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Nonlinear vibration control of smart plates using nonlinear modified positive position 
feedback approach
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ABSTRACT: In this paper, nonlinear vibration control of a plate is investigated using a nonlinear 
modified positive position feedback method that is applied through a piezoelectric layer on the plate. 
Based on the classical theory of displacement and strain relations with von Karman, intended equations 
of motion for the smart plate have been obtained. In this model, transverse vibrations are studied and 
stimulations are performed for the primary resonance. Boundary conditions of the smart plate are simply 
supported. The plate is thickness symmetrical. Using the Galerkin method the temporal nonlinear 
equations governing the system have been found. Then, the free and forced vibrations of the structure 
with the nonlinear modified positive position feedback controller have been solved using the Method of 
Multiple Scales to obtain an analytical solution. Results show that this controller reduces the amplitude 
of the vibration by inducing an increase in the damping coefficient. In addition, this provides a higher 
level of suppression in the overall frequency domain response by increasing the compensator gain. 
Finally, the results of the analytical solution for the closed-loop nonlinear modified positive position 
feedback controller are presented and compared with the result of the conventional positive position 
feedback controller and nonlinear integral resonant controller. The results show that the performance 
of the nonlinear modified positive position feedback controller is better than other controllers and 
significantly reduces the vibration amplitude. 
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1. INTRODUCTION
Controllers are one of the most effective ways to control 

linear and nonlinear vibrations. Hence, different control 
strategies have been presented and utilized [1]. One of the 
methods for nonlinear vibration control is to use active 
control. The advantage of using active control is its real-
time adjustment according to the condition of the system and 
alternations in the input disturbance force on the system. To 
have the highest level of suppression in the vibration control 
process, it is essential to design a controller compatible with 
the nonlinear characteristics of the system oscillations. Linear 
and nonlinear active vibration controllers typically employ 
piezoelectric actuators [2]. Active vibration control is usually 
applied using piezoelectric ceramics as actuators and sensors, 
as an example, piezoelectric actuators are used in atomic 
force microscopes to produce high-frequency vibrations 
[1]. The researchers have presented the nonlinear vibration 
control in numerous papers. Study of Pereira and Aphal [3]
ote> included a comparison between two different controllers. 
Omidi and Mahmoodi studied hybrid positive feedback 
control for active vibration attenuation of flexible structures. 
The structure under study in that paper is a cantilever beam, 
verified using numerical and experimental tests. Also, they 
have investigated the implementation of a modified positive 
velocity feedback controller for active vibration control 

in smart structures [4,5]. The purpose of this study is to 
control the vibration suppression for a cantilever beam using 
a modified positive velocity feedback controller. Zhang et 
al. [6] also investigated nonlinear vibration suppression of 
the piezoelectric layer using a nonlinear modified positive 
position feedback approach. Tourajizadeh et al. [7] designed 
the optimal control for damping the unwanted vibrations of 
an electrostatically actuated micro-system. This configuration 
consists of an electro-statically actuated micro-plate attached 
to the end of a micro-cantilever. Vaghefpour et al. [8] 
attempted to derive feedback control algorithms to track 
a desired path of a piezoelectric size-dependent cantilever 
nanobeam as a nano-actuator are developed. Marinangeli 
et al. [9] presented the Active Vibration Control (AVC) of 
a rectangular carbon fibre composite plate with free edges. 
The plate is subjected to out-of-plane excitation by a modal 
vibration exciter and controlled by Macro Fibre Composite 
(MFC) transducers. Vibration measurements are performed 
by using a Laser Doppler Vibrometer (LDV) system. Sepehry 
et al. [10] use a novel semi-analytical method, called Scaled 
Boundary Finite Element Method (SBFEM), to analyze free 
and forced vibration of piezoelectric materials. SBFEM 
enables to analyze any partial derivative equation in a semi-
analytical manner, however, with much lower computational 
cost comparing with other numerical methods. Garcia-Perez 

et al. [11] have reviewed asymptotic trajectory tracking 
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and active damping injection on a flexible-link robot by 
application of multiple Positive Position Feedback (PPF). 
Azimi et al. [12] examined active flutter control of a swept 
wing with an engine is carried out. The piezoelectric layers are 
attached to the wing to control the vibrations. Andakhshideh 
and Karamad. [13] studied analyzed  the nonlinear dynamics 
of non-classical Kirchhoff microplate and chaotic behavior 
predicted and controlled by designing the robust adaptive 
fuzzy controller. Zhu et al. [14]dNote> introduced an article 
based on the active control of nonlinear free vibration of 
viscoelastic orthotropic piezoelectric doubly-curved smart 
nanoshells with surface effects. To achieve efficient active 
damping in the vibration control, a velocity feedback control 
law is introduced to carry out the present study. 

The purpose of this paper is to obtain the equations of 
nonlinear vibrations and controller system for an elastic plate 
with a piezoelectric layer that follows the classical theory 
of Kirchhoff. In addition, von Karman’s nonlinear strains 
have been used to investigate geometrical nonlinear effects. 
This plate has a piezoelectric layer at its upper surface. This 
layer actually is utilized to actively suppress the vibrations 
of the plate. The external force applied to the piezoelectric 
layer is divided into two groups: 1) the control force (Fc(t)), 
the control force via the controller’s compensator will be 
logged; and 2) the harmonic excitation force distributed 
uniformly on the plate as the disturbance. The constitutive 
equations for piezoelectric layer are utilized to implement the 
effect of applied voltage into the electromechanical model. 
Method of Multiple Scales is utilized for calculation of the 
frequency response of the system and the controller. The 
resulting modulation equations are, then, used to verify the 
effectiveness of the proposed controller. Having the solution 
for the controllers, results are graphically demonstrated and 
discussed. In order to understand the performance of the 
controllers in more detail, sensitivity analysis on the closed-
loop system responses is performed and the influence of each 
parameter on the control output has been investigated. To 
validate the plate equations created, the system is investigated 
in Ansys simulation. The results show that the frequency 
obtained with an acceptable error is close to the analytical 
value. The study of non-classical nonlinear active controllers, 
where actuators were designed using piezoelectric materials 
for nonlinear control of the system, in the past considered 
only for beams. As a result of the innovation in this paper, 
the use of non-classical nonlinear active controllers for sheets 
has not been analyzed to date, and most of the controllers 
used for sheets have been classical. Also, in the obtained 
plate equations, the effect of piezoelectric layer has been 
applied in the equations. In the previous paper, the beam 

equations have been used solely as a control force ( )cf t as 
a piezoelectric effect. It should also be noted that the new 
controllers discussed in this paper greatly suppress jumps in 
the resonance zone.

2. MATHEMATICAL MODELING OF THE 
STRUCTURE

In this section, the nonlinear dynamic model of the 
structure is investigated. The structure is composed of 
two layers of square plates, a substructure layer, and a 
piezoelectric layer with different thicknesses on top of the 

substructure, as shown in Fig. 1. It is assumed that the ph
and 

sh are thicknesses of the piezoelectric layer and substructure, 
respectively. Also, as shown in Fig. 1, is the side length of 
the plate. The origin of the coordinate system is placed on 
the corner of the middle plane of the substructure layer. The 
boundary conditions of the plate are considered as simply 
support and ,u v and w are  the displacement of the plate in 
the ,x y and z directions, respectively.

The structure is assumed to be thin; u is the change in 
direction ,x v change in direction y and w change in direc-
tion z . Classical Plate Theory (CPT), known as Kirchhoff 
theory of displacements is defined as follows [15,16]:

)1(
 

)2(

 

where 0 0 0, ,u v w  are the displacements along the coordinate 
lines of a material point on the mid-plate. 

The deflections 0u and 0v are associated to the 

extensional in-plane deformation of the plate, while 0w
denotes the transverse deflection [16]. For the assumed 
displacement field according to Kirchhoff’s assumptions in 

Eq. (1), 
0 0w

z
∂ =∂  hence the strain is defined as follows:
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Fig. 1. The symmetric unimorph piezoelectric plate
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Note that the introduced strains in Eq. (3) are known as 

von Karman strains in which { }0ε
 is the membrane strain 

and { }1ε
 is the bending strain.

The constitutive equations of isotropic piezoelectric 
materials can be written as [17,18]:

(4)
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In isotropic materials, the above coefficients are expressed 

as follows:
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where eE are the elasticity modulus; v is the large 

Poisson’s ratio; and 12G is the shear modulus.
Here, linear distribution of the electric potential and the 

thickness are assumed. For the materials examined in this 
study, the electric field has a significant effect on the thickness 

direction [15]. The z-direction electric field, zE and  that is 

defined as 
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ValueUnitVariableSymbol

2330kg/m2Density
sρ

0.27-Poisson’s ratio
sϑ

160GPaYoung’s modulus
sE

2
3s
Hh =mThickness

sh

ValueUnitVariableSymbol

5800kg/m2Density
pρ

0.4639-Poisson’s ratio
pϑ

130GPaYoung’s modulus
pE

3s
Hh =

 

mThickness
ph

12.6nC/VDielectric coefficient
33∈

-4.4C/m2Piezoelectric coefficient
31 32e e=

Error%Analytical SolutionAnsysMod number: mn
4.29.368.961.1
0.1437.1137.0571.2
0.01856.6355.591.2
4.283.5580.031.3

Table 1. Properties of silicone isotropic plate

Table 3. Comparing results

Table 2. Properties of isotropic piezoelectric layer (Barium titanate (BaTiO3))

the matrices expressed in Eq. (5) into Eq. (4). As a result, the 
axial forces and moments are defined in terms of electrical 
potential. The equilibrium equation is used to determine the 
unknown functions [19]. The electro state of the plate layers 
is governed by the Gauss’ law for electrostatics, where k 
denotes the kth layer, which are:

)7( 
By substituting the value of the vector D in Eqs. (4) and 

(7), a linear equation is formed in terms of  ,zzψ

(8)
 

or

(9)
     

where  are the integration constants which are determined 
by enforcing the electric interface continuity conditions, i.e.

(10)
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Fig. 2. displacement plate in Ansys  

 

 
Fig. 3. Time-domain diagram of the NMPPF and NIRC and PPF controlled system
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(11)                

3. EQUATIONS OF MOTION
Using Hamilton’s principle, equations of motion of the 

plate based on classical theory and von Karman strain–
displacement relation can be obtained as [20]:

(12)
 

 

where q  is the external excitation and ( 1, 2,3)iI i= =
are the mass moment inertias and can be expressed as

(13)
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Presented relations in Eq. (21) satisfy the first two 
conditions of Eq. (20). Airy function can be determined using 
the following compatibility condition:

(22)

 

Also, Eq. (16) can be rewritten as:

(23)

where 

(24)

 

Substituting Eqs. (17), (21), (23) and (24) in Eqs. (20) 
and (22), 

(25)

 

2

2

2

2

2

xx

yy

xy

N
y

N
x

N
x y

ϕ

ϕ

ϕ

 ∂
= ∂

 ∂ =
∂

 ∂
= − ∂ ∂

[ ]
* 1

* 1
3*3

* 1

0
A A

B A B O
D D BA B

−

−

−

 =
 = − = =
 = −

( ) ( )
* * *

0 3*3

1* * *
3*3

T T

e

e

A B A ON

M B D B I

N

M

ε
ε

            = +         − − −         
  
 
  

22 0 2 0 22 0
0

2 2

2 2
0 0

2 2

yy xy xx w
x y x yx y

w w
x y

ε ε ε  ∂ ∂ ∂∂
− + =   ∂ ∂ ∂ ∂∂ ∂  

∂ ∂
−
∂ ∂

( )

2 1 2 12 1 2 1

11 12 12 222 2 2 2

2 1 2 22 2
0 0

66 2 2

2 22 2
0 0

2 2

2 22 2
0 0

0 22 2 2 2

2

, ,

0

yy yyxx xx

xy

D D D D
x x y y

w w
D

x y x y x yy x

w w
q x y t

x y x y x y

w wwI I
t t x y

ε εε ε

ε ϕ ϕ

ϕ ϕ

∂ ∂∂ ∂
+ + +

∂ ∂ ∂ ∂

   ∂ ∂ ∂∂ ∂ + + −   ∂ ∂ ∂ ∂ ∂ ∂∂ ∂  
 ∂ ∂∂ ∂

+ − + +  ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂∂ ∂

= − +  ∂ ∂ ∂ ∂ 

(26)

 
By substituting obtained equation for ϕ from Eq. (26) in 

Eq. (25), a nonlinear equation for transverse plane vibrations 
is obtained. A boundary condition is required to solve Eq. 
(24). It is required to determine the boundary conditions of 
the problem to derive Erie’s stress function and the plate 
transverse deformation. Here, boundary conditions are 
considered as a simple support. Therefore,

(27)
 

 

According to the boundary conditions 0w can be defined 
as Equation (28):

(28)

 

where m and n refer to the vibrational mode number 

and the time variable ( )mnW t related to the transverse 
deformation. According to Eq. (3), Eq. (28) can be rewritten 

for 0u and 0v as

 

(29)
 

 

 
Substituting Eq. (28) in Eq. (26) and using boundary 

conditions of Eq. (29), Airy function can be determined by 

2 2
* * *2 11 12 112 2

2
*
12

2 2
* * *2 12 22 122 2

2
*
22

22 2 22 2
* 0 0 0
66 2 2

  

2

e
xx

e
yy

e
xx

e
yy

A A A N
y x

y
A N

A A A N
y x

x
A N

w w w
A

x y x y x y y x

ϕ ϕ

ϕ ϕ

ϕ

 ∂ ∂
+ + ∂ ∂ ∂ 

∂   + 
 ∂ ∂

+ + ∂ ∂ ∂+  
∂   + 

   ∂ ∂ ∂∂ ∂
+ = −     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

0 0 0       0,xx xyw v M N at x a= = = = =

0 0 0       0,yy xyw u M N at x a= = = = =

2
0 0

0 0

1 0,            0,
2

a

xx
w

u dx at y b
x

ε
∂ = − = = ∂ ∫

2
0 0

0 0

1 0,            0,
2

b

yy
w

v dy at x a
x

ε
∂ = − = = ∂ ∫

0
0           0,

b

xyN dy at x a= =∫

0
0           0,

a

xyN dx at y b= =∫

( ) ( ) ( )

( )

0
1 1

1 1

, ,  ,

 

mn
n m

mn
n m

w x y t W t F x y

n x m yW t sin sin
a b
π π

∞ ∞

= =
∞ ∞

= =

= =

   
   
   

∑∑

∑∑
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two particular ( )pϕ and homogeneous ( )hϕ solutions as

(30) 

The Airy stress function is expressed in Appendix A. By 
substituting obtained solution for Airy function in Eq. (25) and 

multiplying both sides in
sin sinn mx y

a b
π π      

      
       , 

then integrating over the surface of the plate (applying 
Galerkin method), nonlinear temporal equations can be 
expressed as

(31) 
Units for coefficients of Eq. (31) have been shown in 

appendix B. Finally, Eq. (31) is rewritten as 

(32)
 

The coefficients of these equations are have been defined 
as 

(33)
 

For Eq. (32), ( )W t is the time-dependent variable and 
( )W t is a nonlinear ODE that has a third-order nonlinear 

term. F and Ω are the excitation amplitude and frequency. 
α is the curvature nonlinearity coefficient. The control force 

( )cF t , will be added to the equation. The control law that 

connects the controller system to the main system. ( )cF t

is proportional to feedback gains of compensators. wη is the 
damping term and the natural linear frequency of this system 

is
2

wω .
2

wω consists of two parts of the natural frequency created 
in the sheet with the piezoelectric layer and a coefficient of 
the voltage created from the piezoelectric layer to the elastic 
layer. The equation is created for the natural frequency of 

2 2
1w es Vω ω= +  where 1S is the constant coefficient of the 

voltage applied to the plate. Equations in reverse piezoelectric 
mode apply the initial voltage from the piezoelectric layer 
to the system. Also, a damping term has been added to Eq. 

(32) in form of 2w w wη µ ω=  where wη is the damping 
ratio. It should be noted that the unit is Eq. (32) Newton’s 

2
kg.m

s
 
   . 

p hϕ ϕ ϕ= +

( ) ( ) ( )3
1 2 3 4 0Z ZW t Z W t Z W t q+ + + =

( ) ( ) ( ) ( ) ( )2 3
w wt W t W t t Fcos tW Wω α η+ + + = Ω   

 

2 32 4

1 1 1
 ,    ,   w

ZZ ZF
Z Z Z

α ω= = =

For dimensionless Eq. (32), need new dimensionless 

variables ,U T that are defined as

(34)T tω=  

(35)
WU
h

=
 

as a result

( ) ( )3 cosu cU U U F t F tU α η+ + + = Ω + 

 
(36)

where

(37)

 
where U(t) is a nonlinear ODE equation normalized, 

which has third-order nonlinear terms. 

4.VALIDATION OF THE DESIRED MODEL
In this section, using the finite element modeling of an 

elastic plate with a piezoelectric layer, the presented analytical 
method is confirmed. To verify the model review, the natural 
frequency of the structure obtained by analytical study, with 
the Ansys software finite element modeling are compared. 
The properties of the elastic plate and the piezoelectric layer 
are presented in Tables 1 and 2.

A double-layer plate made of Barium titanate material 
as a piezoelectric layer and silicone as a sub-layer has been 
created in Ansys. The model for this solution is the square 
silicone plate. Dimensions of isotropic plates are 40 × 40 cm, 

silicone layer thickness 0.8sh = cm and piezoelectric layer 

thickness 
0.4ph =

cm. In the model created after meshing, 
all four sides of the plate are limited by a simple support. 
The first four natural frequencies are given in Table 2 The 
first three eigenmodes of deformation of the plate is shown 
in Fig. 2.

By investigating the frequencies obtained by analytical 
solution, and comparing it with the simulation method, it can 
be seen that the results of both methods are similar, which 
shows the validation of the analytical method.

5. NONLINEAR CONTROLLER DESIGN AND 
COMPARISON 

In this section, the Nonlinear Modified Positive Position 
Feedback (NMPPF) controller will be designed and applied 
to the smart plate model developed in Section 2. In addition, 
to evaluate and compare the controllers performance. Two 
other controllers i.e., Positive Position Feedback (PPF) 
and Nonlinear Integral Resonant Controller (NIRC) will 
be applied to the smart plate. The dynamical model of the 
nonlinear system is defined in Eq. (36). To assign a PPF 
control to the smart-plate, the following control model is 
utilized [22]

2

2 2 2 ,   ,      ,   u
u

uu u u

h FF
h

η αη α
ωω ω ω
Ω

= = = Ω =
 



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(38)
 

where ( )y t is a positive position feedback controller variable. 

In this equation, the attenuation coefficient is, 
2p p pη µ ω=

, in which pµ is the damping ratio, and pω
is the positive 

feedback controller frequency. 
0pλ >

 is the controller gain, 

and feedback loop is closed by setting ( ) ( )c pF t k y t=
 

in Eq. (36), for 
0pk >

. Where pk
positive scalar feedback 

gains of first-order compensator. The NIRC controller model 
is expressed as [23]

(39)( ) ( ) ( ) ( )2 2
Qv t v t U t U tω λ δ+ = −

 

where ( )v t is NIRC controller’s variable, Qω is the first-
order integrator’s frequency.λ and δ are the controller 

input gains. The control law is defined as ( )c vF v tτ=
 for  

0vτ > . 
The NMPPF are designed as follows. This controller 

includes a nonlinear second-order compensator and a linear 
first-order compensator set in parallel. As the system is a third-
order nonlinear system, the third-order nonlinear expression 
controller is considered in the second-order compensator [1]

(40)( ) ( ) ( ) ( ) ( )2 3
r r rt t r t r t k U tr rη ω δ+ + + = 

  

 

( ) ( ) ( )s ss t s t k U tω+ = 

 
where ( )r t and ( )s t are compensatory first and 

second order state variables, respectively. 2r r rη µ ω=

, when rµ is the coefficient of damping, and rω is the 

compensating frequency. rk and sk are the inputs of the 
control. The control law pertains to the modified positive 
position feedback controls system in the main system of 

Eq. (36) as ( ) ( ) ( )c r sF t r t s tτ τ= +
; that are rτ and 

sτ respectively, are first order compensator and second in a 
closed loop system.

Fig. 3 shows linear and nonlinear feedback controllers, 
including all three control methods for the closed loop system. 
It should be mentioned that controllers are used one at a time 
and not together as shown in Fig. 3.  

6.NMPPF CONTROLLER FOR SMART PLATE
The method of Multiple Time Scales is used to find a 

uniform nonlinear structure: the approximate solution to the 
resonance structure [24]. The nonlinear system of Eq. (36) 
under NMPPF controllers are defined as follows: analyzing 
the nonlinear system of Eq. (36), which is governed by the 
NMPPF controller of expressed in Eq. (40), we need new 
dimensionless variable for controllers so Eq. (40) becomes 
dimensionless like Eq. (36). The result is as follows 

(41)
3

r rr r r r k Uδ η+ + + =

ss s k U+ =  
where

(42)

 

In the primary resonance case, excitation frequency ( )Ω
 

is assumed as follows 1 fεσΩ = + .

To this end, two time-scales of 0 1 , T t T tε= = are 
selected. Then, the time derivatives are defined as

(43)

 

where
n

n

D
T
∂

=
∂ , and 

2hε
ω
 =  
  is a bookkeeping 

parameter. Eq. (43) is substituted in Eqs. (36), (41) that 
results in

(44)
 

(45)
 

(46)
0 1 sD s D s s k Uε+ + +…=  

Parameters of the equations have to be 
scaled; therefore, parameters are set as: 

Scaled parameters are substituted into the Eqs. (44) to 

(46), then the variables ( ), ( )U t r t and ( )s t are expanded 
by

(47)
 

2

2 2 ,    ,  , sr r
r r s

r sr r

kkh k k
η δη δ
ω ωω ω

= = = =






( )

2
0 0 0 1 1 0 0 1 1 0 1

3
0 1

2

( ) cos ,
U U

r s

D U D D U D U D U U U

U U f t r s

ε η εη ε

α ε τ τ

+ + + + +

+ + +…= Ω + +

2
2

0 1 02

0 1

  ,      

2

d dD D D
dt dt

D D

ε

ε

= + +… =

+ +…

2 3
0 0 1 0 1 2

 ,
r r

r

D r D D r D r D r r r
k U
ε η εη δ+ + + + +

+…=

   



  ,  ,  ,  ˆ ,  

  ,  ˆˆ , 
r r s s r r s s

r r

k k k k

f f

α εα ε τ ετ τ ετ

η εη δ εδ ε

= = = = =

= = =

( ) ( ) ( )0 1 0 0 1 1 0 1. . . .  ,U T T U T T U T Tε ε= + +…

( ) ( ) ( ) ( )2
P P Py t y t y t U tη ω λ+ + =
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uniform nonlinear structure: the approximate solution to the 
resonance structure [24]. The nonlinear system of Eq. (36) 
under NMPPF controllers are defined as follows: analyzing 
the nonlinear system of Eq. (36), which is governed by the 
NMPPF controller of expressed in Eq. (40), we need new 
dimensionless variable for controllers so Eq. (40) becomes 
dimensionless like Eq. (36). The result is as follows 

(41)
3

r rr r r r k Uδ η+ + + =

ss s k U+ =  
where

(42)

 

In the primary resonance case, excitation frequency ( )Ω
 

is assumed as follows 1 fεσΩ = + .

To this end, two time-scales of 0 1 , T t T tε= = are 
selected. Then, the time derivatives are defined as

(43)

 

where
n

n

D
T
∂

=
∂ , and 

2hε
ω
 =  
  is a bookkeeping 

parameter. Eq. (43) is substituted in Eqs. (36), (41) that 
results in

(44)
 

(45)
 

(46)
0 1 sD s D s s k Uε+ + +…=  

Parameters of the equations have to be 
scaled; therefore, parameters are set as: 

Scaled parameters are substituted into the Eqs. (44) to 

(46), then the variables ( ), ( )U t r t and ( )s t are expanded 
by

(47)
 

(48)( ) ( ) ( )0 1 0 0 1 1 0 1. . . .r T T r T T r T Tε ε= + +…  , 

(49)( ) ( ) ( )2
0 1 0 0 1 1 0 1. . . . .s T T s T T s T Tε ε ε= + +…

 

By placing Eqs. (44), (45) and (46) in Eqs. (47), (48) and 

(49) and ordering the result in terms of the power of
0ε , 

1ε

and
2ε , the following differential equations are obtained.

(50)( )0 2
0 0 0:     0 ,O D U Uε + =  

(51) 

(52)
 

(53)
 

(54) 

(55)( )2
0 1 1 1 1 0:      ˆ  ,sO D s s k U D sε + = +

 
The order

2ε is considered for s only as function based on 

Eq. (49) includes the orders of 
1ε and

2ε .

(56)( ) 0
0 1  ,iTU A T e cc= +

 

(57)( ) 0
0 1  ,iTr B T e cc= +

 

Thus, 1 1( ), ( )A T B T are complex parameters functions 
that will be defined by deface the secular terms, also where 

0U domain is 0r , which is a function of function 1T .

(58)

 

Thus, 1( )C T  is obtained in the next steps. At this step, 
Eqs. (56) to (58) are inserted into Eqs. (52), (53): Ultimately, 
the results are simplified as follows.

( ) ( ) ( )0 0
0 1 11

ˆ

2
iT iTsk

s C T e i A T e cc= + − +

2
0 0 0 0 D r r+ =

( ) ( )1 2
0 1 1 0 0

3
0 1 0 0 0 0

 :      

2    ,

ˆ ˆ ˆ

ˆ ˆ
r s

u

O D U U fcos t r s

D D U D U U

ε τ τ

η α

+ = Ω + +

− − −

2
0 1 1 0 0 1 0

3
0 0 0

 2

 .

ˆ

ˆˆ
r

r

D r r k U D D r

D r rη δ

+ = −

− −

0 0 0 0  ˆ
sD s s k U+ =

(59)

 

(60)

 
1U and 1r are calculated using Eqs. (59) and (60) in time 

domain. Eq. (58) and 1U have been substituted in Eq. (55) 
for creating ODE equations to solve the equation. Moreover, 
the term cc shows the complex conjugate function of its 
preceding sentences. 

For the system to have a bounded solution, it must be 
considered zero to the secular terms. Applying this condition 

to the expanded Eq. (55) and using  1U , 1( )C T  is calculated 
as

(61)( )
1

ˆ
2

1

ˆ

 
s sk

T

sC T c e
τ 

  
 =

 

where sc is a constant. Next step is to sort Eqs. (59) and 
(60), and separate the secular terms,

(62)

 

(63)

 
The solution to Eqs. (62) and (63) is assumed in the polar 
form of

(64)( ) ( ) ( )1
1 1

1 ,
2

ai TA T a T e ζ=
 

( ) ( ) ( )( )

( ) ( ) ( )

( )

0

0 0 0

0 0 0

2
0 1 1 1 1 1 1

1 1

33 2
1

 

ˆ

ˆˆ

 
ˆ

ˆ

ˆ
ˆ

    2

1  
2

  3
2

iT
r u

iT T iTs
s

i T iT i T

D U U B T e A T D A T

kie C T e i A T e

fA T e A Ae e cc

τ η

τ

α α

−

Ω

+ = − +

 
+ + −  

 

− − + +

( ) ( )
( ) ( ) ( )( )

0 0

0 0

32 3
0 1 1 1 1

2
1 1 1 1

   

3 ˆ 

ˆ ˆ

ˆ 2

iT i T
r

iT iT
r

D r r k A T e B T e

B B T e B T D B T ie

δ

δ η

+ = −

− − +

( )

( ) ( )

( ) ( )( )

( ) ( )

1

0

1

1

1

1 1 1

2
1 1

2 0 ,
2

3
2

ˆ
ˆˆ

ˆ

ˆ
ˆ

r

f

i T
r

s s
s

iT

u

i T

B T e

k i A T
e

A T D A T i

f e A T A T

σ

σ

τ

τ ω

η

α

 +
 
 

− 
  =
− + 
 
 + −  

( ) ( ) ( )
( ) ( )( )

0

2
1 1 1

1 1 1

3
 0,

ˆ 2

ˆ ˆr r

r

i T
r i T

r

k A T e B T B T
e

B T D B T i

σ
ω

δ

η

− −
  =
− +  
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Variable α
Value 11.7 0.03 9.36

Variable
pλ pk

pµ pω F
Value 1 1 0.002 9.36 0.09

Table 4. Numerical values of the main system parameters

Fig. 4. Frequency response of the uncontrolled system

Table 5. Numerical values of the PPF controller parameters 

 

 

 

uµ uω
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Fig. 5. Frequency response of the PPF controlled
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 Fig. 6. Sensitivity analysis of the closed-loop PPF controlled system to control parameters. (a) damping coefficient ( )rµ , 
(b) control gain ( )pλ , (c) control gain ( )pk , (d) voltage ( )V

(c)

(a) (b)

(d)
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(65)( ) ( ) ( )1
1 1

1 ,
2

bi TB T b T e ζ=
 

The real and imaginary parts will be separated and equal 
to zero by placing Eqs. (64) and (65) in Eqs. (62) and (63) 
The following equations are obtained.

(66)

 

(67)

 

(68)

(69)

 
Since all variables of Eqs. (66) to (66) are time derivatives 

of 1T function. New variables are defined, as follows to obtain 
the set of independent equation

. by applying these changes, the modulation equation is 
obtained as follows.

(70)

 

(71)

 

( ) ( ) ( )

( ) ( ) ( )( )

( )

1
1 1 1

1

1 1 1 1

1

 
ˆ ˆˆ
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2 2
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2
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ˆ

ˆ
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u

Tk fD a T a T
T

b T T T T

a T

στ
ζ

τ σ ζ ζ

η

 
= − +  − 

+ + −

−

( ) ( ) ( )
( )
( )

( )
( )

( ) ( )
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12
1 1 1

1 1

1 11

1 1

3 cos 
8 2
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ˆ
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ˆ

ˆˆ ˆ
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a
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a

TfD T a T
a T T
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σαζ
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σ ζτ τ
ζ

 
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 + 
−   −   −  

( ) ( )

( ) ( ) ( )( )( )
1 1 1

1 1 1 1
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ˆˆ
2 2

s n

r r

a r b

kD b T b T a

T T T T

η

ζ σ ζ
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− −

( ) ( ) ( )
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1 1 1

1

1 1 1
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8 2
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ˆˆ
r

b

a r b

k a T
D T b T
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δζ
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2 2

sin sin
2 2

ˆˆ ˆ

ˆ ˆ

u s s

r
a a

k
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f b

η τ
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θ θ

 
= − + +  
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+



(72)( )
ˆˆ

sin
2 2
r r

b
k

b b a
η

θ= − −

 

(73)

 
steady-state conditions are considered to obtain the 

frequency response of the closed loop system. The coupled 
equations obtained for the frequency are the response of the 
main system and the controller domain.

(74)

 

(75)

 

7. RESULTS AND DISCUSSIONS
This part has discussed the vibration range in the resonant 

frequency region and the performance of the controllers in 
controlling the vibration amplitude in the resonance region 
are discussed and its details.

7.1. Open-Loop System Response Under Primary Resonance
It is necessary to provide an image of the system reaction 

in an uncontrolled mode prior to studying the closed loop 
system. The open-loop system is obtained from Eqs. (74) 
and (75). The values ​​of the main system are given in Table 4 
and the frequency response graph in Fig. 4. System behavior 
is defined for the excitation force 0.09f = [N]. The jump 
phenomenon is seen in the excitation range. The purpose of 
the controllers is to diminish the maximum vibration range 
in the frequency domain. Using analytical relations and 
structural dimensions simulated in Ansys, the values ​​of the 
desired parameters are obtained.

7.2. Ppf Controller Performance Analysis
This part examined the performance of the closed loop 

system with PPF controller [1,22]. The equations of the PPF 
controller frequency response equations are shown as the 
NMPPF controller by the multiple time scale approach. These 
equations are obtained by forms Eqs. (76) and (77). Fig. 5 
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Fig. 7. Frequency response of the NIRC controlled

Fig. 8. NIRC controlled system response for changes in excitation amplitude. (a) controller input gain ( )λ , (b) 
controller input gains ( )τ .

(b)(a)
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Variable
	 	 	 	 	 	

rτ
	

sk 	
sτ 	

Value 9.36 9.36 0.002 0 2 1 2 1 0.09

f

Fig. 9. The effect of the voltage on the NIRC

Table 7. Numerical values of the NMPPF controller

Table 6. Numerical values of the NIRC controller parameters

Variable
f

Value 9.36 2 0 1 0.09

Qω λ δ vτ

rω sω rµ δ rk
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 Fig. 11. Frequency response of the closed-loop system for values of damping ratio

Fig. 10. Frequency response of the NMPPF controlled system
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Fig. 12. Sensitivity of the closed-loop NMPPF controlled system response. (a) controller input gain for the second order 
( )rk , (b) gain for the second order compensator ( )rτ , (c) controller input gain for the first order ( )sk , (d) gain for 

the first order compensator ( )sτ

(a)

(d)(c)

(b)
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Fig. 13. The effect of applied voltage in NMPPF controller

Fig. 14. Comparison of the PPF, NIRC, and NMPPF controller performances
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Controller Amplitude Improved performance compared to the main 
system

Main system 0.325 --
NMPPF 0.042 87.08%

PPF 0.10 69.23%
NIRC 0.044 86.46%

indicates the frequency response of the closed loop system 
with the PPF controller. The controller parameters are cited in 
Table 5. Implementation of PPF controller reduces vibration 

range in the resonant frequency region ( )0fσ =
.  This 

controller amplifies the production of two-peak amplitudes 
with relatively large amplitude around the frequency. The 
amplitude in the resonant frequency reduced from 0.32a =  
to 0.1a = in the uncontrolled mode. Thus, one can state that 
it is suitable for controlling vibrations at resonant frequency, 
although it does not perform well around resonant frequency. 
The frequency response equations are as follows

(76)

 

(77)

 
An analysis of each control parameter is done for obtaining 

a better understanding of the effect of each parameter in 
response to improved system performance. The

 PPF controller is suitable for controlling the excitation 

amplitude at ( )0fσ =
. However, as shown in Figs. 5 and 

6, the amplitude of the resonator is practically converted to 
two frequencies near the natural frequency (before and after) 
by applying this controller. Fig. 6 indicates the sensitivity of 
the amplitude response to changes in control parameters. Fig. 
6(a) as the coefficient of damping increases, the amplitude 
of the vibrations decreases almost linearly. The controller 
input gain results indicated in Figs. 6(b) and 6(c) have similar 
effects. Increasing these parameters ends in more inhibition 
of the precise frequency value of the resonator. Although by 
increasing these two parameters the two peaks are separated, 
it is impossible to comment on the two peaks created. Fig. 

6(c) shows that the controller behavior changes when
1pλ =

. As is seen in Fig. 6(d), the voltage change has a direct effect 

on the amplitude of the resonator. By affecting the frequency, 
this parameter changes the other parameters. The following 
figure shows the increase in voltage that decreases the 
amplitude of the vibrations.

The analytical solution of this controller is given in 
Appendix C.
7.3. Nirc Controller Performance Analysis

In this section, the outcomes of applying NIRC control 
method on the smart plate is discussed. The NIRC consists 
of a first-order resonant integrator that provides additional 
damping in a closed-loop system response to reduce high 
amplitude nonlinear vibration around the fundamental 
resonance frequency. Numerical values of the NIRC 
controller are listed in Table 6. Fig. 7 shows the steady-state 
vibration amplitude versus changes in excitation frequency. 
Unlike conventional methods such as PPF and NMPPF, 
the graph shows small bending toward the negative side of 
the frequency axis. The NIRC controlled system exhibits 
no high-amplitude peak on either side of the fundamental 
mode in the frequency domain. Fig. 7 is obtained from the 
analytical solution Method of Multiple Scales such as the 
solution NMPPF. Next, the effects of three control variables 
on system response are examined. Fig. 8 shows the vibration 
amplitude of an NIRC controlled smart plate when control 
parameters are changed.

(78)
 

According to Fig. 8(a) increasing the positive values input 
gain controller λ , reduce domains. Negative values of this 
parameter causes the graph to bend to the right. In addition, 
reducing the negative values of the input gain λ will increase 
the vibration suppression. Fig. 8(b) shows the closed loop 
response of the system based on the variations in the input 
gain parameter,τ . Results demonstrate that as expected both 
gains have similar effect on the response. However, better 
suppression is achieved when both gains have the same 
signs. Fig. 9 shows the effect of the voltage on the amplitude 
of vibrations. As expected, increasing the voltage increases 
the amplitude of vibrations. The analytical solution of this 
controller is given in Appendix D.

Table 8. Comparison of values and percentages the PPF, NIRC, and NMPPF controller performances
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7.4. Nmppf Controller Performance Analysis
Modulation Eqs. (74) and (75) were used to show the 

performance of the NMPPF controller on the smart plate. The 
numerical values ​​of the parameters are selected in accordance 
with Table 7 for NMPPF controller. Fig. 10 shows the 
frequency response of NMPPF controlled systems. In this 
Fig., the right peak has higher amplitude than the left peak, 
but does not skip the amplitude.

By using this method not only the vibration reduces at the 
resonant frequency, but also the other two peaks have less 
amplitude than the PPF method. The maximum amplitude in 
NMPPF controlled system is much lower than the maximum 
peak in the controlled PPF response. NMPPF controller 
parameters, attenuation ratio and compensating frequencies, 
affect the closed loop system inhibition performance. 

Moreover, the four control responses change the system 
response in the control process. Here the effect of these 
parameters on the system response is examined. The first 

parameter examined is rµ . According to Fig. 11, the changes 

in parameter rµ in the controller are such that with increase 
in its value, vibrations amplitude decreases. In the next step, 
the other benefits of the controller are examined.

Fig. 12 shows the second-order input variable rk

, the second-order output value rτ , the first-order input 

compensator variable sk , and the first-order output 

compensator interest sτ . According to Fig. 12(a), the increase 

in rk does not decrease the value of two peaks in the system 

response but makes them distance. Moreover, small rk  
values ​​do not reduce the magnitude of the two peak values. 

Nonetheless, with increase in rk , the amplitude of the 

vibrations at the resonant frequency ( )0fσ =
improves. 

As the second-order output rτ increases in Fig. 12(b), the 
amplitude in the resonance frequency region decreases as a 
result of the inhibition of the vibration amplitude at frequency 
as Fig. 12(b) shows. Moreover, the two peak values ​​occur at 
distances beyond the origin as the graphs become wider in 
the frequency range. Fig. 12(c) and Fig. 12(d) show the effect 

of first-order compensatory interest changes, sk and sτ  
As already stated, second-order compensators have a better 
impact on amplification amplitude compared to second-order 

compensator diagrams. The increase in sk increases the level 
of control of the controller that decreases the amplitude of 

the vibrations. The control gain function sτ  decreases with 
increase in parametric value of the system domain and the 

two peaks get distant like sk .

Finally, evaluating the effect of voltage applied to the 
plate in the NMPPF controller, it is observed that increasing 
the voltage increases the amplitude of response.

Fig. 14 shows the frequency response of the uncontrolled 
system, system with PPF, NIRC, and NMPPF controllers 
for the excitation amplitude of 0.09f = . NPPF and NIRC 
controllers have a nearly similar effect on reducing amplitude 
at the resonant frequency. The PPF controller has a weaker 
performance than the other two controllers.
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Finally, evaluating the effect of voltage applied to the 
plate in the NMPPF controller, it is observed that increasing 
the voltage increases the amplitude of response.

Fig. 14 shows the frequency response of the uncontrolled 
system, system with PPF, NIRC, and NMPPF controllers 
for the excitation amplitude of 0.09f = . NPPF and NIRC 
controllers have a nearly similar effect on reducing amplitude 
at the resonant frequency. The PPF controller has a weaker 
performance than the other two controllers.

Appendix A
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1 2 3h C x C y C xyϕ = + +  

 

 

Appendix B
The units in Table 9 are the coefficients of Eq. (31). These 

units are in Newton SI version and lead to the unit kg m/s2.
Appendix C

Analytical solution of the controller PPF
we need new dimensionless variable for controllers so Eq. 

(38) becomes dimensionless like Eq. (36). The result is as 
follows 

where

(C-1)
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1U  and 1y are calculated using Eqs. (C-14) and (C-15) in 
time domain. For the system to have a bounded solution, it 
must be considered zero to the secular terms.

 Next step is to sort Eqs. (C-14) and (C-15), and separate 
the secular terms,

(C-16)

 

(C-17)

The solution to Eqs. (C-16) and (C-17) is assumed in the 
polar form of

(C-18)( ) ( ) ( )1
1 1

1 ,
2

ai TA T a T e ζ=
 

(C-19)( ) ( ) ( )1
1 1

1
2

bi TB T b T e ζ=
 

The real and imaginary parts will be separated and equal 
to zero by placing Eqs. (C-18) and (C-19) in Eqs. (C-16) and 
(C-17) The following equations are obtained.
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Since all variables of Eqs. (C-20) to (C-23) are time 
derivatives of  function. New variables are defined, as follows 
to obtain the set of independent equations:

. by applying these changes, the modulation equation is 
obtained as follows.
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steady-state conditions are considered to obtain the 

frequency response of the closed loop system. The coupled 
equations obtained for the frequency are the response of the 
main system and the controller domain.
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(C-29)

 

Appendix D
Analytical solution of the controller NIRC
we need new dimensionless variable for controllers so Eq. 

(39) becomes dimensionless like Eq. (36). The result is as 
follows 

where 
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0 1,ε ε and

2ε , the following differential 
equations are obtained. Eq. (D-6) is chosen to be one 
order higher than the main system to keep the first-order 
dynamics of the controller at the same pace with the second-
order nonlinear system model and to have all the necessary 
variables appear in the correct equations.
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The equation of (D-7) is expressed as follows.

(D-11)( ) 0
0 1  ,iTU A T e cc= +

 

where 1( )A T is complex-valued functions that will be 

defined by deface the secular terms, also where 0U  domain 

is 0r , which is a function of function 1T . shows the complex 
conjugate function of its preceding sentences. Eq. (D-11) 
is substituted into Eq. (D-9), and the ODE is solved. The 

solution to 0v is found as

(D-12)

 

where 1( )C T is going to be obtained in further steps of 
the solution. Next, Eqs. (D-11), (D-12) are substituted into 
the Eq. (D-8). The simplified result is:

(D-13)

 
1U   is calculated using Eq. (D-8) in time domain. In order to 

solve for 1v , equation  1U  are substituted into Eq. (D-10) to 
form the ODE.
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(D-15)
 

where vc  is a constant. The next objective is to obtain the 
modulation equation. For the system to have a bounded Eq. 
(D-13), it must be considered zero to the secular terms. 

The solution to Eq. (D-15) is assumed in the polar form of

(D-16)
 

The real and imaginary parts will be separated and equal 
to zero by placing Eq. (D-16) in Eq.(D-15) The following 
equations are obtained.

(D-17)

 

(D-18)

Since all variables of Eqs. (D-17), (D-18) are time 

derivatives of 1T  function. New variables are defined, 
as follows to obtain the set of independent equations: 

( ) ( )a f at t tθ σ ζ= −
. by applying these changes, the 

modulation equation is obtained as follows. 
steady-state conditions are considered to obtain the 

frequency response of the closed loop system. The coupled 
equations obtained for the frequency are the response of the 
main system and the controller domain.

(D-19)
 

8. CONCLUSIONS
In this article, active nonlinear vibrations control of a 

simply supported smart plate using the NMPPF controller 
was introduced. A piezoelectric layer is utilized for the control 
force implementation. The system response was also studied 
under NIRC and PPF control approaches. The nonlinear 
classical plate theory was considered and von-Karman 
strain–displacement field was used to model the plate. In 
the study of forced vibrations, first, the plate equation was 
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analyzed without the controllers. Observations indicate that 

in this case, the frequency response curve in the 0fσ =
zone has large resonance amplitude, in addition the jump 
phenomenon was observed. The produce the article show that 
by enhancing the excitation force, the response amplitude 
increases. A hardening phenomena was observed in the 
uncontrolled response of the smart plate. The plate with the 
controllers was analyzed using Multiple Scales Method All 
three controllers were analyzed using the Method of Multiple 
Scales. The solution contains the closed-loop responses of the 
NMPPF, NIRC and PPF approaches. Then stability analysis 
of the closed-loop system was performed and the sensibility 
of the parameters on the responses was compared. 

The PPF controller had a weaker control effect than 
the other two controllers. Results show that increasing the 
gain and compensator damping coefficient decreases the 
peak values almost linearly. The NIRC provides additional 
damping for a closed loop system in the neighborhood of the 
resonant frequency. The nonlinear control term in addition 
to linear term provide more efficient control effect on the 
system. According to the studies, the performance of the 
NIRC controller has improved by 64.75% compared to the 
PPF controller. The NMPPF controller has a cubic nonlinear 
term in the second-order resonant compensator which 
provides better control for nonlinearity. This controller has 
a direct effect on the exact value of the resonant frequency. 
Vibration amplitudes at resonance are suppressed better as 
control gains  and   increases. The second-order compensator 
suppresses the exact resonant amplitudes better, also the first-
order compensator induces more damping and higher gain 
values reduce the amplitude of the system. Results show 
that NMPPF controller reduced the vibration amplitude on a 
large bandwidth in the frequency domain better than the other 
two methods. The vibration suppression in this controller is 
65.47% better than the PPF controller, almost 2.041% better 
compared to the NIRC controller.
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