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 Force frequency effect in square quartz crystals
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ABSTRACT: In this investigation, the force-frequency effect in a square AT-Cut quartz resonator is 
studied. Based on the force-frequency effect, by insertion of diametrical forces, the natural frequency of 
thickness shear vibration mode in AT-Cut quartz resonators is changed. This criterion is of importance 
in designing quartz resonators and force sensors. In this paper, the frequency change of a square AT-
Cut quartz crystal subjected to a pair of opposing forces on different points of its edge is studied 
experimentally. Also, the force-frequency effect in the square crystal is modeled by a previously 
developed mathematical-finite element model. The accuracy of the model is verified by the experimental 
results. Then, the model is applied for evaluating the force-frequency effect in the AT-Cut crystal, and 
the frequency shifts in different loading configurations are obtained. The new loading configurations 
are produced by moving the loading points along the edges, and by rotating the edges of the crystal 
around its thickness axis. Also, the distributed loading tests are performed on the crystal. Based on this, 
the loading configurations with maximum and minimum frequency shifts are obtained. Moreover, the 
design of quartz crystal force sensors having high sensitivity and also the crystal oscillator with high-
frequency stability are discussed.
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1- Introduction
Quartz crystal is a piezoelectric material and is widely 

used for the production of crystal resonators, oscillators, and 
sensors [1-3]. Upon the inverse piezoelectric effect, quartz 
crystals vibrate by the application of alternative voltage. The 
mode of vibration depends on the crystal cut angles. For 
example, an X-cut crystal exhibits an extensional vibration 
mode whereas the AT-Cut vibrates in the thickness shear 
mode. If the frequency of alternating voltage equals the 
natural frequency of the quartz crystal, resonance occurs. 
The resonance frequency of the crystal can be detected by 
a network analyzer or a frequency counter. When a quartz 
resonator is subjected to an initial mechanical biasing field, 
its resonance frequency changes. This Frequency Shift (FS) 
is related to the force-frequency effect.

The frequency stability of crystal resonators and 
oscillators and the sensitivity of quartz pressure and load 
sensors directly depend on the force-frequency effect. In 
1965, Ratajski defined the force-frequency coefficient and 
measured the coefficient for circular singly rotated quartz 
crystals [4]. Ballato et al. investigated the force-frequency 
effect for doubly rotated quartz crystals with a circular shape. 
Also, they studied the effect of applied acceleration on the 
frequency of the crystal [5]. Valdois et al. introduced a new 
cut of quartz crystal, named SBCT cut, which its resonance 

frequency was not affected by the applied load and mechanical 
stress [6].

Investigations on force-frequency effect led to the 
introduction of quartz resonator force and pressure sensors 
with high sensitivity and small sizes, and also crystal 
resonators with higher frequency stability. However, the 
quartz crystal in most of these sensors and resonators has a 
circular shape, and the force-frequency coefficient has been 
introduced for circular quartz disc [7-10]. Some researchers 
have used non-circular quartz crystals as the resonating 
element. For example, Murozaki et al. designed a highly 
sensitive, wide-measurement-range compact load sensor 
using micro-fabrication technology. The resonating member 
of the sensor was a square quartz resonator, and distributed 
load has been applied on one of its edges. Also, this research 
team designed a three-layer quartz resonator load sensor for 
detecting bio-signals with a wide measurement range. They 
used a square quartz resonating member in their design [11].  
Murozaki et al. made a wide range load sensor using vacuum-
sealed square quartz crystal resonators for measuring bio-
signals on the bed. Their sensing system could detect the body 
weight, heartbeat, and respiration simultaneously by just 
lying on the bed [12]. Arai et al. developed a wide range load 
sensor using rectangular quartz resonators. The resonating 
quartz plate was sandwiched between a pair of holding layers. 
The holding layers restrained the quartz plate from buckling 
during the load measurements [13].
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A survey of the literature shows that the force-frequency 
effect for the circular resonators has been extensively studied 
[14-16]. However, this effect has not been investigated for 
the square resonators. On the other hand, a growing body of 
literature has focused on the application of square resonators 
in load sensors. Therefore, analyzing the force-frequency 
effect for square resonators is necessary. In this article, we 
evaluate the force-frequency effect for the square resonators. 
For this, some force-frequency experiments are performed 
and a previously developed hybrid analytical-Finite Element 
Method (FEM) model is employed for analyzing the force-
frequency effect in this type of quartz resonator [17, 18]. 
Also, the design of the load sensors with higher sensitivities 
and resonators with higher frequency stabilities are discussed.

In the first part of the paper (sections 2-4), some force-
frequency experiments are performed on a square AT-Cut 
quartz crystal, and the results are used for the validation of 
the numerical-mathematical model. In the second part, the 
hybrid model is applied for a complete analysis of the force-
frequency effect on the aforementioned square quartz crystal.

2- Force-Frequency Experiments on a Square Quartz 
Resonator

As the first step of this investigation, the force-frequency 
experiments have been performed by applying opposing 
forces to the edge of a crystal and parallel with “Z” or X3 
crystallographic axis. For this, an 8 mm length AT-Cut 
quartz square was subjected to a pair of opposing forces on 
its edges. The resonator had a thickness of 0.46 mm with 
the series thickness-shear resonance frequency of 3.578545 
MHz. There are four loading configurations with different 
locations of loading points along the edge of the crystal. Fig. 

1 represents the loading configurations.
A special fixture was constructed for loading the crystals. 

Fig. 2 represents the loading fixture. In this figure, piece (1) 
is the loading weight, pieces (2 and 3) are upper and lower 
anvils, respectively, and piece (4) is the square quartz crystal. 
The square quartz crystal was positioned between the upper 
and lower anvils and the loading was performed by putting 
standard weights on the upper anvil of the fixture.

Our measurement system involves a signal generator with 
a resolution of 0.1 Hz, and an oscilloscope with a resolution of 
1 Hz. The system is represented in Fig. 3. The loading fixture 
was placed in an electric oven. In this article, the results 
of force-frequency experiments which were performed at 
room temperature were reported. A simple circuit, including 
the crystal and connecting wires and a resistor, is used in 
measurements. When the frequency of the output signal of 
the signal generator becomes close to the natural frequency of 
thickness-shear vibration mode of the crystal, the resonance 
occurs. At the resonance state, the crystal resonator serves as 
a pure resistor. Thus, the output signal of the signal generator 
can be seen at an oscilloscope without amplitude and phase 
shift. If the frequency of the signal generator is far from 
the resonance frequency, the amplitude of the output signal 
observed in the oscilloscope will be smaller than the input 
signal [19]. 

The applied loads were 0.9 and 1.8 N, and the experiments 
were performed 5 times for each loading configuration. Table 
1 represents the average experimental FS’s for each loading 
configuration.

As seen in Table 1, the FS’s depend on the position of 
loading points and the amount of applied force. Also, by 
moving the loading point from the center to the corner of the 

 

Fig. 1. Loading configurations of the crystal at force-frequency experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Loading configurations of the crystal at force-
frequency experiment

 

 

Fig. 2. Loading fixture for performing force-frequency experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Loading fixture for performing force-frequency 
experiments
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crystal, the sign of FS has changed.

3-  Hybrid Mathematical-FEM Model of Force-Frequency 
Effect

The hybrid mathematical- FEM model concludes two 
distinct parts: The mathematical part which calculates the 
FS’s and the FEM part which calculates stress components, 
and these components are fed to the mathematical part of the 
model.  

In our previous work [18], we extracted two-dimensional 
equations for high-frequency vibrations of crystal plates 
under initial mechanical stresses and homogeneous thermal 
strains, using Mindlin Procedure [20].  These equations were 
applied for thickness shear vibrations of rotated Y-Cut quartz 
crystals. We derived an analytical equation for calculating the 
change of fundamental thickness-shear frequencies in terms 
of initial thermal and mechanical strains, and second and 
third-order elastic constants, for rotated Y-Cut quartz crystals. 

Then, the equation was validated for AT-Cut quartz crystals. 
The equation is:
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where ( )0 m
f f∆ , (0)( )i mE and ( )0

1,1( )mU  are the frequency 
shift, zero-order mechanical strain, and displacement gradient 
which are induced upon the application of mechanical 
strains. Also, 66C θ  and 66iC θ  are second and third-order 
elastic constants of quartz at temperature θ . Here θ is the 
room temperature and all the material constants are available 
at room temperature [3]. For convenience, the abbreviated 

 

 

Fig.3. Measuring the crystal frequency by a signal generator and an oscilloscope 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Measuring the crystal frequency by a signal generator and an oscilloscope

Table 1. FS of the crystal for different loading configurations (Hz)

 

Table 1. FS of the crystal for different loading configurations (Hz) 

 configuration            
                             force a b c d 

                 0.9 N -15  -12  2  13  

                 1.8 N -25 -20 3 23 

 

 

 

 

   Cpq    
 q=1 q=2 q=3 q=4 q=5 q=6 
p=1 8.674E+10 -8.261E+09 2.715E+10 -3.655E+09 0.000 0.000 
p=2 -8.261E+09 1.298E+11 -7.419E+09 5.700E+09 0.000 0.000 
p=3 2.715E+10 -7.419E+09 1.028E+11 9.921E+09 0.000 0.000 
p=4 -3.655E+09 5.700E+09 9.921E+09 3.861E+10 0.000 0.000 
p=5 0.000 0.000 0.000 0.000 6.881E+10 2.534E+09 
p=6 0.000 0.000 0.000 0.000 2.534E+09 2.901E+10 
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(Voigt) notation has been employed in Eq. (1). It should be 
noted that this mathematical model produces similar results 
to the model proposed by Lee at room temperature [21]. 

Considering the anisotropic properties of quartz is vital 
for accurate modeling of the force-frequency effect. However, 
piezoelectricity can be neglected. Thus, the body was 
considered to be anisotropic and the initial displacements, 
strains, and stresses include the effects of external tractions 
and do not include any piezoelectric effect [17]. 

For calculating the strain components in Eq. (1), we used 
the finite element method. In our model, the standard linear 
Lagrangian formulation from the theory of elasticity is applied 
to solve for the initial stress and strains. These equations are:
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where  ijT   and  ,i jU are the second Piola-Kirchhoff 
stress tensor and the initial displacement gradient, iP  is 
the surface traction in the boundary surfaces  ijklC   are the 
fourth-order stiffness coefficients and jN is a surface normal 
vector. Neglecting higher-order Mindlin strain terms, zero-
order strain in Eq. (1) may be obtained by [18]:
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where ijklS are the compliance coefficients of AT-Cut 
quartz. For AT-Cut crystal, Eq. (3) may be written in the 
following form, using Voigt notation [17, 18]:
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4- Calculation of Initial Stress Components by FEM
Eq. (2) contains the governing equations for finite element 

analysis of initial stresses in square AT-Cut quartz resonator. 
By calculating the stress components 1 3 5,   and T T T  in 
the center of the loaded square quartz resonators via FEM 
and substituting these values into Eq. (4), zero-order strain 
components are obtained. By substituting the zero-order 
strain components into Eq. (1) frequency shift of the crystal 
is determined. The modeling procedure is laid out in Fig. 4.

The stress components were obtained for an 8 mm 
length plano-convex square AT-Cut quartz resonator which 
was subjected to a pair of opposing forces on its edges. 
The material was supposed to be linear elastic and the 

 

Fig.4. The algorithm for hybrid FE-mathematical modeling of force-frequency effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The algorithm for hybrid FE-mathematical modeling of force-frequency effect
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anisotropy of the material was taken into account. Second-
order elastic constants of AT-Cut quartz were introduced to 
the finite element model. These coefficients were reported 
in appendix (A). The simulations were performed using the 
solid mechanics module in COMSOL software. 

By applying a pair of opposing forces with the magnitude 
of 0.9 and 1.8 N, on different points of the upper and lower 
edges of the resonator, the initial stress components are 
obtained in the crystal. For applying the forces in simulations, 
small contact areas were defined on the crystal edge. The 
width of the rectangular contact areas was 0.1 mm and their 
length was equal to the crystal thickness on the loading 
point. Then, a unique pressure was applied to the contact 
area. The magnitude of the applied pressure was adjusted 
based on the opposing forces. Fig. 5 shows the loading of 

the crystal and the boundary conditions in the simulations. 
For defining the boundary conditions, a rotated coordinate 
system ' ' '( , , )x y z  was defined by rotating the x or z axis of 
the crystal by angle φ. The plane 'o o−  has no movement in 

'z  direction. The surface (abcd) in Fig. 5 has no movement 
in 'x  direction, also the line “bd” or the line “ac” has no 
movement in y directions. These boundary conditions were 
selected in accordance with the experiments and led to the 
convergence of finite element results.  

Fig. 6 (a) shows the meshed geometry of the loaded 
resonator at one of the loading configurations. The FE model 
has 17478 tetrahedral elements. The second Piola-Kirchhoff 
stress tensor component T1 was reported at part b of Fig. 6.

For ensuring the accuracy of the FE-model, the mesh 
dependency analysis was performed and the three stress 

 

 

 

Fig. 5. Loading of the crystal and the boundary conditions in FEM in an arbitrary loading configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Loading of the crystal and the boundary conditions in FEM in an arbitrary loading configuration

 

 

 Fig. 6. (a) Meshed geometry of the square resonator, (b) Second Piola-Kirchhoff stress component T1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. (a) Meshed geometry of the square resonator, (b) Second Piola-Kirchhoff stress component T1
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components (T1, T3, T5) in loading configuration (a) were 
calculated. For instance, the variation of stress component T1 
and the calculated frequency shifts for loading configuration 
(a) with the applied load of (0.9 N) were represented in Fig. 
7. As shown in Fig. 7, when the number of elements varies 
between 17478 and 74889 the stress component T1 changes 
from 154303 Pa to 153994 Pa and the error is almost 0.2%.

By using the three stress components (T1, T3, T5) and 
calculating the zero-order strain components using Eq. (4) 
and substituting them into Eq. (1), the frequency shift was 
calculated as a function of the number of elements. Fig. 8 
shows the dependence of frequency shift to the number 
of elements. It is evident that by increasing the number of 
elements from 17478 to 74889 the frequency shift varies 
from -15.46 to -15.43 and the frequency error is 0.03 Hz 
which is acceptable for the model. Thus, our finite element 
simulations were performed with 17478 elements.

By performing the finite element analysis for all the 
loading configurations, the second Piola-Kirchhoff stresses (

1 3 5,   and T T T ) were determined at the center of the resonator 
and substituted at Eq. (4) for calculating the zero-order strain 

components. These strain components were substituted into 
Eq. (1) to calculate for the FS’s. Fig. 9 represents the modeled 
and experimental FS’s for the four loading configurations 
with two different concentrated forces.

As seen in Fig. 9, there is good accordance between 
the model and experimental results. The average frequency 
difference between the model results and the experiments for 
1.8 N and 0.9 N loads are 7.25 Hz and 4 Hz respectively. Also, 
both the model and experiments demonstrate the variation 
of FS and change in the sign of FS, by moving the loading 
point from the center of the rim (loading configuration a) to 
its corner (configuration b). According to the model results, 
the FS becomes zero at a 2.3 mm distance from the center of 
the edge. This distance decreases to almost 1.9 mm for the 
experiments. Upon the mathematical model, the occurrence of 
zero frequency shifts in some loading configurations depends 
on the initial stress components and the corresponding 
zero-order Mindlin strains i.e. (0) (0) (0) (0)

1 2 3 4, ,  and E E E E . 
Variation of the loading states results in the variation of these 
four-strain components. Fig. 10 represents the variation of 
zero-order Mindlin strains along the crystal edge (part a), and 

 

 

Fig. 7. Variation of stress component (T1) with the number of elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Variation of stress component (T1) with the number of elements
 

 

Fig. 8. Dependence of frequency shift to the number of elements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Dependence of frequency shift to the number of elements
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the corresponding frequency shift (part b).  As shown by Fig. 
10, in the zero frequency shift point, the strain components 

(0) (0) (0)
1 2 3, and E E E are effective and the strain component 
(0)
3E  compensates for the effect of the other two strain 

components. For instance, when the applied force is 0.9 N, the 
point at which zero frequency shift occurs, is 2.3 mm distance 
from the center point of the crystal edge. In this point, using 
Eq. (1), and by neglecting the small strain component (0)

4E

and applying  (0) (0)
1 1,1E U=  which is true for initial fields [21] 

, one obtains:
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Fig. 9. The Experimental and modeled FS’s at four loading configurations (a) 0.9 N loading (b) 1.8 N loading 
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Fig.10. strain components vs. frequency shift for the experiments (force=0.9N) 
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Eq. (5) states the relation between zero-order strain 
components on the points with zero frequency shift.

The zero FS point is of importance in designing high-
stability oscillators. When the resonator is used as a resonating 
member of an oscillator circuit, the stability of the resonance 
frequency is of importance. Thus lower frequency shifts make 
the resonator more stable to the environmental effects like 
accelerations and vibrations, which can introduce mechanical 
stresses on the resonator through the support points of the 
crystal. The crystal resonators in these oscillators usually are 
subjected to diametric forces from their supporting points due 
to the applied acceleration and vibration from the environment. 
By selecting the zero FS point as the supporting points of 
the crystal, the frequency instability due to the acceleration 
and vibration effects is reduced and the frequency stability is 
increased [22].

If the resonator is used as the resonating member of 
a load sensor, and the sensor was working based on the 
frequency shifts due to the insertion of the applied force, then 
high-frequency shift in the resonator frequency results in 
enhancement of the sensor sensitivity. Because the sensitivity 
in this application is the magnitude of frequency shifts divided 
by the magnitude of the force. 

5- Modeling the Force-Frequency Effect for Other 
Loading Configurations

In the design of resonator load sensors, to enhance 
sensitivity, we are looking for the loading configurations 
with maximum FS’s. For this, we employed our model for 
analyzing the force-frequency effect at other possible loading 
configurations of the square AT-Cut crystal.

5- 1-   Concentrated loading of the crystal at different edge 
angles

By rotating the square crystal around “y” axis, other 
loading configurations for the crystal may be created. For the 
first attempt, the edge of the crystal was rotated by an angle of 
φ with respect to the axis x3, as shown in Fig. 11. The rotation 
angle, or azimuth angle, changes from 0° to 180° with the 

steps of 10°. 
As our previous test, by changing the loading distance 

“S”, the loading configurations a, b, c, and d are repeated 
for each azimuth angle, and the FS’s for each loading 
configuration are calculated by the proposed model. The 
loading distances from the central point are 0, 1, 2, and 3 
mm for loading configurations a, b, c, and d respectively. 
The FS for each loading configuration was calculated by the 
abovementioned model. The calculations were performed for 
each 10° of azimuth angles and the results were represented 
in Fig. 12.  As seen in Fig. 12, for loading configurations a, b, 
and c, there are two azimuth angles with zero FS. However, 
in loading configuration “d” we have not such angles. Indeed, 
for loading configuration “d” Eq. (5) was not satisfied. The 
other important data contributes to the maximum FS of the 
crystal for each loading configuration. Fig. 12 shows the 
maximum FS’s and related azimuth angles. As may be seen, 
for all loading configurations, the maximum FS occurs at 
azimuth angle 90°, and the maximum FS reduces from 65 Hz 
at loading configuration “a” to 6.4 Hz at loading configuration 
“c”.  All the FS curves are symmetric about azimuth angle 
90°. This is due to the monoclinic symmetry of AT-Cut quartz 
and is in accordance with the results which were reported by 
other researchers for circular AT-Cut resonators [4, 21].

5- 2-  Distributed loading of the crystal at different edge 
angles

Again the crystal is rotated around its “y” axis and a 
uniform 0.25 N/mm distributed load is applied on its 4 mm 
edge. The opposing edge is laid on the lower anvil and has 
no movement along the normal vector of the edge. The initial 
stress components at the center of the crystal were calculated 
and fed to the mathematical model of force-frequency, as 
explained in previous sections. Fig. 13 represents the model 
results for this loading condition. As seen in Fig. 13, the 
maximum FS of 40.78 Hz occurs at φ=90°, and the zero FS’s 
occur at φ=13.7° and φ=167.35°. Also, the FS diagram is 
almost symmetric around φ=90°.

The highest frequency shifts occur at azimuth angle 
90°, for both concentrated and distributed loading. Thus, 
for designing load sensors with the highest sensitivity, the 
azimuth angle can be 90°.

6- Conclusions
In this article, the force-frequency effect in a square AT-

Cut quartz resonator was studied. Based on the results of 
experiments and the hybrid mathematical-FEM model, the 
resonance frequency of the crystal alters with the application 
of concentrated forces on different points of the edge of the 
crystal. The study was performed in three steps.

At the first step, the crystal edges were perpendicular to the 
AT-Cut basic axis. Four loading configurations were defined 
and force-FS’s were obtained by the mathematical-numerical 
model and experiments. Results were in good accordance 
with each other and demonstrated the sign change of the FS 
by moving the loading point along the edge. Accordingly, the 
loading points with zero and maximum FS’s were obtained.

 

 

Fig. 11. Loading of the crystal with varying edge angle φ 
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Fig. 12. The frequency shift of the crystal as a function of force azimuth angle φ at different loading configurations (a to d) 

 

 

 

 

 

 

 

 

Fig. 12. The frequency shift of the crystal as a function of force azimuth angle φ at different loading 
configurations (a to d)
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At the second and third steps, the loading edges of the 
crystal were rotated around the thickness axis, and both 
concentrated and distributed loading tests were performed. 
The FS’s were modeled and plotted as a function of force 
azimuth angle. Accordingly, the points with maximum and 
zero FS’s, which are important in designing high sensitivity 
crystal load cells and ultra-stable crystal oscillators were 
obtained. 

The results show that the most sensitive force sensor 
may be made by concentrated loading of the crystal at the 
central points of its edges with a 90° azimuth angle. Also, in 
almost all loading configurations, there are some points with 
zero frequency shifts, which are suitable for restricting the 
movement of crystal in oscillators and force sensors.

Nomenclature

 

 

Fig. 13. The frequency shift of the crystal as a function of force azimuth angle φ for distributed loading configuration 

 

Fig. 13. The frequency shift of the crystal as a function of force azimuth angle φ for distributed loading 
configuration
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Appendix A:

Second-order elastic constants of AT-Cut quartz in Pa [22[.

 

Table 1. FS of the crystal for different loading configurations (Hz) 

 configuration            
                             force a b c d 

                 0.9 N -15  -12  2  13  

                 1.8 N -25 -20 3 23 

 

 

 

 

   Cpq    
 q=1 q=2 q=3 q=4 q=5 q=6 
p=1 8.674E+10 -8.261E+09 2.715E+10 -3.655E+09 0.000 0.000 
p=2 -8.261E+09 1.298E+11 -7.419E+09 5.700E+09 0.000 0.000 
p=3 2.715E+10 -7.419E+09 1.028E+11 9.921E+09 0.000 0.000 
p=4 -3.655E+09 5.700E+09 9.921E+09 3.861E+10 0.000 0.000 
p=5 0.000 0.000 0.000 0.000 6.881E+10 2.534E+09 
p=6 0.000 0.000 0.000 0.000 2.534E+09 2.901E+10 

 

 

 

C661 C662 C663 C664 

-2.032E+11 2.261E+10 -2.687E+10 8.240E+10 
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Third-order elastic constants which were employed in the mathematical model in Pa [22]:

HOW TO CITE THIS ARTICLE
M. M. Mohammadi, M. Hamedi, Force frequency effect in square quartz crystals. 
AUT J. Mech Eng., 5(2) (2021) 215-226.

DOI: 10.22060/ajme.2020.17774.5872


