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ABSTRACT:  The development of structural health monitoring algorithms for wind turbines is an 
emerging need because of the aging issue in wind farm facilities. An emerging field of data-driven 
machine learning schemes has resulted in the development of new means in structural health monitoring. 
Although, these approaches are inclined to errors in the absence of good insight into the physics of the 
system. Therefore, a comprehensive model of the structure, as well as its uncertainties, could be a good 
complement to these approaches. In the current article, an algorithm is developed for autonomous health 
monitoring of a wind turbine blade, which is one of the most expensive parts of the turbine, based on 
acceleration measurements taken from several points on the blade. The data are acquired based on a 
close- to- reality finite element model of the blade. The acceleration signals are gathered from five 
nodes along with the wind turbine model, which act as vibration sensors in a common similar test 
setup. Advanced algorithms of system identification are used for extracting damage sensitive features. 
Moreover, a one-class kernel support vector machine (SVM) is trained to find the data associated with a 
damaged state of the structure. Finally, the success of the procedure in the detection of the existence and 
location of the damage is depicted.
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1. INTRODUCTION
Considering the environmental impacts and sustainability 

problems of conventional energy resources, renewable en-
ergies are attracting ever-increasing attention all around the 
globe [1]. Among all available renewable resources, wind en-
ergy plays a pivotal role in meeting energy demands through 
renewable and sustainable means [2]. Wind turbines are em-
ployed to harness this vast energy potential [3]. To be more 
efficient and cost-effective, structures of the wind turbines 
have been designed and developed in larger sizes rendering 
more difficult maintenance and catastrophic consequences in 
the case of failure than before [4]. These problems are fur-
ther exacerbated when dealing with off-shore turbines [5]. 
It should be noted that the operation and maintenance costs 
over the lifetime of the turbine are believed to be 75%- 90% 
of the initial investment [6]. Therefore, special care should 
be taken to detect damages in early stages and take correc-
tive actions to minimize the potential consequences. For this 
purpose, Structural Health Monitoring (SHM) of the system 
is introduced that contains damage detection strategies and 
characterization schemes. Combining SHM systems with 
novel sensor technologies, wind turbine turns out to be a 
more economical and reliable means to harness wind energy 
[7]. Within the SHM approach, there are various techniques 
based on the sensor technology utilized, among which vibra-
tion-based monitoring systems are desirable due to their ma-

turity and long history of utilization in condition monitoring 
of rotary machines [8].

A wide array of features could be extracted from the mea-
surements and utilized to serve as indicators of damage, such 
as modal parameters, dynamic spatial parameters, wavelet 
packets,  and time series, which are broadly explored in the 
literature and are briefly reviewed in reference [9]. One of the 
most applicable methods utilized for Vibration-Based Struc-
tural Health Monitoring (VB SHM) of the wind turbine blade 
is the statistical pattern recognition paradigm. Farrar et al. 
introduced this paradigm [10, 11]. It is a mature procedure for 
implementing a fully automated monitoring system to detect 
changes in the system condition, which can be interpreted as 
damage. This algorithm can be applied in an embedded com-
puter that is installed in situ, and the machine will alarm the 
operators whenever there is a change in the condition of the 
system.

Several efforts have been made by researchers all over the 
world to either develop new SHM techniques or improve the 
existing ones in monitoring the health of different parts of a 
wind turbine. A significant number of works have been dedi-
cated to the health monitoring of blades as the most expen-
sive components of the wind turbine. For instance, in 2000, 
Flotow et al. surveyed different sensor technologies, such 
as capacitive, inductive, optical, microwave, infrared, eddy-
current, pressure, and acoustic, which can be used in health 
monitoring of the blade [12]. They analyzed and discussed 
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data quality and the complexity of the systems under each 
sensor technology. Their study covers many practical aspects 
of SHM implementation. The data analysis challenges are 
also addressed by Yang et al. in 2013 [13]. In 2011, Adams 
et al. analyzed the effect of damage on modal features of a 
blade. They compared the variations in response along differ-
ent directions due to the damage  [14].

Numerous researchers have employed finite element 
simulation to develop SHM schemes. Accurate Finite Ele-
ment Method (FEM) models can contribute greatly to the 
process as they can provide the researchers with the training 
data necessary for feature extraction and statistical modeling. 
This advantage is particularly more valuable when the struc-
ture is hard to access for real data acquisition, as in offshore 
turbines. In 2007, Kumar et al. utilized a FEM approach to 
analyze a wind turbine blade for its low-frequency fatigue 
damage [15]. Based on the conducted study, they illustrated 
that it is possible to detect damage before the failure occurs. 
In another study in 2007, a group of researchers developed an 
SHM oriented FE model of the Tsing Ma bridge tower [16]. 
They could show that the developed model can represent the 
dynamic features of the structure very well.  In 2018, Xiang et 
al. developed an FE model of a transmission tower in China 
[17]. Applying model updating techniques and using the test 
data, they concluded that the FE model can capture global 
features of the model with an acceptable computational load. 
However, they stated that exploring the local features de-
serves more accurate FE modeling.

Usually, some general concerns must be considered when 
initiating an actual SHM project. Although the current project 
is not a commercial one, there has been an attempt to ad-
dress some of the more critical concerns. A 1.5 MW wind 
turbine, which is pretty similar to the one modeled in this 
project, costs up to several million Euros [18]. The blades 
of the turbine are of the most expensive components which 
contribute to about 20% of the whole expenses [19]. Further-
more, failure of the blades may introduce damage to other 
components such as nacelle and tower and cause more finan-
cial loss. Thus, it is thoroughly justifiable from an economic 
perspective to design, develop, and implement an SHM sys-
tem for a wind turbine blade.

In the current article, an accurate finite element model of 
a wind turbine blade is utilized so that the acquired data from 
the blade will be close to the values corresponding to the real 
system. The FE model, if accurate enough, can capture many 
of the signatures and behaviors of the system well. This mod-
eling makes it possible to design, develop and validate SHM 
algorithms before real-time implementation in a system. This 
can make significant economic value by reducing the cost of 
trial and error. According to the author’s best knowledge, this 
is the first time that the whole process of health monitoring is 
being done utilizing an FE model of the wind turbine blade.

The current paper consists of four sections. A description 
of the whole method is presented in section 2. This section 
includes some explanations on the FE model of the blade, 
data collection scheme from FEM, pattern recognition, and 
statistical modeling of the data. The results are demonstrated 

in section 3. The last section is devoted to a discussion on the 
simulation results. The final section of the paper is dedicated 
to the concluding remarks.

2. METHODOLOGY
Considering the challenges and costs involved in experi-

mental data collection and its inflexibility in studying differ-
ent ambient and structural conditions, a physics-based model, 
such as a FE model, could offer many benefits by providing 
a virtual platform for the development of different parts of 
the SHM system. Mainly, the model output under different 
simulation conditions can be used as training data, which is 
a crucial element of any SHM system. The FE model pre-
sented by Cornell University [20] is taken and then custom-
ized promptly to be usable for dynamic transient analysis and 
to model damages. Thereafter, the SHM scheme is exerted on 
the data obtained by this model.

There is a wide array of possible damage scenarios that 
can happen to a wind turbine, e.g., composite delamination, 
crack formation, and fracture. Accurate modeling of these 
damages is complicated and can be the subject of another 
study, but the consequence in most of the damage scenari-
os is a reduction in stiffness that results in the change of the 
structure`s static and dynamic responses and thus, changes 
the modal properties [21]. Hence, in this project, the dam-
age has been modeled merely by reducing the stiffness of the 
blade at different locations.

Wind turbine blades are exposed to high wind speeds 
while rotating about a center at a high altitude above the 
ground. These special conditions result in some difficulties in 
accessibility of the blades for measurement purposes during 
the operation. Therefore, some sensing devices must be in-
stalled on the blades before triggering the process in an actual 
wind turbine. In the current project, maximum effort has been 
made to model these actual operational and environmental 
conditions, by considering the wind speed and blade rotation. 
Some measurement points are specified on the blades as the 
sensors to have vibration signals on them.

In order to have a comprehensive SHM paradigm, after an 
initial operational evaluation, some principal steps must be 
implemented [1], which are: (1) Data collection and prepro-
cessing, (2) Feature extraction and feature selection, and (3) 
Statistical modeling for feature discrimination. In this work, 
the steps are implemented one by one as described below.

2.1. Data Collection And Preprocessing
As stated before, the data are provided from several FE 

simulations on a close-to-reality model, in its healthy and 
damaged conditions. An existing CAD model corresponding 
to a blade of 1.5XLE GE wind turbine, as shown in Fig. 1, 
has been imported to the ANSYS® software. The details 
corresponding to the simulated blade including its spar 
specifications, dynamic properties, and geometric features 
can be found in reference [22]. Some specifications of the 
turbine blade and the operating conditions used in this study 
can also be found in Table 1.

Five virtual sensors are considered to be placed in the mid 
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Parameter Value
Rated power 1.5 MW

Cut-in wind Speed 3.5 m/s
Rated wind speed 11.5 m/s

Cut-out wind speed 20 m/s
Length 82.5 m

Tip speed 81 m/s
Material GFK

Table 1. Specifications and operating conditions of the wind turbine blade [20].

Fig. 2. Sensors and their placement on the blade.

Fig. 1. Imported wind pressure on the blade

part of the blade FE model, as illustrated in Fig. 2. Acceleration 
signals corresponding to each of these locations are obtained 
during simulations and used in the feature extraction phase 
of the study.

The existence of noise on the signals in real systems 
lessens the clarity of signal with respect to the ones obtained 
from the simulations and may lead to different outcomes in 

the system identification process. To minimize this difference, 
synthetic noise should also be added to the data collected 
through simulations. The addition of the noise also makes the 
process of statistical model development more effective as 
recommended in the literature [23]. This is due to the fact 
that the size of the training data increases and randomness 
is added to each data point. As such, Gaussian white noises 
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with a specific Signal-to-Noise Ratio (SNR) are added to the 
original data before moving on to the feature extraction phase 
of the study.

2.1.1. Finite Element Simulations
Two main simulation stages should be implemented on 

the model. At the first stage, employing CFD analysis of 
FLUENT component in ANSYS, the blade is exposed to 
several wind speeds. In this study, it is assumed that the rotor 
speed is constant at 2.2 rad/sec and the wind speed varies for 
different Tip Speed Ratios (TSR). The wind speed also differs 
from 10 m/s to 20 m/s, these amounts have been chosen from 
the optimum TSR which is considered to be around 5 [24] 
and the nominal wind speed which is given to be about 11 
m/s. The nominal rotational velocity has been considered 
around a remote point set to be at the center of the hub. 
Then Navier-Stokes equations are solved for a moving frame 
placed on the blade using a CFD-optimized tetrahedral mesh. 
k-ω, SST (Shear Stress Transport) viscous model, which is a 
hybrid turbulence model, a combination of k-ω model which 
is suitable for near the boundary condition and k-ε which is 
a good choice for the free stream, is utilized to model the 
behavior of wind accurately both near the boundary layer 
and in the mainstream. The results obtained from the CFD 
part correctly models the fluid flow properties expected 
such as the wake behind the blade and the increment of the 
wind velocity over the blade surface from the hub to the tip, 
Detailed analysis of the CFD results is not within the scope 
of the current study and the interested readers can refer to 
reference [20]. Then the profile of wind pressure on the blade 
can be obtained.

In order to use the CFD results in the structural analysis, 
the resulting wind pressure is to be transferred into the 
structural component of the software. This practice is known 
as one-sided Fluid-Solid interaction. Therefore, at the second 
stage, the calculated pressure is imported to the transient 
structural component of ANSYS, to get the dynamic response 
of the blade due to the wind loading and rotor speed. The 
density and the stiffness of the blade are set at this point as 
given in reference [20]. The transient analysis is conducted 
over 10 seconds, logging 2500 acceleration data along the 
Z-axis which is perpendicular to the blade surface. This 
means that each run of the study yields 2500 data, taken with 
a sampling frequency of 250 Hz, to be utilized in the feature 
extraction part. The results obtained from the finite element 
modeling are independent of the mesh size and features such 
as aspect ratio and orthogonality of the mesh all fall within an 
acceptable range.

Reducing stiffness is a method commonly employed in 
the literature as in reference [25] to impose the damage in the 
FE method. In this study, the stiffness of the spar is reduced 
by specific values to model the damage in the blade. For this 
purpose, three damage scenarios are considered: (1) The 
stiffness of the spar along the whole blade is reduced by 50 
percent, (2) the stiffness of the third one-fifth of the spar is 
reduced by 50 percent and (3) the stiffness of two-fifths of 
the spar is reduced by 50 percent. Employing these scenarios, 

the damage is implemented in the model and the data from 
the structural analysis are transferred for further process to be 
sent to the machine learning scheme in the next stage.

2.2. Feature Extraction And Feature Selection
Feature engineering is about creating a low-dimension set 

of parameters from the original high-dimension data which 
best characterizes the system. If the engineered features 
represent inherent characteristics of the system, then the 
features are invariant to operating conditions and they may 
serve as indicators for the occurrence of probable damage in 
the structure. Damage-sensitive features that can be used for 
this purpose are comprehensively discussed by Farrar and 
Worden [9].

In this work, modal analysis is employed for feature 
extraction from primary time signals of FE simulations. 
Modal analysis characterizes the system in terms of its 
natural frequencies, mode shapes, and damping ratios, 
which are representative of the inherent system properties. 
This approach formulates feature engineering as a system 
identification problem where the plant parameters are 
determined. This model-based approach, unlike signal-based 
methodologies, could consistently provide information about 
the changes in the system even under various operating 
conditions [9].

2.2.1. Modal Parameters
Since in this case, excitor is the operational force induced 

by wind velocity and blade rotation, it is needed to employ 
an Operational Modal Analysis (OMA) approach to invoke 
the natural frequencies, mode shapes and damping ratios 
of the system. Among various frequency-domain and time-
domain OMA approaches, in this article, the Stochastic 
Subspace Identification (SSI) method is employed due to its 
clear advantages over other methods. Using linear algebra 
manipulations to reach the state-space matrices of the system 
directly, SSI  approach is computationally more efficient and 
assures convergence of the analytical procedures. Another 
advantage of the SSI method which makes it a better choice 
is its robustness against noise.

The state-space formulation describes the system in terms 
of discrete state matrix [ ]A , discrete input matrix [ ]B , 
discrete output matrix [ ]C  , and direct transmission matrix 
[ ]D  as [26]:

(1)

where ks , ku  and ky  represent state of the system, 
system input and measured data at time step k , respectively.

There are mainly two types of SSI methods: covariance-
driven and data-driven. The first approach is used in this 
work due to its efficient computational load, which makes 
it suitable for real-time implementation in situ. Covariance-
driven stochastic subspace identification (CD SSI) is a 
parametric, time-domain method that identifies the stochastic 

{ }
{ }

1 [ ]{ } [ ]{ }

[ ]{ } [ ]{ }
k k k

k k k

s A s B u

y C s D u
+ = +

= +



5

A. Emami et al , AUT J. Mech. Eng., 5(1) (2021) 97-108, DOI: ﻿ 10.22060/ajme.2020.17245.5853

state-space realization of the system, using only output data. 
The algorithm starts by forming the block Toeplitz matrix,

(2)

where subscript i stands for time delay in covariance 
matrix and ˆ

iR    is the autocorrelation of the output,
(3)

where [ ]:l mY   is a partition from the total data matrix 
[ ]Y  by removing elements from beginning up to l th element 
and also from m th element to the end ( N th element). Here, 
the data matrix [ ]Y  consists of the acquired data arranged 
in 5 rows which represents the number of utilized sensors, 
and 2500 columns which is the number of logged data in 
each measurement. The Toeplitz matrix can be decomposed 
into observability [ ]iO  and reversed controllability [ ]iRC  
matrices as,

(4)

The state matrix [ ]A  can be computed by decomposition 
of the one-lag shifted Toeplitz matrix as,

(5)

Therefore,
(6)

where + sign stands for pseudo-inverse operation. Once 
the state matrix [ ]A  is obtained, [ ]C  matrix will be 
calculated using the observability matrix,

Having the state space matrices [ ]A and [ ]C  known, 
the mode shapes can be computed using eigenvalue 
decomposition:

(8)

where [ ]Ψ  is the eigenvectors matrix of [ ]A  and [ ]µ  is 
the diagonal matrix corresponding to the eigenvalues. Having 
column j of the eigenvector matrix as { }jψ , the mode shape 
vector { }jφ , which is the observable part of the eigenvector 
is obtained by utilizing the observability equation as:

 
(9)

where p  is the number of measurement sensors,  j
denotes the j th column of the eigenvectors matrix, and n  is 
the order of identification. The next step is to find the natural 
frequencies and damping ratios by converting the system 
eigenvalues from discrete time to continuous time using zero-
order-hold [26]:

(10)

where jω  is the natural frequency in radians, jf
is the natural frequency in Hertz, and jς  is the damping 
ratio. Extracting the features from data corresponding to 
an undamaged system, some features should be selected 
manually using engineering intuition or automatically using 
machine learning algorithms such as Principal Component 
Analysis (PCA), both of which are carried out herein [9]. The 
first three natural frequencies, as well as corresponding mode 
shapes, are selected among all natural frequencies and mode 
shapes since they are detectable precisely from all the data 
sets, whereas some natural frequencies cannot be obtained 
from some measurement individually.  Afterward, PCA is 
used to detect two main principal components which have the 
most significant variation, from the three natural frequencies 
and mode shape so that visualizing the results will be 
possible. Although the PCA algorithms are mainly used for 
dimensionality reduction, it is also used in 2D and 3D data 
to embolden variations, which can help better illustrate the 
damaged measurement in the current study.

2.3. Statistical Modelling For Feature Discrimination
Statistical modeling is used here to classify the current 

state of the heath of the system as healthy or faulty. Such a 
model will take the features obtained from ARMA and modal 
methods as inputs and yields a probability associated with the 
failure. The statistical modeling problem could be formulated 
as an unsupervised anomaly detection problem or a supervised 
classification problem. In the former, only deviation from 
the normal condition (i.e. damage) is detected without any 
diagnosis whereas, in the latter, the damage classification 
could be performed providing more information about the 
nature of failure, its location, etc.
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Condition 1st Natural Frequency 
(Hz)

2nd Natural Frequency 
(Hz)

3rd Natural Frequency 
(Hz)

Healthy 1.7972 3.6828 8.2936

Whole spar damaged 1.6975 3.5041 7.6787

Two-fifths of the spar damaged 1.7660 3.6401 8.0258

One fifth of the spar damaged 1.7769 3.6617 8.1374

Table 2. Natural frequency results from FEM for undamaged system and different damage 
scenarios

Fig. 3. Detecting damage induced by the first scenario in the whole blade using the natural 
frequency feature

 

 

The algorithm used here is the well-known supervised 
classification algorithm called Support Vector Machine 
(SVM) that is modified for nonlinear semi-supervised 
anomaly detection problem. This algorithm is called one-
class kernel SVM that is developed by Schölkopf et al. 
[27]. Getting data sets corresponding to the healthy system, 
the algorithm creates a frontier to distinguish the class of 
undamaged data, this is known as the training step. When a 
new data set is given to the algorithm, it determines whether 

the new data fits within the defined frontier or not. Based on 
the distance from the defined frontier, it can be expressed that 
with what probability the data belongs to a damaged blade or 
not. Using this scheme, the existence of damage, as well as its 
location, can be addressed.

3. RESULTS AND DISCUSSION
An SVM model is trained using the data obtained from 

the FE simulations on a healthy structure. In the next step, 
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Fig. 4. Detecting damage induced by the first scenario in the whole blade using the mode 
shape feature

 

 

 

 Fig. 5. Detecting damage under second damage scenario using the natural frequency feature
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Fig. 6. Indicating the health of the structure under the second damage scenario in the 
undamaged part using the mode shape feature

 

 

Fig. 7. Indicating the health of the structure under the second damage scenario in the 
damaged part using the mode shape feature.
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Fig. 8. Detecting damage in two two-fifths of the blade using the natural frequency feature

Fig. 9. Detecting damage in two two-fifth of the blade using the second element of the mode 
shape feature
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Fig. 10. Detecting damage in two two-fifth of the blade using the third element of the mode 
shape

the damage is introduced to the FE model of the structure 
by three distinct scenarios as mentioned before. Thereafter, 
implementing SVM on the FE simulation outcomes, the 
existence and location of damage can be successfully 
determined.

3.1. Modal Parameters From Fe Simulations
The first three natural frequencies results from FE forward 

solution on health and damaged systems are presented in 
Error! Reference source not found.. Considering the results 
in this table, the effect of damage and its different scenarios is 
obvious on the changes in modal parameters of the system. It 
should be noted that the damages have been inflicted on the 
spar, which is a bar in the middle of the blade that boosts the 
structural rigidity of the blade.

3.2. Damage Detection By Modal Parameters
Implementing the first damage scenario, the existence of 

damage is detected successfully by introducing the first three 
natural frequencies and all elements of the first three mode 
shape features of the blade to SVM, as illustrated in Figs. 3 
and 4, respectively. In these figures, each point represents a 
measurement. The horizontal axis depicts the first principal 
component and the vertical axis depicts the second principal 
component. The blue markers represent the training data and 
the learned frontier, obtained from training data, is drawn in 

red. The damaged measurement is represented by the yellow 
marker. However, the location of the damage could not be 
detected as expected. In other words, the effect of damage is 
observed in all the elements of the mode shape vector.

In the second scenario, again the existence of damage 
is detected by the natural frequency. Moreover, the location 
of the damage is detected by analyzing the second and third 
elements of the first mode shape. The result of the natural 
frequency analysis is depicted in Error! Reference source not 
found..

The analysis of the mode shapes under the second damage 
scenario is also illustrated in Error! Reference source not 
found. for the undamaged part of the blade and in Error! 
Reference source not found. for the damaged part. As clearly 
depicted, only the elements corresponding to the damaged 
part of the spar indicate the existence of the damage.

In the third scenario, the stiffness of two-fifths of the spar 
was reduced by 50 percent, and the same steps are taken. The 
natural frequency analysis is illustrated in Fig. 8. Furthermore, 
the study of mode shapes indicated the existence of damage 
correctly in the second and third fifths of the spar. These 
results are illustrated in Figs. 9 and 10, respectively.

4. CONCLUSIONS

The stochastic subspace identification is capable of 
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identifying the system modal parameters very well, no matter 
how significant the noise level is, and is a reliable way to 
extract damage-sensitive features. Modal parameters of 
the structure seem to be a good indicator of damage, but 
the extent of the damage must be substantial. The anomaly 
detection algorithm is capable of finding the damaged data 
autonomously once trained with a large data set. There 
is a possibility of false positive alarms, which means the 
algorithm diagnoses normal data as an anomaly. But it can be 
overcome by enlarging the training data set so that the trained 
frontier of one-class kernel SVM will be more precise. For 
further research, the capability of other features like wavelets 
and modal curvature could be investigated. The performance 
of different anomaly detection algorithms could also be 
compared with the current algorithm.
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