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ABSTRACT:  The main aim of the present paper is multi-objective optimization of circular cylindrical 
shells composed of fibre metal laminate. For this purpose, the genetic algorithms method is applied for 
optimization of combination of the objective functions including weight and transverse impact response 
and two constraints including critical buckling loads and principle strains. The initial compressive stress 
is taken to be equal to half of the axial critical buckling load of the shell. Nine design variables including 
material properties (fibre and matrix), volume fraction of fibre, fibre orientation, and volume fraction 
of metal layers are considered. In analytical solution, transient dynamic response due to low-velocity 
transverse impact of a large mass on the mid-span of composite circular cylindrical shells is investigated 
based on the first-order shear deformation shell theory and mode superposition method. The impact 
force of an isotropic sphere impactor is calculated using a Two-Degree-Of-Freedom (TDOF) spring-
mass model. Different fibre metal laminate layups are considered for optimization and the results are 
compared. Results show that fibre metal laminate layup with 2/1 configuration has the smallest weight 
and impact response as compared to the other layups.
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1. INTRODUCTION
Fiber-metal Laminate (FML) is a hybrid composite 

material combining thin metal layers with adhesive fibre 
prepreg as shown in Fig. 1.

They combine good characteristics of metals such as 
ductility, impact, and damage tolerances with the benefits of 
fibre composite materials such as high specific strength, high 
specific stiffness, and good corrosion and fatigue resistance. 
The Metal Volume Fraction (MVF) is defined as the sum of 
the ratio of thicknesses of the individual aluminum layers to 
the total thickness of the laminate [2]:
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FML materials are favorable to be used in advanced industries 
such as automobile, aircraft, and aerospace. Most FML 
cylindrical shells are subjected to impact loads and application 

of this loading may cause an undesired deformation and 
strength reduction. Therefore, considering the impact 
response of these structural components is necessary for the 
design process. The orthotropic material properties of FMLs 
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Algorithms (GA) is offered for such problems and has gained 
substantial attention in recent years. This technique is well 
known for robustness and ability to search complex and noisy 
search space, phenomena that are frequently encountered in 
designing and optimization problems especially for hybrid 
composite materials such as FMLs GA is a probabilistic 
global optimization method, in which the design variables 
are coded into individual genes or chromosomes and for 
which an individual design has one or more chromosomes. 
This optimization method works with a population of design 
rather than a single design. New generations of design 
evolve from previous generations by applying crossover and 
mutation operations to the genetic string in a manner similar 
to the evolution process of living creatures. Moreover, an 
individual design that has high fitness has also a probability 
of producing descendants. Many types of research have been 
done on the buckling, free vibration, and dynamic response of 
composite cylindrical shells. Geier et al.[4] studied the effect 
of stacking sequence on the buckling of the simply-supported 
cylindrical shell under axially compressive loads. Ng et al. 
[5] presented the dynamic stability analysis of cylindrical 
panels taking into account the transverse shear effects. Li and 
Chen [6] investigated transient dynamic response analysis of 
orthotropic circular cylindrical shells subjected to external 
hydrostatic pressure. They used classical shell theory and 
considered simply-supported boundary conditions. Lam 
and Loy [7] studied the influence of boundary conditions for 
a thin laminated rotating cylindrical shell using first Love’s 
approximation and Galerkin method. Lee and Lee [8] studied 
the free vibration and dynamic response for the cross-ply 
composite circular cylindrical shell under radial impulse 
load and the boundary conditions were considered to be 
simply supported. Matemilola and Stronge [9] developed 
an analytical solution for the impact response of a simply-
supported anisotropic composite cylinder. Sheinman and 
Greif [10] developed a general analytical and numerical 
method used for free and forced vibration of thin shells of 
revolution made of multi-layered elastic orthotropic materials 
with arbitrary stacking sequence. Khalili et al. [11] studied 
the free and forced vibration of simply supported composite 
circular cylindrical shells. The dynamic response was studied 
under transverse impulse, axial load, and internal pressure by 
modal technique. However, according to the best knowledge 
of the authors, the impact response of FML cylindrical shells 
has not been reported. In the analysis of the impact on 
cylindrical shells, commonly two parameters are of major 
concern. The first parameter is the estimation of contact force 
and the second one is the prediction of displacements as well 
as strains in the target structure due to the impact. Most of 
the researchers used Hertizan contact law or its modified 
version for the proper estimation of contact force between the 
impactor and the target during the impact event [12]. In the 
open literature, some researchers dealt with the optimization 
of composite structures. Riche and Haftka [13] used GA for 
optimization of laminate stacking sequence for buckling load 
maximization. Smerdov [14] carried out a computational 
study for optimum formulations of optimization problems 

on laminated cylindrical shells for buckling under external 
pressure. It was indicated that increasing the number of 
layers (more than four) does not result in increasing the 
buckling load. Weaver [15] used a computational study for 
designing the laminated composite cylindrical shells under 
axial compression to minimize the mass with local and global 
constraints. Duvaut et al. [16] developed a finite element 
discretization for determining the optimal direction and 
the volume fraction of fibre at each point of a structure to 
minimize the weight and the cost. Hu and Ou [17] used a 
sequential linear programming method with a simple move-
limit strategy for maximization of the fundamental frequency 
of laminated truncated conical shells with respect to the fibre 
orientations. Park et al. [18] used GA for optimization of 
laminate stacking sequence to maximize the strength. Adali 
and Verijenko [19] optimized the stacking sequence design for 
hybrid laminates under free vibration to minimize the design 
cost. Soremekun et al. [20] used GA for stacking sequence 
blending of multiple composite laminates to minimize the 
weight and the cost of the panels and presented a methodology 
for designing the two-dimensional array of laminated 
composite panels with varying loads. Jaszkiewicz [21] studied 
a new genetic local search for multi objective combinatorial 
optimization and indicated that the GA is a good method for 
multi objective functions. Azarafza et al. [22] studied analysis 
and optimization of laminated composite circular cylindrical 
shell subjected to compressive axial and transverse transient 
dynamic loads. Their results show that the weight coefficient of 
multi-objective function and the type of the constraints have 
a considerable effect on the optimum weight and dynamic 
response. Taskin et al. [23] used the Generalized Differential 
Quadrature Method (GDQM) for the natural frequencies and 
loss factors of composite sandwich shells with frequency-
dependent viscoelastic core. Rezvani et al. [24] investigated 
the dynamic response of the structures in the vicinity of 
railway tracks. The methodology of solution included the 
assumption of the elastic half space for the transfer medium. 
Arikoglu [25] studied the multi-objective optimal design of 
hybrid viscoelastic/composite sandwich beams for minimum 
weight and minimum vibration response is aimed. The 
equation of motion for linear vibrations of a multi-layer beam 
is derived by using the principle of virtual work in the most 
general form. Pang et al. [26] used the Jacobi-Ritz method for 
free and forced vibration analysis of airtight cylindrical vessels 
consisting of elliptical, paraboloidal, and cylindrical shells. 
Flügge’s thin shell theory was adopted for the calculation 
model of vessels. Dinh  and  Nguyen [27] studied the linear 
dynamic response and vibration of  Functionally Graded (FG) 
carbon nanotube-reinforced composite truncated conical 
shells resting on elastic foundations based on the classical 
shell theory. Tooti et al. [28] studied the free vibration of a 
functionally graded cylindrical shell made up of stainless steel, 
zirconia, and nickel.  The equations of motion are derived by 
Hamilton’s principle. Galerkin method is used to derive the 
governing equations.

According, no research has been observed by the 
authors in the literature on the optimization of the 
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dynamic response of FML cylindrical shells. Hence, the 
objective of this study is to optimize the weight and the 
impact response of FML circular cylindrical shell subjected 
to two constraints (critical buckling load and allowable 
strains) and with nine design variables. Multi-objective 
formulation is carried out by applying a weight coefficient 
to weight and impact response. For this purpose, first, the 
equilibrium equations of linear (eigenvalue) buckling and 
free vibrations for the shell are solved using the Galerkin 
method to obtain critical axial buckling load and natural 
frequencies subjected to the initial compressive stress 
equal to half of the axial critical buckling load of the shell. 
Second, the analysis of quasi-static low-velocity impact 
response of simply-supported FML circular cylindrical 
shells due to striking of a large mass steel sphere, based 
on first-order shear deformation theory, the displacement 
components are taken to be the product of a function of 
position and a function of time. The ratio of the mass of 
the impactor to the total mass of the FML cylindrical shell 
is assumed to be large enough so that the impact response 
could be categorized as quasi-static impact. Accordingly, 
a two-degree-of-freedom spring-mass model is applied or 
calculation of the contact force history. The contact force 
is distributed over a small square area. The impact point 
can be everywhere on the shell, but here it is assumed to 
be at the mid-span of the shell. But, the velocity of the 
impactor is low so that large deformation does not occur. 
The function of time is obtained using the results of free 
vibrations and convolution integrals. The time response 
of displacement components is derived using the mode 
superposition method. Third, the optimization of nine 
FML design parameters for weight and impact response 
minimization is investigated using GA. The influence of 
varying optimization parameters on the convergence of the 
solutions is investigated. Furthermore, the effects of some 
FML parameters such as MVF and FML layup on the impact 
response of the shells are investigated. The new interesting 
results are presented which provide helpful insight for 
aircraft fuselage skin designers. A laminate coding system is 
used to comprehensively define FML laminates. The code for 
glass-reinforced aluminum laminate is Al/G (1+i)/i [0/90]s,  
for example, for i=4, Al/G 5/4 [0/90]s, defined a laminate 
composed of five aluminum layers and four glass-reinforced 
polymer perpregs with lay up [0/90]s alternatively 
stacked together. The thicknesses of all aluminum layers 
are assumed to be the same. Also, the thicknesses of all 
composite layers are assumed to be the same. 

2. GOVERNING EQUATIONS 
A circular cylindrical shell with the mean radius of R, the 

thickness h, and the length L is shown in Fig. 2.
u, v, and w are the displacement components in the 

axial, tangential, and radial directions, respectively, and the 
deformations are assumed to be small. Based on first-order 
shear deformation theory, the equilibrium equations for a 
cylindrical shell are as follows [8, 22, 29, 30]:
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In the above equations, 
xβ  and 

ϕβ  are the slopes in planes 
of x-z and z−ϕ , respectively. Also, 

xq , 
ϕq  and 

rq  are the 
external forces, xm  and 

ϕm  are the external moments that 
excite the shell. 

aN is the axial load. 
1I , 

2I  and 
3I  are mass 

moments of inertia. Also, N, M, and Q are stress resultants [8, 
[30]. All deformations are assumed to be small according to 
Love’s first-approximation theory. Accordingly, the maximum 
defection under impact point must be linear, i.e. it must be 
less than or almost equal to the FML shell wall thickness. All 
of the equivalent material properties for each prepreg layer 
are obtained using the rule of mixture which is well defined 
by Tsai [31].

3. BOUNDARY CONDITIONS
The boundary conditions for the cylindrical shell which 

is simply supported along its curved edges are considered 
as [8]:

 

Fig. 2. Geometry and coordinate system of the cylindrical shell subjected to the transverse impact of a steel 

sphere 

 

  

Fig. 2. Geometry and coordinate system of the cylindrical shell 
subjected to the transverse impact of a steel sphere
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In order to solve the free vibration problem, the external 
excitations are taken to be zero. After substituting stress 
resultant relations [830] into the Eq. (2), the results are 
simplified in the following form: 
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ijL  are the anti-symmetric differential operators and are well defined by Jafari et al. [30]. 
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constant coefficients of the natural mode shapes associated with the free vibration problems, m is the 

axial half-wave and n is the circumferential wave number. Galerkin method is used to solve the 

differential equations in Eq. (4). 
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4. METHOD OF ANALYSIS
4.1 Linear buckling analysis

In the linear buckling analysis, it is assumed that the 
material and the geometry of the shell are perfect and no 
imperfection exists. For calculating the static buckling load, 
the static solution is performed. Solving Eq. (4) by Galerkin 
method and after simplification, the following equation is 
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Kij is stiffness matrix and N is load matrix whose 
elements are given in Appendix. By setting determinant of 
the coefficients equal to zero, the buckling loads equation is 
derived as: 

9 

4. Method of Analysis 

4.1 Linear buckling analysis 

In the linear buckling analysis, it is assumed that the material and the geometry of the shell are perfect 

and no imperfection exists. For calculating the static buckling load, the static solution is performed. 

Solving Eq. (4) by Galerkin method and after simplification, the following equation is obtained: 

(7) { } { } 0 ( , 1,...,5)T T
ij mn mn mn mn mn ij mn mn mn mn mnC A B C D E K N A B C D E i j     = − = =        

Kij is stiffness matrix and N is load matrix whose elements are given in Appendix. By setting 

determinant of the coefficients equal to zero, the buckling loads equation is derived as:  

(8) 032
2

1 =++ γγγ crcr NN  

where iγ  are the constant coefficients and crN  is the axial critical buckling load. 

 

4.2 Free vibration analysis 

To solve the free vibration analysis, the function of time is treated as ti
mn

mnetT ω=)(  where mnω  is the 

natural frequency. By applying a method similar to the buckling analysis, the following set of 

equations can be derived: 

(9) [ ]{ } )5,...,1,(0][][ 2 ==− jiEDCBAMK T
mnmnmnmnmnijmnij ω  

where ijK  and ijM  are the stiffness and mass matrices whose elements are given in Appendix. By 

setting the determinant of the coefficients equal to zero, the characteristic frequency equation is 

derived as:  

(10) 06
2

5
4

4
6

3
8

2
10

1 =+++++ δωδωδωδωδωδ  

where iδ  are the constant coefficients. By solving Eq. (10), natural frequencies are calculated, and by 

substituting these frequencies in Eq. (9), the constant coefficients of the mode shapes are obtained. 

4.3 Dynamic response analysis  

The load is assumed to be applied only in the radial direction. Hence: 
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where iδ  are the constant coefficients. By solving Eq. (10), 
natural frequencies are calculated, and by substituting these 
frequencies in Eq. (9), the constant coefficients of the mode 
shapes are obtained.

4.3 Dynamic response analysis 
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direction. Hence:
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The impact load is applied as a uniform pressure to a small 
square area located at the center point of the shell. Then the 
constant Fourier coefficients Pmn in Eq. (11) are:
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After substituting Eq. (11) into the governing Eq. (2) 
and simplification, the generalized coordinate in Eq. (6) is 
obtained in the following form: 
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Fig. 3. Geometric parameters defining the size and position of the area of the applied load 
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A brief description of the time response analysis is presented in this paper. More details could be 

found in the authors' earlier works [11,30]. 
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A brief description of the time response analysis is 
presented in this paper. More details could be found in the 
authors’ earlier works [11,30].

4.4 Contact force history estimation
Configuration of the impact between the impactor and the 

cylindrical shell is shown in Fig. 2. A TDOF Spring-Mass (S-
M) model for estimation of contact force history is presented 
herein. Assumptions, configuration, and parameters of the 
present model are described in the following sections.

4.4.1 Model assumptions
To calculate the contact force, the following assumptions 

are made:
•	 The impactor strikes with low-velocity and normal to the 

shell’s outer surface.
•	 The shape of the impactor is spherical, with elastic 

isotropic material properties.
•	 Effects of strain rate and wave propagation on the impact 

response are neglected.
•	 The parts of the impactor’s initial energy dissipated due to 

vibrations of the impactor body, thermal effects, acoustic 
emission, and local damage are neglected.
Since in the present analysis the effect of wave propagation 

due to impact is neglected, the problem of impact considered 
here is classified as boundary controlled impact, according 
to Olsson’s classification [32]. Therefore, the impact behavior 
is assumed to be quasi-static in nature. Hence, long-time 
impact [32] due to the impact of a large mass is considered 
and discussed here.

4.4.2 TDOF Spring-Mass model
In Fig. 4, the present linear TDOF S-M model is shown. *

ck  
and kbs are effective contact and effective combined bending-
shear stiffnesses, respectively, mi and ms

* are impactor mass 
and effective mass of the target structure, respectively.

It is assumed that the impactor strikes the shell with low-
velocity 

0v . Assuming other initial conditions to be zero and 
according to Newton’s second law, equations of motion of the 
 TDOF S-M model illustrated in Fig. 4, are stated as:
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where xi and xs are system degrees of freedom (DOF). 
Similar formulation is used by Gong [12] and Shivakumar et 
al. [33]. The solution to this set of linear ordinary differential 
equations is reported by Gong [12]. The effective contact 
stiffness ( *

ck ) used by Gong [12] is employed in the present 
 TDOF S-M model. But, in the present TDOF S-M model, 
the effective mass ( *

sm ) and effective static stiffness (kbs) at the 
impact point of FML circular cylindrical shell are calculated 
and used based on the method reported by Swanson [34]. 
These parameters are determined in the following sections.

4.4.3 Determination of the contact force function 
The contact force function Fc(t) is determined as:
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\where 1ω  and 2ω  are the natural frequencies of the  
TDOF S-M system. The time function )(tf  of the external 
excitation ),,( txqz ϕ  in Eq. (11) is determined by dividing the 
contact force function in Eq. (16) to the contact area which 
is considered to be a small square patch of area AL as follows 
[35]:
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where in Eq. (17), T is Contact Time (CT). Then, 
substituting Eq. (17) into Eq. (14), the time history of the radial 
displacement of the shell at the contact point is calculated. 

5. OPTIMIZATION
The design variables for an FML circular cylindrical 

shell are FML design parameters including Metal Volume 
Fraction (MVF), material properties of fiber and matrix, 
fiber orientations, and volume fractions of fiber in prepreg 
layers. These are continuous design variables and are taken 
from their specified intervals. Hence, the gradient-based 
optimization methods are not suitable for the optimal design 
of FML circular cylindrical shells. Furthermore, owing to 
manufacturing constraints, a family of good optimum designs 
is needed rather than a single point design. GA is a method for 
evolving a given design problem to a family of near-optimum 
designs [13]. Stochastic processes are used to generate an 
initial population of individual design and the process then 
applies the principle of natural selection and survival of 
the fittest to find improved design. Furthermore, since the 
discrete design procedure works with a population of designs, 
it can explore large design space and climb different hills. This 
is a major advantage as the converged solution may contain 
many optimal of comparable performance. The population 
or family of good design produced by GA may include the 
global optimum design, rather than a single design. Hence, 
it is an appropriate tool for designing general FML circular 
cylindrical shell.

6. DESIGN PROBLEM DEFINITION
The present design problem is to minimize the weight and 

to improve the impact response of the FML circular cylindrical 
shell for a given design loading condition. The design sought 
here is a cylinder of minimum weight and improve impact 
response in certain design space with static axial and lateral 
impact load, but not buckled or failed due to the excessive 
strain. Design variables are MVF, Young’s modules ),( imif EE
, Poisson’s ratios ),( imif νν , densities ),( imif ρρ , volume 
fraction of fibre )( ifV , fibre orientation )( iθ . Subscripts f  

and m represent fibre and matrix, respectively, and subscript 
i represents the thi layer. It is to be noted that the overall 
material properties of each layer are calculated from the well-
known rule of mixture [31].

This design problem can be defined by setting up the 
optimization procedures in the following way. The input data 
are the length, the mean radius, the axial compressive load ( aN ),  
the allowable strains in principal directions 
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where g is the gravity acceleration, ir  and 1+ir  are the inner and the outer radius of the thi layer, 

respectively and ifim VV −=1 . The objective functions are to minimize the weight )(W  and to improve 

the impact response amplitude )( w  of the shell which are formulated as a function of the design 

variables as follows: 
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where g is the gravity acceleration, ir  and 1+ir  are the inner 
and the outer radius of the thi layer, respectively and 

ifim VV −=1 .  
The objective functions are to minimize the weight )(W  and 
to improve the impact response amplitude )( w  of the shell 
which are formulated as a function of the design variables as 
follows:

pifimif NiMVFVfW ,...,2,1;),,,(1 == ρρ   � (20)
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Constraints are critical buckling load and principle strains 
which are given as follows:
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The critical buckling load (Ncr)  constraint must be greater 
than or equal to the preset axial compressive load ( aN ), 
i.e. Ncr acr NN ≥ . Also, the in-plane principle strains as given in 
Eq. (23) must be less than or equal to the allowable strain 
constraints, i.e. 
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The critical buckling load )( crN  constraint must be greater than or equal to the preset axial 

compressive load ( aN ), i.e. acr NN ≥ . Also, the in-plane principle strains as given in Eq. (23) must be 

less than or equal to the allowable strain constraints, i.e. all
1111 εε ≤ , all

2222 εε ≤  and all
1212 γγ ≤  in both 

prepreg and metal layers: 
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To satisfy the requirements of optimization, it is necessary 
to consider two coefficients: the coefficient for margin of 
safety for critical buckling load )( bλ  and the coefficient for 
margin of safety for principle ply strain )( sλ , that are:
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To calculate the radial displacement response due to 
impact in Eqs. (21) and the in-plane principle strains in Eq. 
(23), the value 

aN  is taken to be zero. But, it is considered and 
assigned a particular value in Eq. (24) for comparing with Ncr.

7. MULTI-OBJECTIVE FUNCTION FORMULATION
The multi-objective optimization problem can be 

formulated concisely as:

( ) , 0 / 0b sMIN W and w and or Constriantλ λ> >   (25)

The multi-objective function formulation is carried out by 
using a convex combination of the weight objective function 
(

Wψ ) and the impact response objective function (
wψ ). Since 

these two objective functions are not the same, then they 
should be non-dimensional.
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where 
fW  and 

fw  are the values of the weight and the 
impact response, respectively, regarding the bounding values 
primarily specified for the ranges of the design variables. 
Multi-objective function (

MΦ ) is defined by the following 
relation:
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where α  is the weight coefficient. Considering buckling 
load and allowable strains constraints, the multi-objective 
function (

MΦ ) takes the following form:
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where P is a constant which depends on violation of a 
constraint [36] and S is defined as:

{ }sbS λλ ,min=    � (29)

In Eq. (27), 0=α  represents impact response optimization 
only. Also 1=α  represents weight optimization only. In this 
study, for multi-objective optimization, i.e. weight and impact 
dynamic response, the value α  is set to a number between 0 
and 1. Finally, the fitness function expression corresponded to 
multi-objective function ( MF ) is defined as follows:

M
MF

Φ
=

1  �  (30)

As the weight and the impact response are to be minimized, 
then 

MF  should be maximized.

8. NUMERICAL RESULTS
Results are presented for FML circular cylindrical shell 

subjected to the axial compression and the lateral impact loads 
to minimize weight and impact response subjected to the 
constraints of critical buckling load and the allowable strains. 
Hereinafter, everywhere otherwise stated, the cylindrical 
shell with length L=1m and radius R=1m is considered. The 
considered thin-walled FML shell may be used as primary 
structural components such as load transmitting parts in 
aircraft structures and pressurized fuel tanks where applicable 
thickness-to-radius ratios (h/R) may vary from 0.002 up to 
0.004, which is discussed in the following. To show the results 
clearly, some examples are presented. A computer program 
is written to optimize the design variables the maximized 
fitness (minimum weight and impact response) using GA.  
Input data used for the optimization process are as follows. 
The ranges of design variables are [22]: 

3{1380,...,7800}kg/m ,

{60, ..., 483}GPa, {0.15,...,0.35}
f i
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fW  and fw , the values of the weight and the impact 
response used in Eq. (26), regarding the bounding values 
of design variables, irrespective of the buckling and strain 
constraints are shown in Table 1.
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GA control parameters are population size (P.S. =50), 

probability of crossover ( cP =0.5), and the probability of 
mutation ( mP =0.003) with linear deterministic rule decrements. 
Although, the probability of mutation is usually less than 
0.001, but the great value selection with linear deterministic 
decrements allows exploring and exploiting of searching space 
to find the optimum solution and prevent convergence to a 
local optimum. Three different values for weight coefficient (α
) are utilized for multi-objective optimization in this study (i.e. 

3.0=α , 5.0=α  and 7.0=α ). All of the genetic operations are 
repeated until obtaining a converged solution. 
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8.1. Verification of the analytical model for contact force 
estimation

The material properties related to Figs. 5 to 9 are shown 
in Table 2.

 To verify the TDOF S-M impact model, the history of 
contact force for pure composite and FML cylindrical shells, 
are compared in Figs. 5 and 6, respectively.

As indicated in Fig. 5, the result of the present impact 
model has a good correlation with analytical and experimental 
results reported by Matemilola and Stronge [9] and Gong 
[12]. The discrepancy between the present results with the 
experimental result by Gong [12] for maximum contact force 
is less than -4.3% and the discrepancy contact time is less than 
1.6%. Fig. 10.2 presents a comparison between the results of 
contact force history of the present impact model with those 
obtained using an FEM model made in ABAQUS explicit 
solver. In the FEM model, S4R element is used for modeling 
the cylindrical shell and R3D4 and R3D3 element are used 
for modeling the impactor. As can be seen from this figure, 
similar trends are observed. The discrepancy between the 
present results with ABAQUS/Explicit results for maximum 
contact force is less than 11.6% and the absolute discrepancy 

for contact time is less than 8.2%. As it is shown in Figs. 5 and 
6, the results are in good agreement.

8.2 Verification of the optimization procedure
8.2.1 Investigation of GA capability to find global optimum

To investigate the convergence of GA to the global 
optimum point, maximum radial displacement response 
surface versus fibre orientation )(θ  and MVF as design 
variables for an Al/prepreg 2]/[4/5 θθ −  FML cylindrical shell 
is derived in Fig. 7.

As can be seen in Fig. 7, there are two local minimum 
points for maxw . But as indicated in Fig. 8, GA escapes the 
local minimums and rapidly finds the global minimum.

Fig. 8 shows the progress in the evolution of the design 
variables, i.e. fibre orientation θ  and MVF, in the design space 
over the contour plot of the level lines corresponded to the 
response surface plot in Fig. 7. 

Fig. 9 shows the convergence of the maximum fitness  
(

MF ) versus G.N. and after 31 generations, the optimum fibre 
orientation and MVF are obtained.

The results in Fig. 9 represent a good capability of the GA 
to escape the local optimums and to find the global optimum 

Table 1. Values of the weight response ( fW ) and the dynamic response ( fw ) used in Eq. (25), with respect to the bounding 

values of design variables, irrespective of the buckling and strain constraints 
 

Number of prepreg layers Np=1, 2,3 
FML layup 2/1 3/2 4/3 5/4 

Objective 
Function 

fw (mm) 4.7099 5.0295 5.1700 5.2491 

fW (N) 744.96 

 
  

Table 1. Values of the weight response ( fW ) and the dynamic response ( fw ) used in Eq. (25), with respect to the bounding values of 
design variables, irrespective of the buckling and strain constraints

Table 2. Ply properties used in Figs. 5-9 
 

Fig. no. Material  11 GPaE   22 GPaE   12 GPaG   23 GPaG  
12ν  3kg/m      

Fig. 5 
Glass/Epoxy 
(Gong, 1995) 

14.506 5.362 2.509 2.509 0.231 1526 

Figs. 6 to 9 

Al 2024 T3 
[37] 

72.4 72.4 28.0 28.0 0.33 2770 

Glass/Epoxy 
[38] 

60 13 3.4 3.4 0.3 2100 

 
  

Table 2. Ply properties used in Figs. 5-9

 

Fig. 5. Comparison of contact force histories due to impact of a steel sphere on a GRP cylinder 

  

Fig. 5. Comparison of contact force histories due to impact of a steel sphere on a GRP cylinder 
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rapidly. Table 3 shows the comparison between the results 
obtained by random search using GA, and these obtained by 
the complete (point by point) searching the design space. As 
can be seen in Table 3, the optimum values for fibre orientation

)(θ and MVF obtained by GA are very close to those found 
through the present complete searching method.

8.2.2 Investigation of the convergence of the GA 
Fig. 10 shows the convergence of fitness function (

MF ) for 
Al/prepreg  2/1 FML cylindrical shells. 

The results show that for small values of Np, the 
minimum required G.N., as well as the run time for sufficient 
convergence, is lower rather than larger values of Np, i.e. G.N. 
=79 is required for Np =1, G.N. =97 for Np =2 and G.N. =110 for 

Np =3. Fig. 11 shows the convergence of the fitness function 
for two population sizes i.e. P.S. =60 and P.S. =80. 

In this figure, using P.S. =60, convergence is happened 
after about G.N. =110 and when   P.S. =80, the convergence 
is happened after about G.N. =102, and the program run time 
for P.S. =80 is greater than that of P.S. =60. As the population 
is increased, the program run time is also increased and the 
number of generations in which convergence occurred is 
decreased. Fig. 12 shows two runs with the same input data 
for P.S. =60.

The minimum required G.N. at which the convergence 
occurred are G.N. =91 and G.N. =95 for the first and 
second runs, respectively. Hence, different runs converge 
approximately to the same value of fitness (i.e. 8.16≅MF  in 

 

Fig. 6. Comparison of contact force histories due to impact of a solid sphere on an FML cylinder with layup Al/G 

5/4 [0/90]s  for the mass ratio of mi/ms=0.5 

  

Fig. 7. Maximum radial displacement response surface variation versus the design variables, fibre orientations θ  , and metal 
volume fraction (MVF), for an FML shell with the layup Al/Comp. 5/4 [ ]2/ θθ − , to be compared with the results in the first column 

of Table 3 (No buckling and/or strain constraint).

Fig. 6. Comparison of contact force histories due to impact of a solid sphere on an FML cylinder with layup Al/G 5/4 [0/90]s for the 
mass ratio of mi/ms=0.5

 

Fig. 7. Maximum radial displacement response surface variation versus the design variables, fibre orientations 

θ  , and metal volume fraction (MVF), for an FML shell with the layup Al/Comp. 5/4 [ ]2/ θθ − , to be compared 

with the results in the first column of Table 3 (No buckling and/or strain constraint). 
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Fig. 12). Figs. 13 to 16 show that the GA sweeps all the design 
space. Also, it can be seen in these figures that the selected 
design variables take different values between the upper and 
the lower limits preliminarily assigned to them. This point 
shows that all the design variables play an active role in the 
optimization process. 

8.3 Discussion 
In Table 4, different cases of the optimization parameters 

are classified. Different combinations of objective functions, 
constraints types, and weight coefficients are considered in 

 

Fig. 8. Contour plot of level lines (lines with the same values on the response surface of the radial displacement 

response in Fig. 7) together with the progress in the evolution of the design variables 1θ  and 2θ ;  

  

Fig. 8. Contour plot of level lines (lines with the same values on the response surface of the radial displacement response in Fig. 7) 

together with the progress in the evolution of the design variables 1θ  and 2θ ;

 

Fig. 9. Fitness ( MF ) of the most fit chromosome versus G.N. for the generations shown in Fig. 7 
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Fig. 9. Fitness ( MF ) of the most fit chromosome versus G.N. for the generations shown in Fig. 7

this table.
 According to the cases defined in Table 4, in Table 5, 

the effects of optimization parameters including objective 
function, weight coefficient, and constraint type are 
investigated.

The effect of weight coefficient is studied by making a 
comparison between the optimization results of cases no. 1, 
2, and 3 for “Response + Weight” as objective function and 
“Buckling + Strain” as constraint type defined in Table 4. The 
effect of constraint type is studied by making a comparison 
between the optimization results of cases no. 2, 4, and 5 for 
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“Response + Weight”  as objective function and cases no. 6, 7, 
and 8 for “Response” as an objective function, all with weight 
coefficient 5.0=α  as defined in Table 4. The effect of the 
objective function is studied by making a comparison between 
the optimization results of cases no. 2 and 6 for “Buckling + 
Strain” constraint, cases no.4 and 7 for “ Buckling “ constraint, 
and cases no. 5 and 8 for “ Strain” constraint, all with weight 

coefficient 5.0=α  as defined in Table 4. For each of cases no. 
1 to 8 defined in Table 4, four layups including 2/1, 3/2, 4/3, 
and 5/4 are considered and the optimization process is done 
for a number of FML layups .3,2,1=pN  Consequently, thirty-
two (8×4) tables are produced according to Table 4. But, only 
case no. 4 in Table 4 is considered only and the corresponding 
results are presented in Tables 6 to 9 for layups 2/1, 3/2, 4/3, 

Table 3. Comparison between the optimization results obtained through the random search method using GAand that obtained by 
the complete searching the design space. 
 

 Results obtained by GA Results obtained by complete searching the design space 

θ (deg) 68.5 68.1 
MVF 0.23 0.225 
w (m) 1.55e-3 1.54e-3 

 
  

Table 3. Comparison between the optimization results obtained through the random search method using GAand that obtained by 
the complete searching the design space.

 

Fig. 10. Fitness ( MF ) of the most fit chromosome versus G.N. for Al/prepreg 2/1 FML cylindrical shells ( 5.0=α , 

Constraints: buckling and strain). 
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Fig. 10. Fitness ( MF ) of the most fit chromosome versus G.N. for Al/prepreg 2/1 FML cylindrical shells ( 5.0=α , Constraints: 
buckling and strain).

 

Fig. 11. Fitness ( MF ) of the most fit chromosome  versus G.N. for P.S.=60 and 80, for an Al/prepreg 2/1  FML 

cylindrical shell ( 5.0=α , Constraints: buckling and strain). 
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Fig. 11. Fitness ( MF ) of the most fit chromosome  versus G.N. for P.S.=60 and 80, for an Al/prepreg 2/1  FML cylindrical shell ( 5.0=α , 
Constraints: buckling and strain).
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and 5/4, respectively. 
As it is clear in Tables 6 to 9, for a number of prepreg 

layers Np greater than 1(>1), the smallest impact response 
is corresponded to lay up 2/1 (or Al/prepreg 2/1 ). Also, the 
smallest weight corresponds to a number of prepreg layers 
greater than 1 (Np >1). For all the cases considered in these 
tables, the smallest weight corresponds to Np =2. The greatest 
buckling load happens at Np =2 for layup2/1 and the smallest 
buckling load occurs at Np =1 for layup 2/1. Hence, lay up 2/1 
has more benefits as compared to the other layups. For the 
maximum strength ratio, no special trend could be observed.

For the sake of space-saving, the remaining 28 tables 
related to cases no. 1 to 3 and 5 to 8 in Table 4 are not presented 
in this paper and only useful outcomes are presented and 
outlined in the following sections 8.3.1 to 8.3.3, considering 
the effects of weight coefficient, constraint type, and objective 
functions, respectively.

8.3.1 Effect of weight coefficient 
For item no. A in Table 5 (effect of weight coefficient), the 

following results are carried out:
1- For lower values of α , say 3.0=α , the optimum 

values corresponded to different FML lay ups cover the 
predefined range for MVF variable.

2- By increasing α  and number of prepreg layers (Np), the 
minimum weight is reached. 

8.3.2 Effect of constraints type 
For item no. B in Table 5 (effect of constraint type with 

the response and weight objective functions), the following 
results are obtained:
1- The minimum impact response, as well as maximum 

buckling load, is occurred in case no. 4, where the 
constraint type is buckling only.

 

Fig. 12. Convergence of fitness value ( MF ) for two different runs for a Al/prepreg 2/1 FML cylindrical shell. (

5.0=α , Constraints: buckling and strain). 

  

Fig. 12. Convergence of fitness value ( MF ) for two different runs for a Al/prepreg 2/1 FML cylindrical shell. ( 5.0=α , Constraints: 
buckling and strain).

 

Fig. 13. Variation of ifρ  versus G.N. for an Al/prepreg 2/1 FML cylindrical shell, (Np=1).
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Fig. 13. Variation of ifρ  versus G.N. for an Al/prepreg 2/1 FML cylindrical shell, (Np=1).
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Fig. 14 Variation of ifE  versus G.N. for an Al/prepreg 2/1 FML cylindrical shell, (Np=1). 
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Fig. 14. Variation of 
ifE  versus G.N. for an Al/prepreg 2/1 FML cylindrical shell, (Np=1).

 

Fig. 15 Variation of ifν  versus G.N. for an Al/prepreg 2/1 FML cylindrical shell, (Np=1). 
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Fig. 15. Variation of ifν  versus G.N. for an Al/prepreg 2/1 FML cylindrical shell, (Np=1).

 

Fig. 16 Variation of ifV  versus G.N. for an Al/prepreg 2/1 FML cylindrical shell, (Np=1). 
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Fig. 16. Variation of ifV  versus G.N. for an Al/prepreg 2/1 FML cylindrical shell, (Np=1).
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Table 4. Classification of the optimization cases. 
 
Objective function Constraint type Weight coefficient Case no. 

Response + Weight 
Buckling + Strain 

α=0.7 1 
α=0.5 2 
α=0.3 3 

Buckling α=0.5 4 
Strain α=0.5 5 

Response 
Buckling +Strain α=0.5 6 
Buckling α=0.5 7 
Strain α=0.5 8 

 
  

Table 4. Classification of the optimization cases.

Table 5. Classification of the effects of optimization parameters including objective function, weight coefficient, and constraint 
type according to the optimization cases listed in Table 4. 
 

Item no. Case no. for comparisona Optimization parameter for comparison 
A 1 , 2 , 3 Effect of weight coefficient 
B 2 , 4 , 5 Effect of constraint type 
C 6 , 7 , 8 Effect of constraint type 
D 2 , 6 Effect of objective function 
E 4 , 7 Effect of objective function 
F 5 , 8 Effect of objective function 

a Case no. defined in Table 4. 
  

Table 5. Classification of the effects of optimization parameters including objective function, weight coefficient, and constraint type 
according to the optimization cases listed in Table 4.

Table 6. Results of multi-objective optimization for 5.0=α  with buckling constraints; FML layup Al/prepreg 2/1. 
 

Number of prepreg layers Np=3 Np=2 Np=1 

Design 
Variables 

3kg/mf i    
 [1381/1404/1412] [1429/1410] [1467] 

3kg/mmi    
 [1007/1298/1124] [1009/1074] [1216] 

 GPaf iE  [471/377/453] [483/475] [482] 
 GPamiE  [4.64/4.93/3.63] [4.51/5.49] [5.48] 
ifν  [0.18/0.17/0.21] [0.18/0.24] [0.24] 
imν  [0.36/0.36/0.38] [0.30/0.34] [0.28] 
ifV  [0.65/0.52/0.68] [0.67/0.68] [0.70] 

MVF  0.054 0.051 0.21 
 degi  [13.1/-39.7/-69.5] [-26.5/-66.6] [-71.9] 

Objective 
Functions 

w [m] 1.37e-3 1.33e-3 1.60e-3 

W [N] 342 338 360 
Constraints 

crN   kN/m  1060 1210 642 









allallall
22

12

22

22

11

11 ,,Max.
γ
γ

ε
ε

ε
ε  1.12e-1 1.13e-1 1.87e-1 

 
  

Table 6. Results of multi-objective optimization for 5.0=α  with buckling constraints; FML layup Al/prepreg 2/1.

2-The minimum weight is obtained using case no. 5, where 
the constraint type is strain only.

3- The effect of buckling constraint on minimum impact 
response as well as minimum weight is more predominant 
as compared to the effect of the strain constraint. 
For item no. C in Table 5 (effect of constraint type with 

response objective function), the following results can be 
concluded:
1- The minimum impact response is reached in case no. 8, 

where the constraint type is strain only.
2- For case no. 7, where the constraint type is buckling only, 

the maximum buckling load is reached. As a result, the 
effect of buckling constraint is more predominant in 
comparison with the effect of strain constraint.

8.3.3 Effect of objective functions
 For item no. D in Table 5 (effect of the objective function 

with bucking and strain constraint), the following results are 
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Table 7. Results of multi-objective optimization for 5.0=α  with buckling constraints; FML layup Al/prepreg 3/2. 
 

Number of prepreg layers Np=3 Np=2 Np=1 

Design 
Variables 

3kg/mf i    
 [1389/1439/1387] [1390/1432] [1408] 

3kg/mmi    
 [1061/1021/1317] [1073/1049] [1008] 

 GPaf iE  [455/479/482] [478/448] [480] 
 GPamiE  [3.71/1.39/3.25] [3.86/4.69] [5.46] 
ifν  [0.15/0.20/0.23] [0.22/0.15] [0.24] 
imν  [0.38/0.31/0.27] [0.39/0.38] [0.27] 
ifV  [0.67/0.63/0.67] [0.70/0.62] [0.70] 

MVF  0.061 0.052 0.23 
 degi  [19.3/-52.9/70.65] [55.6/12.1] [-68.6] 

Objective 
Functions w [m] 1.44e-3 1.50e-3 1.58e-3 

W [N] 345 337 400 

Constraints 
crN   kN/m  997 989 712 









allallall
22

12

22

22

11

11 ,,Max.
γ
γ

ε
ε

ε
ε  1.10e-1 1.69e-1 1.53e-1 

 
  

Table 7. Results of multi-objective optimization for 5.0=α  with buckling constraints; FML layup Al/prepreg 3/2.

Table 8. Results of multi-objective optimization for 5.0=α  with buckling constraints; FML layup Al/prepreg 4/3.
Table 8. Results of multi-objective optimization for 5.0=α  with buckling constraints; FML layup Al/prepreg 4/3. 
 

Number of prepreg layers Np=3 Np=2 Np=1 

Design 
Variables 

3kg/mf i    
 [1485/1407/1460] [1402/1408] [1381] 

3kg/mmi    
 [1002/1162/1018] [1053/1062] [1266] 

 GPaf iE  [417/478/481] [478/179] [475] 
 GPamiE  [2.11/5.24/5.20] [4.03/5.50] [5.47] 
ifν  [0.32/0.19/0.26] [0.29/0.31] [0.18] 
imν  [0.32/0.32/0.36] [0.33/0.37] [0.26] 
ifV  [0.64/0.61/0.60] [0.64/0.65] [0.70] 

MVF  0.055 0.060 0.213 
 degi  [17.5/46.0/-71.7] [-28.4/-71.1] [68.4] 

Objective 
Functions w [m] 1.51e-3 1.44e-3 1.57e-3 

W [N] 341 338 407 

Constraints 
crN   kN/m  924 997 718 









allallall
22

12

22

22

11

11 ,,Max.
γ
γ

ε
ε

ε
ε  1.22e-1 1.10e-1 1.44e-1 

 
  

concluded:
1- For the cases where the single objective function (minimum 

impact response only) is desired, like case no. 2, the 
minimum impact response is reached. 

2- The greater buckling load is corresponded to case no. 6. 
Since, in case no. 2, the minimum weight is one of the 
objective functions, a greater optimum value is obtained 

for MVF.
3- As it is expected, the minimum weight could be obtained 

in case no. 2 where the two-objective function (including 
minimum weight and minimum impact response) is 
considered.
For item no. E in Table 5 (effect of the objective function 

with buckling constraint), the following results are obtained:
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Table 9 Results of multi objective optimization for 5.0=α  with buckling constraints; FML layup Al/prepreg 5/4. 
 

Number of prepreg layers Np=3 Np=2 Np=1 

Design 
Variables 

3kg/mf i    
 [1421/1394/1557] [1381/1384] [1439] 

3kg/mmi    
 [1005/1011/1334] [1001/1067] [1094] 

 GPaf iE  [437/478/479] [473/459] [476] 
 GPamiE  [3.91/5.41/3.01] [5.42/4.19] [5.38] 
ifν  [0.16/0.19/0.31] [0.32/0.19] [0.26] 
imν  [0.36/0.33/0.32] [0.33/0.35] [0.30] 
ifV  [0.52/0.57/0.67] [0.69/0.69] [0.70] 

MVF  0.06 0.052 0.267 
 degi  [-80.6/56.2/-21.6] [73.0/30.3] [70.2] 

Objective 
Functions w [m] 1.53e-3 1.41e-3 1.56e-3 

W [N] 345 334 423 

Constraints 
crN   kN/m  868 1060 742 









allallall
22

12

22

22

11

11 ,,Max.
γ
γ

ε
ε

ε
ε  1.38e-1 1.22e-1 1.51e-1 

 
 

Table 9 Results of multi objective optimization for 5.0=α  with buckling constraints; FML layup Al/prepreg 5/4.

1- The minimum impact response is obtained in case no. 7, 
where the single objective function (minimum impact 
response) is considered.

2- Similar to item no. D in Table 5, the greater buckling 
load is corresponded to case no. 7. Since, in case no. 4, 
the minimum weight is one of the objective functions, a 
greater optimum value is obtained for MVF.
For item no. F in Table 5 (effect of the objective function 

with strain constraint), the following outcomes are obtained:
1- For case no. 8 (single objective function) the smaller impact 

response is reached.
2- Since there is no buckling constraint in cases no. 5 and 

8, no special trend could be seen for weight and impact 
response by changing the type of objective function.
For the considered cases A to F in Table 5, the value of 

MVF for the case Np =1 is greater than those obtained for Np 
=2 and 3.

9. CONCLUSIONS
The impact response analysis of the FML cylindrical shells 

under impact load is studied and the solution is obtained using 
the modal technique. Multi-objective optimization of weight 
and impact response of FML cylindrical shells subjected to 
buckling and strain constraints has been investigated using 
GA Nine design variables (including MVF, fibre orientation, 
material property and volume fraction of fibre) are considered. 

In the special case of Al/prepreg ]/[ θθ − 2 FML 
cylindrical shell, the convergence of the GA is checked and 
the optimum values of the design variables, i.e. MVF and 
fibre orientations )(θ obtained by the GA are found to be very 
close to these found through the complete searching method. 

In the following, useful outcomes of the present research are 
outlined:
•	 For a number of prepreg layers Np greater than 1 (Np >1), 

the smallest impact response corresponds to FML lay up 
2/1 (or Al/prepreg/Al lay up).

•	 Irrespective of the type of FML layup, the smaller weight 
corresponds to a number of prepreg layers Np greater than 
1 (Np >1).

•	 Regardless of the type of FML layup, by increasing the 
number of prepreg layers, after Np =1, the optimum value 
of MVF is decreased dramatically.

•	 The effect of buckling constraint on minimum impact 
response as well as minimum weight is more predominant 
as compared to the effect of the strain constraint.

•	 As the most important result of the present study, FML 
layup 2/1 with a number of prepreg layers Np >1 has more 
benefits as compared to the other layups.
The results represent a good capability of the GA to escape 

the local optimums and to find the global optimum rapidly. In 
addition, the investigations show that the considered design 
variables play an active role in the optimization process. 
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