output membership function Types Linear 
Rules Weight 1 

Number of fuzzy rules 14 
Number of epochs 100 

 

  

Table 3. Optimal architecture and specification of the proposed 
ANFIS model.
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(R2), Mean Relative Error (MRE), and Root-Mean-Square 
Error (RMSE) values, which are determined by the following 
expressions: 
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where Qi shows the actual value, Pi represents the ANFIS 
output or foreseen value, n shows the number of output data. 

The input parameters were tube flattening ranging from 
2 to 10 mm, porous layer thickness ratio from 0 to 1, the 

porosity of porous layer ranging from 0.1 to 0.9, wall heat flux 
ranging from 2000 to 10000 (W/m2), and entrance flow rate 
ranging from 0.0024 to 0.0218 (m3/hr) were design parameter. 
The output parameters were convection heat transfer (h) and 
wall shear stress ( wτ ). Due to the various hydraulic diameter 
of flat tubes, in this study, the wall shear stress was utilized 
rather than pressure drop. These two factors are: 

28
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where L represents length and Dh shows the hydraulic 
diameter of tube. Fifty sets of input parameters have been 
chosen by the use of Design of Using (DOE) technique 

 

 

Fig. 10. Comparison of (a) h and (b) w predicted by ANFIS and simulated by CFD 

  

Fig. 10. Comparison of (a) h and (b) wτ predicted by ANFIS and simulated by CFD 

 

Fig. 11. The R2 squared comparison of the numerical and predicted values of average heat transfer 

coefficient using ANFIS models for (a) training data and (b) testing data. 

  

Fig. 11. The R2 squared comparison of the numerical and predicted values of average heat transfer coefficient using ANFIS models for 
(a) training data and (b) testing data.
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to construct the models of ANFIS. In the present paper, 
Response Surface Methodology (RSM) as a sub technique of 
DOE [49], the number of input-output data are designed in 
GMDH modeling. Taking into account 5 design variables and 
2 objective functions, a total number of 50 input-output CFD 
data is obtained. 

To enhance the ANFIS model, around 75% of data 
are utilized to train and 25% to test the behavior. The 
ANFIS models for testing and training data for h and wτ  
are provided in Fig. 10-12. It is obvious that comparing 
among there is a good consistency within the predicted and 
numerical values of heat transfer coefficient and pressure 
drop utilizing ANFIS model with more R-square value of 
higher than 0.999. Furthermore, the appropriate difference in 
error values between the test and train data set confirms the 
model’s reliability. It is also seen that the greater relative error 
of the average Nusselt number was about 2.68% (for training) 
and 2.75% (for testing). Moreover, the mean relative error 
is ranged from 0.1-3%. The greater values of dimensionless 
pressure drop’s relative error were about 3.08% (for testing) 
and 2.92% (for training) and the mean relative error is ranged 
within 2.71-2.57%. 

4.2. GMDH
The group technique of data handling algorithm [37], 

originally introduced by Ivakhnenko is one of the widely 
used and most complete neural networks, also recognized by 
polynomial neural network. The main application of GMDH is 
function approximation, complex systems modeling, pattern 
recognition, and nonlinear regression. Dissimilar to the other 
usual kinds of ANN, the GMDH network is a self-organizer 
indicating no need for specifying the number of layers and 
neurons or the net and transfer functions since these factors 
are automatically determined. Besides, the GMDH model 
prepares a set of mathematical equations rather than ANN 
regular matrix structure, hence, the output is more practical. 

In this technique, the neural network is created by 
connecting various pairs of neurons via a quadratic 
polynomial. The network attained from combined quadratic 
polynomials states the approximating function f̂  and output 
ŷ  for a set of inputs x = (x1, x2, . . ., xn) compared to the real 

output with the minimum error value. Thus, the real results 
for n inputs and one output expressed as:

1 2( , ,..., )i i i iny f x x x=  (27)

Now, the purpose is to find a network able to forecast the 
output y for each value of input x of Eq. (27): 

1 2( , ,..., )i i i iny f x x x=




 (28)

The considered network should be capable of minimizing 
the square of the error between the predicted and real values: 
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The general relation between the input x and output 
ŷ  is stated as Volterra functional series also recognized as 

Kolmogorov-Gabor polynomial: 

 
(30)

In this equation, a is the coefficients or weights that 
will be defined to minimize the mean square error for the 
neuron. More details regarding the GMDH neural network 
exist in [50,  51]. Now, based on the GMDH algorithm, the 
polynomials relating the objective functions h and wτ  to 
input variables in flat tubes equipped with porous layers are 

 

 

Fig. 12. The R2 squared comparison of the numerical and predicted values of average wall shear stress 

using ANFIS models for (a) training data and (b) testing data. 

 

  

Fig. 12. The R2 squared comparison of the numerical and predicted values of average wall shear stress using ANFIS models for (a) 
training data and (b) testing data.
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obtained. The polynomials functions associated with the h are 
obtained based on the GMDH algorithm, as: 

 
1   2245.06  63741.8 Y Qε= − ×

 
2

2  697.288 3931.47  2578.8 p pY H H= + −
 

3  3430.64  266.887Y H= −

4 3769.71  252.854 864.635Y H ε= − −  
 

( )4
5 2 3 65.4845 5.17213 10  Y Y Y−= + × ×

 
( )4 2

6 4 4 529.514  0.732206  1.73014 10  pY H Y Y−= + × + ×
 

( )4
7 2 4 70.767  5.15483 10  Y Y Y−= + × ×

 
 

 

( )5
1 9 936.9157 9.96073 10 1.20781−=− − × × +h    Y Y   Y

Similarly, the GMDH polynomial functions for the wall 

shear stress in flat tubes are in the form of: 
 

'
1   4.803  0.666 Y H ε= − ×

 
' 2

2  1 .139  0.027  219.142 Y H Q= − +
 ' 2

3  1 .670  7.483  9.502 p pY H Hε= − × +
 ' 2

4  4.669  0.479  5.254 11.133 p pY H H H= − − +
 ' '2 '2

5 4 2  0.004  0.135 0.143 Y Y Y= + +
 
 

 

 

' ' '2 '
9 1 1 8  1.089  0.889  0.158 0.989 Y Y Y Y=− + − + 

5 90.050 0.071 1.053= − +' '
Wô      Y   Y
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𝑌𝑌4 = 3769.71 −  252.854𝐻𝐻 − 864.635𝜀𝜀  

𝑌𝑌5 =  65.4845 + (5.17213 × 10−4) 𝑌𝑌2 × 𝑌𝑌3
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2 

𝑌𝑌7 =  70.767 +  (5.15483 × 10−4) 𝑌𝑌2 × 𝑌𝑌4

𝑌𝑌8 =  −219.489 +  1.35178 𝑌𝑌7 +  0.00619119  𝑌𝑌6 × 𝑌𝑌7 −  0.00357408 𝑌𝑌7
2

− 0.00271756𝑌𝑌6
2

𝑌𝑌9  =  −26.2445 −  0.004218755𝑌𝑌5 × 𝑌𝑌8  + 0.00208276 𝑌𝑌5
2 +  1.00254 𝑌𝑌8  

+  0.00212022 𝑌𝑌8
2

𝒉𝒉 =  −𝟑𝟑𝟑𝟑. 𝟗𝟗𝟗𝟗𝟗𝟗𝟗𝟗 − (𝟗𝟗. 𝟗𝟗𝟑𝟑𝟗𝟗𝟗𝟗𝟑𝟑 × 𝟗𝟗𝟗𝟗−𝟗𝟗) 𝒀𝒀𝟗𝟗 × 𝒀𝒀𝟗𝟗 +  𝟗𝟗. 𝟐𝟐𝟗𝟗𝟗𝟗𝟐𝟐𝟗𝟗 𝒀𝒀𝟗𝟗 

Similarly, the GMDH polynomial functions for the wall shear stress in flat tubes are in the 

form of:  

𝑌𝑌1
′  =  4.803 −  0.666 𝐻𝐻 × 𝜀𝜀

𝑌𝑌2
′  =  1.139 −  0.027 𝐻𝐻2 +  219.142 𝑄𝑄

𝑌𝑌3
′  =  1.670 −  7.483 𝐻𝐻𝑝𝑝 × 𝜀𝜀 +  9.502 𝐻𝐻𝑝𝑝

2

𝑌𝑌4
′ =  4.669 −  0.479 𝐻𝐻 −  5.254 𝐻𝐻𝑝𝑝 + 11.133 𝐻𝐻𝑝𝑝

2

𝑌𝑌5
′  =  0.004 +  0.135 𝑌𝑌4

′2 + 0.143 𝑌𝑌2
′2

𝑌𝑌6
′  =  1.673 −  0.792 𝑌𝑌3

′ +  0.337 𝑌𝑌2
′ × 𝑌𝑌3

′  +  0.139 𝑌𝑌3
′2 −  1.049 𝑌𝑌2

′  + 0.234 𝑌𝑌2
′2

𝑌𝑌7
′  =  4.122 −  1.145 𝐻𝐻 +  0.053 𝐻𝐻 × 𝑌𝑌6

′  +  0.079 𝐻𝐻2 +  0.436 𝑌𝑌6
′  + 0.029 𝑌𝑌6

′2

𝑌𝑌8
′  =  −1.094 +  5.935 𝐻𝐻𝑝𝑝 − 5.870𝐻𝐻𝑝𝑝

2 + 0.917 𝑌𝑌7
′ + 0.014 𝑌𝑌7

′2

𝑌𝑌9
′  =  −1.089 +  0.889 𝑌𝑌1

′  − 0.158 𝑌𝑌1
′2 + 0.989 𝑌𝑌8

′

𝝉𝝉𝑾𝑾  =  𝟗𝟗. 𝟗𝟗𝟗𝟗𝟗𝟗 −  𝟗𝟗. 𝟗𝟗𝟗𝟗𝟗𝟗 𝒀𝒀𝟗𝟗
′ +  𝟗𝟗. 𝟗𝟗𝟗𝟗𝟑𝟑 𝒀𝒀𝟗𝟗

′  

Fig. 13 presented the GMDH values for both the testing and training datasets of objective 

functions h and w . All the training and testing data were randomly chosen. Comparing the 

findings attained from examining the neural network shows an acceptable consistency 

between the CFD and GMDH outcomes. The used neural network’s satisfactory performance 
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Fig. 13 presented the GMDH values for both the testing and training datasets of objective 

functions h and w . All the training and testing data were randomly chosen. Comparing the 

findings attained from examining the neural network shows an acceptable consistency 

between the CFD and GMDH outcomes. The used neural network’s satisfactory performance 
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′ +  𝟗𝟗. 𝟗𝟗𝟗𝟗𝟑𝟑 𝒀𝒀𝟗𝟗

′  

Fig. 13 presented the GMDH values for both the testing and training datasets of objective 

functions h and w . All the training and testing data were randomly chosen. Comparing the 

findings attained from examining the neural network shows an acceptable consistency 

between the CFD and GMDH outcomes. The used neural network’s satisfactory performance 
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′ +  𝟗𝟗. 𝟗𝟗𝟗𝟗𝟑𝟑 𝒀𝒀𝟗𝟗

′  

Fig. 13 presented the GMDH values for both the testing and training datasets of objective 

functions h and w . All the training and testing data were randomly chosen. Comparing the 

findings attained from examining the neural network shows an acceptable consistency 

between the CFD and GMDH outcomes. The used neural network’s satisfactory performance 
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Fig. 13 presented the GMDH values for both the testing 
and training datasets of objective functions h and wτ . All the 
training and testing data were randomly chosen. Comparing 
the findings attained from examining the neural network 
shows an acceptable consistency between the CFD and 
GMDH outcomes. The used neural network’s satisfactory 
performance is indicated by this convergence. The attained 
GMDH models is utilized in the NSGA-II multi-objective 
optimizing technique.

For comparing the results predicted from the two 
established models, the quantity of MRE and R2 for h and 

wτ  are given in the Table 4. According to this table, the 
established ANFIS models are more precise and generated 
more reliable estimations than the GMDH algorithm for h 
and wτ  prediction. 

5- Multi-Objective Optimization Using GMDH Models
To survey the optimal behavior of flat tubes equipped with 

porous layer, the GMDH models attained in Section 4 are 
used now in a multi-objective optimizing technique utilizing 
NSGA II algorithms. Deb et al. [42] presented this algorithm 
as an improved NSGA. For maximizing the amount of heat 
transfer, it is vital to select appropriate values for design 
parameters. Nevertheless, the variation of  these parameters 
values for enhancing the heat transfer normally increments 
the fluid pressure drop that is not desired. Hence, a point with 
the highest heat transfer and least pressure drop cannot be 
discovered. These two conflicting objectives h and wτ  need 
to be simultaneously enhanced based on the design variables: 
H, Hp, ε , Q and q′′ .

For solving this problem, rather than discovering one 
special state as the optimal state, a set of optimal states are 
attained. These groups of points named the Pareto optimal 
points or Pareto front are acquired through multi-objective 
enhancement. In multi-objective optimization problems, 
Pareto optimal points are a set of solutions that are better than 

other solutions and non-dominated to each other. Therefore, 
a change in design variables in such a Pareto front could not 
result in improving all objectives simultaneously and this 
change will result in a decrease of at least one objective. In 
all runs population size, mutation probability (Pm) and 
crossover probability (Pc) have been chosen as 60, 0.07, and 
0.7, respectively. 

The two-objective optimizing conducted in this work can 
be briefly explained as: 

1( , , , , )pmaximize h f H H Q qε ′′=          

2 ( , , , , )w pminimize f H H Q qτ ε ′′=

2mm 10mmSubject to H≤ ≤

0 1pH≤ ≤

0.1 0.9ε≤ ≤

0.0024m3/h 0.0218m3/hQ≤ ≤
22000 10000W/mq′′≤ ≤

Fig. 14 reveals the obtained optimal design points as a 
Pareto front of those two objective functions. Four optimal 
design points, designated by A, B, C, D, E, F and G can be seen 
in this Figure, for which the equivalent design variables and 
objective functions were provided in Table 5. It is obvious that 
all the optimal points in Pareto front have no dominancy to 
each other, meaning that no objective function can be better 
without worsening at least another objective function and 
there is not two points, in which an objective function is the 
same and the other one is different. 

Fig. 14 represents the design points A and G exhibiting the 
best pressure drop and the best heat transfer, respectively. In 
point G the heat transfer is maximum, though, it should be 
stated that under these conditions the pressure loss is also the 
highest. On the other hand, in point A both pressure loss and 
heat transfer are minimum. Moreover, the other points, B and 
F from Fig. 14 known as the breakpoints.

The design point, B shows important optimum design 
concepts. This point compared with point A indicates about 51% 
increases in wτ  and h. Similarly, point F compare with point G, 
h increments slightly (almost 24.1%), however, wτ  is enhanced 
by a greater value (almost 102.3%). In general, it is a desire to 
find out optimum design points compromising both objective 
functions. To detect that point, the mapping method was utilized 
[39]. Hence, first, the value of wτ  function is reversed (since the 
least value of this objective is desirable). The reversed wτ  and 
Nu functions of all non-dominated points are then mapped 
into interval 0 and 1, and calculate the norm of these functions. 
Utilizing the summation of mapped values, the trade-off point 
(point F) is the least sum of those values satisfying both objective 
functions of pressure loss and heat transfer. 

For a useful comparing, the optimum data received from 
the Pareto front are compared and Figured accompanied by 
the present numerical data. Fig. 15 indicates the overlap of the 

 

Fig. 14. Pareto optimal points for h and w  for optimal design points. 

  

Fig. 14. Pareto optimal points for h and wτ  for optimal design 
points.
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Pareto front and the related numerical data. The Figure shows 
that the Pareto front has identified the best boundary of the 
CFD data very precisely based on the minimum pressure drop 
and the maximum heat transfer coefficient confirming the 
validity of the multi-objective optimizing method provided 
in the present work. 

6- Conclusions
In this work, modeling and multi-objective optimizing 

the parameters of flow in horizontal flat tubes equipped 
with porous insert were successfully performed through the 
combination of ANFIS, CFD, NSGAII and GMDH algorithm. 
The design variables were H, HP, ε, Q and q’’ and the essential 
target was to enhance concurrently the heat transfer coefficient 
and decrease the pressure drop in flat tubes. Initially, CFD 
methods were utilized for solving the flow in several flat 
tubes. Followed by validation of the findings, the CFD data 
in this phase were utilized to model the objective functions h 
and wτ  by ANFIS and GMDH type ANN. In ANFIS model, 
all the training and testing data have been selected randomly 
and about 75% of data are employed to train and 25% to 
test the performance. By utilization of various statistical 
parameters, the high accurateness of GMDH polynomials 

was represented. Ultimately, these polynomials were utilized 
for the multi-objective optimizing the parameters in flat 
tubes partially with porous media and the derivation of the 
Pareto front by the use of NSGAII algorithm. The Pareto front 
included significant design information concerning the flat 
tubes and porous layer, which could not be attained except 
for the combination of CFD, GMDH, and the multi-objective 
optimizing technique. This study can be concluded as:

1. The excellent adaption between the predicted heat 
transfer coefficient and the numerical results indicates that 
ANFIS is a reliable technique to model and predict the results 
owing to its high correctness. 

2. The GMDH model presents simple mathematical 
equations without requiring a complicated numerical model. 
In other words, this model helped us in converting numerical 
outcomes to algebraic equations precisely.

3. The results indicated that the ANFIS Model is more 
precise than the GMDH Network.  MRE% for training data of 
ANFIS and GMDH models are 2.68 and 3.23 and for testing 
data are 2.75 and 3.68 for heat transfer coefficient and training 
data of ANFIS and GMDH for wall shear stress are 2.92 and 
6.19 and for testing data are 3.08 and 9.60.

4.  In Pareto front, four numbers of distinguished points 
were specified including the point with the highest heat 
transfer and the least pressure loss. The trade-off point 
satisfies both objective functions of pressure loss and heat 
transfer acquired by the mapping technique. 

5. Based on the optimizing results, the best thermal-
hydraulic performance for a flattened tube with porous layers 
is obtained with H=4 mm, Hp=0.75, ε =0.3, Q=0.0073 m3/h 
and q’’ =10000 W/m2.

6. It was indicated that the acquired Pareto front can 
differentiate the best boundary of the experimental data 
regarding the highest quantity of heat transfer coefficient and 
minimum of the pressure drop confirming the validity of the 
multi-objective optimizing method provided in this work. 

NOMENCLATURE
Ai fuzzy sets
ACi actual value
ANFIS Adaptive Nero Fuzzy Inference System
asf Specific fluid-to-solid surface area 
Bi fuzzy sets

Table7. Pareto corresponding design variables and objective functions 

Point H(mm) Hp 𝜀𝜀 Q(m3/h) q(W/m2) h w  
Norm 

Value 

A 6 0 0.5 0.0122 6000 466.63 0.126 1 

B 8 0.25 0.7 0.0073 4000 993.1 0.185 1.187 

C 6 0.5 0.5 0.0025 6000 1748 0.686 1.421 

D 4 0.25 0.3 0.0073 4000 2180 1.135 1.535 

E 4 0.75 0.7 0.0073 4000 2474.1 1.837 1.57 

F 4 0.75 0.3 0.0073 4000 2983.1 3.703 1.573 

G 4 0.75 0.3 0.017 8000 3137.9 9.751 1 

 

Table 5. Pareto corresponding design variables and objective functions

 

Fig. 15. Overlap graph of the obtained optimal Pareto front with the CFD simulation data 

 

Fig. 15. Overlap graph of the obtained optimal Pareto front with 
the CFD simulation data
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Cp specific heat, J/(kg K)
Cf Friction factor 
d particle diameter, m
Dh hydraulic diameter, m
F Inertia parameter
fi ANFIS system’s output
H Tube height
Hp Porous layer thickness
h heat transfer coefficient, W/(m2 K)

hsf fluid-to-solid heat transfer coefficient W/
(m2 K)

k thermal conductivity, W/(m K)

kfe
effective thermal conductivity of the fluid, 
W/m K

kse
effective thermal conductivity of the solid, 
W/m K

K permeability (m2)
L length of flat tube, m
MRE% mean relative error
MSE mean squared error
Nu Nusselt number
Oij ANFIS layers output
P pressure, Pa
PRi ANFIS predicted output
pi linear output
Pr Prandtl number
Q Entrance flow rate
q’’ heat flux, W/m2

qi linear output
Re Reynolds number
RE% relative error
R2 correlation coefficient
ri linear output
T temperature, K
V velocity, m/s
W width of flat tube, mm
Wi ANFIS normalized firing strength 
Z axial distance from inlet, m
Greek symbols

α  thermal diffusivity (=k/ ρ Cp) (m2/s)

 ε porosity

ρ  density, kg/m3

µ  dynamic viscosity (kg/ m.s)

wτ
wall shear stress (Pa)

Subscripts
0 Plain tube
e effective
f fluid
i inlet

interface interface between the porous medium 
and the clear region

p porous
s solid
w wall
x X direction
y Y direction
z Z direction
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