The Efficacy of Novel Designs on the Proficiency of
Polymer Exchange Membrane Fuel Cell

Ali Sheikhmohamadi 1, Iraj Mirzaee 2, Nader Pourmahmoud 2, Nima Ahmadi 3*

1PhD student, Mechanical Engineering Department, Urmia University, Urmia, Iran
2Professor, Mechanical Engineering Department, Urmia University, Urmia, Iran
3Assistant professor, Mechanical Engineering Department, Urmia University of Technology, Urmia, Iran
*Corresponding author, e-mail: nima.ahmadi.eng@gmail.com

Abstract:
Numerical simulation is extensively used in the many industries to investigate transport phenomena inside channels with variant dimensions to save time and cost. In this paper, novel designs for cylindrical polymer fuel cell in the numerical and three-dimensional form are presented. In the simulation of these models, Finite Volume Method is used. Thereafter, novel designs are used to increase the proficiency of polymer electrolyte fuel cell. In this study at first, the effect of semi-circular prominent gas diffusion layers is studied. By locating these prominences on gas diffusion layers, this fact is observed that the performance of fuel cell is enhanced in same condition. However, the optimum size of the prominences is also investigated in the present work. By reaching the magnitude of the radius to 0.55 mm, the flow velocity exceeds the desired magnitude. By this way the diffusion of species impressed negatively. Then, the effect of gradual changes in cross-section, the geometrical configuration of cell parts on species diffusion, the output current density is put under careful study. The results displayed the optimal performance is belong to the cylindrical fuel cell with elliptical cross-section. Wider transport region and lower drop quantity in identical volume for reactive gases to pass to the reactive domain are the reasons for optimal function.

Keywords: Polymer Fuel Cell, Finite Volume Method, Species, Computational Fluid Dynamics, Simulation.
1. Introduction

Recently, an unprecedentedly modern energy converting devices known as proton exchange membrane fuel cell has grasped large amount of attention. Getting use of thin polymer membrane for its electrode, the so-called energy considerably exploits to meet both transformational and residential needs [1-3]. Among multitude privileges, the most prominent ones are: high rate performance, noiselessness and conforming environmental criteria, small amount of temperature during the work, fast resumption, also it has a polymer type and non-liquid membrane and it has a simple procedure to design. Unlike its superiority, it needs optimization in performance and costs to enter safe competition with past combustion plants [4-8].

Multitude works have performed in this field as well as systems, yet exorbitant expenses hinders to convert it to a sustainable trading product. Using fuel (as hydrogen gas) and oxidizing (as air-taken oxygen), it applies to produce electricity [9].

Both anode and cathode sides are composed of porous media and wrought of the materials that they can conduct electrically, like carbon [10]. In addition, the outer portion of bipolar plates is near to the membrane. cracking surface of anode and cathode are the regions which fuel cell reduction and half-reaction oxidation run. Fuel cell electrodes are comprised of porous structure to flow gas. The mentioned method keeps at reach the gas diffusion layer to reduce oxygen and hydrogen transport resistance to active reactive layers, Hitherto, abundant research attempts are conducted to improve close to reality simulations [4]. Multitude scientists globally concentrated to enhance of the PEMFC’s efficiency and make it sumptuary competitive to present energy converters. Plenty studies have considered diverse dimensions of polymer fuel cell as function of its operative state (For an example) [10]. The present study employs the numerical modeling which is the most prominent instruments to optimize polymer fuel cell performance [8]. Numerical modeling has utilized to investigate fundamental running phenomena in the fuel cell system [11-19]. Myriad studies conducted to increase the quality of the performance of the fuel cell. PEMFC optimal operation are affected by numerous parameters as moisturizing of species, velocity, pressure, and temperature of reactants. Originally, geometric parameters take primary and significant function to influence of. For instance, the case with larger shoulder size in the width section has less performance than lower shoulder one. In this way, the efficacy of geometric parameters on polymer cell operation is one of the decisive factors and the hub of countless studies [20]. One study investigated the effect of both operational parameters and geometric changes of gas penetration plates [21-24]. The outcomes displayed the swell composition inside of the gas penetration plates has considerable effects in the increase of fuel cell performance [25]. Also resembling survey has performed by, Ebrahimi et al. [4, 26, 27] taking 2D and numerical, investigated the influence of monotonous penetration of non-homogenous catalyst about the
PEMFC performance. This study verified optimal distribution of cathode and anode would increase the operation of fuel cell around %70. By using of similar approach Cooper et al [28] considered the impact of switching of the coefficient with the interlocking channels. Moreover, Yan et al [29] modeled PEMFC in the completely unstable condition. In addition, an investigation is performed by Guo et al [30] that suggested 2D analytical model. Ahmadi et al. [31] presented an analytical approach by using of perturbation theory to model the species distribution variation in the PEMFC with cylindrical shape. As a result, the profile of velocity and species distribution in the gas channels are achieved from their analytical model. Also, Ahmadi et al.[32] focused on the simulation of species transport. Nazari et al.[33] studied the possibility of the enhancing of the efficiency the penetration of the species by attaching of a small hydrophilic layer in fuel cells. Additionally, they considered the effect of water flooding of PEMFC. As another work [34, 35], the lattice Boltzmann approach is applied (LBM) to study the transport problems in the fuel cell.

In many published works [36, 37], the PEMFC considered has square shape gas channels. Therefore, present work focused to study about the impact of changing the geometrical configuration on the efficiency. So, new design for PEMFC is suggested with cylindrical shape and it is compared with the base model that has conventional shape [4].

2. Model specifications

The domain which is used for computation is shown in figure 1. As it is clear, the fuel cell made of from gas flow channels, anode and cathode terminals, electrodes, and membrane [4, 38].

![3-D view and front view (Computational domain)](image)

Fig 1. 3-D view and front view (Computational domain) [4].
A few assumptions are implemented in current non-isothermal model including: ideal gas mixture, homogeneity of the GDLs and catalysts. And the flow regime assumed to be laminar and incompressible because of low Reynolds (less than 200) and low Mach number [4, 39].

4. Mathematical approach

To simulate the PEMFC numerically, the following equations are applied on the domain. These equations respectively named, continuity, momentum, species and potential [40, 41]:

\[
\begin{align*}
(\nabla \rho \mathbf{u}) &= 0 \quad (4.1) \\
\frac{1}{(\varepsilon^2)} \nabla (\rho \mathbf{u}) &= -\nabla P + \nabla (\mu \nabla \mathbf{u}) + S_u \quad (4.2) \\
\nabla (\mathbf{u} C_x) &= \nabla (D_x^e \nabla C_x) + S_x \quad (4.3) \\
\nabla (\kappa_x^e \nabla \Phi_x) + S_\phi &= 0 \quad (4.4)
\end{align*}
\]

In equation (4.1), \(\rho \) demonstrates the density of mixture. The effective porosity is surveyed by \(\varepsilon \). The viscosity of reactant gases is demonstrated by \(\mu \) in equation (4.2). \(S_u \) is the term of momentum source which employs to explicate the drag force of Darcy law [4, 8, 40, 42]:

\[
S_u = -\frac{\mu}{K} \mathbf{u} \quad (4.5)
\]

In above, the permeability inside of the porous zone is indicated by \(K \). For more information about the equation can be refer to reference [4, 11].

5. Marginal Terms and solving methods

Table 2 illustrates the assumed boundary condition in the current study. Conforming to Eq (4.2), the velocity of species assumed to be constant and determined at inlet regions. Also, stoichiometry (in fact, it is the ratio of inlet fuel amount to needed fuel in Amp current) [4].
Table 2. The boundary conditions which is used [4, 26, 31, 32].

<table>
<thead>
<tr>
<th>Location</th>
<th>Type of boundary condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet of anode</td>
<td>(u = u_{in}, \ T = T_{in}, \ v = 0, \ C_{in} = C_{H_2,in}, \ C_{H_2O} = C_{H_2O,in})</td>
</tr>
<tr>
<td>Inlet of cathode</td>
<td>(u = u_{in}, \ T = T_{in}, \ v = 0, \ C_{in} = C_{O_2,in}, \ C_{H_2} = C_{H_2,in})</td>
</tr>
<tr>
<td>Anode and Cathode channel outlet</td>
<td>(\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial w}{\partial x} = \frac{\partial T}{\partial x} = 0)</td>
</tr>
<tr>
<td>Between of the channels and gas diffusion layers</td>
<td>(\text{\textit{Conditions as above}})</td>
</tr>
<tr>
<td>Between of the gas diffusion layers and catalysts</td>
<td>(\text{\textit{Conditions as above}})</td>
</tr>
<tr>
<td>Between of the catalysts and membran</td>
<td>(u = v = w = C_i = 0)</td>
</tr>
<tr>
<td>External area of gas channels</td>
<td>(u = v = w = C_i = 0, \ T_{surface} = 353K)</td>
</tr>
<tr>
<td>Internal area of gas channels</td>
<td>(u = w = 0, \ T_{surface} = T_{wall})</td>
</tr>
<tr>
<td>External surface of anode bipolar plates</td>
<td>(\phi_{an} = 0, \ \frac{\partial \phi_{an}}{\partial y} = 0)</td>
</tr>
<tr>
<td>External surface of cathode bipolar plates</td>
<td>(\phi_{ct} = V_{cell}, \ \frac{\partial \phi_{ct}}{\partial y} = 0)</td>
</tr>
<tr>
<td>External surfaces</td>
<td>(\frac{\partial V_{in}}{\partial x} = 0, \ \frac{\partial \phi_{an}}{\partial z} = 0, \ \frac{\partial \phi_{ct}}{\partial z} = 0, \ \frac{\partial \phi_{an}}{\partial z} = 0)</td>
</tr>
</tbody>
</table>

For instance, the velocity of entering species thru the channels is determined by [40, 43]:

\[
 u_{an} = \frac{\zeta I_{avg} \frac{RT_{in}}{P_{in}} A_{MEA} A_{ch}}{X_{H_2,in} 2F \ P_{in} A_{ch}}
\]

\[
 u_{ch} = \frac{\zeta I_{avg} \frac{RT_{in}}{P_{in}} A_{MEA} A_{ch}}{X_{O_2,in} 4F \ P_{in} A_{ch}}
\]

In which \(\zeta \) is the stoichiometry, and mass fraction of hydrogen is shown by \(X_{H_2,in} \), and current density is indicated by \(I_{avg} = 15000 \ A/m^2 \), Universal gas constant is \(R \), Faraday number is demonstrated by \(F \), also the inlet reactant temperature and pressure into the gas channels are specified by \(T_{in} \) and \(P_{in} \), respectively, \(A_{MEA} \) is the effective area and \(A_{ch} \) is the area of the gas channel [4].

6. Results of simulation

6.1. Verification of results

Taking numerical simulation, the results of these simulations are verified by available published data. As it is obvious in figure 2, there seems an optimal agreement between these results. \(P = V \times I \) demonstrates
the relation between the voltage, current density, and power density. The inconsiderable disagreement is obvious in 0.4V. Because the model does not consider the effect of liquid water due to single-phase consideration, so, current density fall can’t be optimally modelled. Multiphase model displays very good agreement with the empirical results. Therefore, crediting the base model, the efficacy of geometric changes is studied [4, 44-46].

![Fig. 2 Results of base model [4].](image)

Table 3 displays the operational condition of fuel cell and its geometric parameters. The inlet gases are in humid state on the anode and cathode side.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of the model</td>
<td>L</td>
<td>0.05</td>
<td>m</td>
</tr>
<tr>
<td>Width of the model</td>
<td>W</td>
<td>3×10^-3</td>
<td>m</td>
</tr>
<tr>
<td>Height of the gas channel</td>
<td>H</td>
<td>3×10^-3</td>
<td>m</td>
</tr>
<tr>
<td>Land area width</td>
<td>W陆</td>
<td>3×10^-3</td>
<td>m</td>
</tr>
<tr>
<td>Thickness of gas diffusion layer</td>
<td>d陆</td>
<td>0.26×10^-7</td>
<td>m</td>
</tr>
<tr>
<td>Thickness of membrane</td>
<td>d膜</td>
<td>0.23×10^-3</td>
<td>m</td>
</tr>
<tr>
<td>Thickness of catalyst</td>
<td>d催</td>
<td>0.0287×10^-3</td>
<td>m</td>
</tr>
<tr>
<td>Pressure of anode</td>
<td>P_a</td>
<td>3</td>
<td>atm</td>
</tr>
<tr>
<td>Pressure of cathode</td>
<td>P_c</td>
<td>3</td>
<td>atm</td>
</tr>
<tr>
<td>Temperature</td>
<td>T</td>
<td>333.15K</td>
<td>K</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>θ</td>
<td>100</td>
<td>%</td>
</tr>
</tbody>
</table>

This study aims to present a comparison between fuel cell with a square channel and cylindrical fuel cell. Fig. 3 displays mesh configuration from the font view [49].
The result of grid independency test is represented in figure 4. Selecting 200000 computational grid number, there seems no variation in output current density. Even increasing the number of set cells doesn’t put any change in the current density [4].

Furthermore, the local grid size examination is indicated in figure 5. For this reason, oxygen mole fraction is chosen to study. It is obvious that, by reaching to the 200000 for the grid size, there is no notable change in the species mole fraction [44].
6.2. Characteristics of GDLs with circular prominent

6.2.1. Effects of the radius size

One of the main parts of the fuel cell which has great impact on the outcoming power is Gas Diffusion layers (GDLs) [2]. Desired configuration of Gas Diffusion layers leads to optimal transference of the species to the electro chemical reaction zones. Fig.6 shows side view of fuel cell with prominences on the GDLs. The outcomes reveal that the GDLs with prominences have preferable proficiency than the base model which has no prominences on GDLs. To obtaining to this aim, a prominence with semi-cylindrical shape placed on Gas Diffusion layers. Therefore, these layers assembled in a way that they have a semi-cylindrical shape at the underneath of channel [3, 50].

![Fig.6 Prominent Gas Diffusion Layers][3]

Some numerical proceedings are done to discuss the impact of present innovative plan. The geometrical shape specification of various cases has presented in Table 4.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0.25mm</td>
<td>0.35mm</td>
<td>0.45mm</td>
<td>0.55mm</td>
</tr>
</tbody>
</table>

Four cases are presented to peruse the impact of GDLs with prominences. More, the outcomes are evaluated with base mode. To attain to that goal, the radius of prominences is increased awhile about 0.1 mm in each stage. Polarization chart of results is shown in figure 7 [2].
Assembling of the GDLs with prominences leads to the generated cell current density in identical voltage increases. Increasing the size of prominences from 0.25 mm leads to enhancing the performance of PEMFC impressively. Nonetheless, if the size of prominences reaches to 0.55 mm, the drastic slump in the output current density is indicated. The causes that growing the output current density of cell are that these prominences cause a great increment in the velocity of flow thru the gas channels. With lessen of the flow passing area, the flow velocity is enhanced. This increment of gas velocity, to an appointed quantity, facilitate the transferring of reactant to the reaction zones. Plus, by locating the prominences on the GDLs, the surface of transmitting of reactant becomes wider than base model. Also, these new design acts like the impediments, by locating in front of the flow, gain the spacious magnitude of reactant and supply the species quickly into the zone that reactions take place there. When the radius of prominences enhances to 0.55 mm, due to a very small area in the flow path, the quantity of velocity of flow overstep from the desired limited area and it causes to the lake of the species penetration at anode and cathode sections. Present fact impresses the efficiency contrarily. Mole fraction of oxygen and hydrogen are shown in figure 8. As depicted, the bottommost magnitude of the concentration of species is for case 2, particularly at the exit zones, owing to big consumption of them. The values of species in present case attains to the lower magnitude at the exit regions. Against, case number 4 has lower magnitude owing because of the diffusivity challenges which is said above [2].
Fig. 8 oxygen and hydrogen mole fraction along the catalyst layers.

Fig. 9 indicates repartition of water magnitude in the form of mass fraction for the cathode side for cases [52]. As can be seen, case 2 has the highest amount of water in same operational condition, concerning in the near of center to the exhaust region. Abundant agglomeration of water at cathode side leads to water flooding of GDL. And this phenomenon reversely affects species penetration to the reaction areas. In case 2, deficiency of reactant, especially after $L=0.04m$ and the agglomeration of water at this area, decrease the life cycle of PEMFC set and causes to the corrosion and decadence of it. Versus, case 3 does not have any problems that are said above. In the case 3, the obtained proficiency and life cycle of PEMFC are optimized in the collation with others.
The voltage loss for all cases presented in figure 10. To figure any essential disagreement to find out in the performance of present cases, medium the magnitude for different existing losses in PEMFC: aop, cop and ohmic loss must be compared. It is obvious that the magnitude of aop of entire states is negligible. The cop and ohmic loss are calculated for premier proof for total losses [2, 54].

Fig. 11 Average current density magnitude for various cases.

Fig. 11 presents the chart of current density average magnitudes. It is observed that case 2 and 4 have the uppermost and least values of current density, respectively.

6.3. The Effect of Novel Designs on Polymer Fuel Cell and Drowning Phenomenon
A novel design for cylindrical polymer fuel cell and modeling is proposed to make a comparison of operation between this design and base state of fuel cell.

Cylindrical fuel cell is modeling in two elliptical and circular cross section. The major feature of novel design is that both membrane and electrode set are placed in a rectangular form along with cell. All regions with reaction are longitudinal in cell length (figure 12). It is necessary to add that the novel designs are divided into four subsections called state D, E, F and G. First design (Case D) is in circular cross-section. In following changing the shape configuration of PEMFC is considered. State E as a novel design of fuel cell, by keeping whole volume of both fuel cell and its distinct stable parts transforms to elliptical cross-section. To change circular cross-section to elliptical, fuel cell shrinks 20% in vertical radius by keeping total volume and its distinct parts. Meanwhile its horizontal radius grows up at the same rate. By this way the volume of fuel cell and other dimensions remain fixed. The current state is called state E. Next phase initiates with introducing state F. State F is in circular cross-section and total volume of electrode set and membrane equals to state D. Total length of fuel cell should be reduced. Figure 7 illustrates geometric parameters of cylindrical fuel cell for distinct states of novel design from front view. The novel design keeps total volume of fuel cell, electrode equivalent region and membrane constant by the increase in number of channels, electrode set and membrane in oval and circular cross-section (state G, F) [4].
Table 5 demonstrates dimensional and operational specifications for distinct states of figure 13. In the present design which depicted with oval and circular cross-sections, electrode set and membrane are both designed and represented through figure 13.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>Case D</th>
<th>Case E</th>
<th>Case F</th>
<th>Case G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel length</td>
<td>L</td>
<td>mm</td>
<td>42.5</td>
<td>21.25</td>
<td>21.25</td>
<td>21.25</td>
</tr>
<tr>
<td>Diffusion layer thickness</td>
<td>δGDL</td>
<td>mm</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Thickness of catalyst</td>
<td>δCL</td>
<td>mm</td>
<td>0.0287</td>
<td>0.0287</td>
<td>0.0287</td>
<td>0.0287</td>
</tr>
<tr>
<td>Membrane thickness</td>
<td>δMEM</td>
<td>mm</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>Porosity</td>
<td>εGDL</td>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Membrane porosity</td>
<td>εMEM</td>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Horizontal Radius</td>
<td>d</td>
<td>mm</td>
<td>2</td>
<td>1.8</td>
<td>2</td>
<td>1.8</td>
</tr>
<tr>
<td>Vertical Radius</td>
<td>e</td>
<td>mm</td>
<td>2</td>
<td>2.2</td>
<td>2</td>
<td>2.2</td>
</tr>
<tr>
<td>Electrode Effective area</td>
<td>AEL</td>
<td>mm²</td>
<td>2.0865×10⁻⁶</td>
<td>1.684×10⁻⁶</td>
<td>1.7081×10⁻⁶</td>
<td>2.0643×10⁻⁶</td>
</tr>
<tr>
<td>Gas Channel Inlet area</td>
<td>A₁h</td>
<td>mm²</td>
<td>2.0865×10⁻⁶</td>
<td>1.684×10⁻⁶</td>
<td>1.7081×10⁻⁶</td>
<td>2.0643×10⁻⁶</td>
</tr>
</tbody>
</table>

Fig.14 points out gas channels inlet for different states.
Fig. 15 displays polarization curve for distinct states of novel design comparing with base state.

![Polarization Curve](image)

Fig. 15: The comparison of polarization graph for distinct states.

It is quite clear all distinct cylindrical states comparing with base state generate more outlet current. In this way, state G generates the maximum and state D the minimum current density. The current density variation is depicted in figure 10 at voltage 0.4 [59].

![Outlet Current Density](image)

Fig. 16: Comparing the density of outlet current for distinct states [55].

Since there is no requirement to form a curve in electrode set and membrane in this design, their development (electrode set and membrane) is feasible and less costly. Indeed, it is one of the optimal
features of current design. As it is obvious in figure 16, as the number of channels, electrode and membrane increases, and the density of outlet current increases too. Regarding shape and volume of gas channels in cylindrical design, there is less fluid current drop.

Fig. 17 demonstrates the velocity rate of reactive gases flow in anode and cathode gas channels. As it is seen, the increase in number of channels in constant cross-section for elliptical and circular states results in the increase in gas flow velocity. Since the increase in the number of electrodes set and membrane leads to the increase in channels inlet, thereupon, the channels inlet area reduces in state F and D comparing to states E and D. Therefore, the reduction in constant cross-section area leads to dramatic reduction in the amount of velocity. When velocity increases in G and F states and sequentially porosity area in electrode set and membrane increases to total channel area, there seems a dramatic increase in outlet current density in fuel cell. However, in elliptical cross-section, the porous zone area slightly increasing leading to current density growing up into circular cross-section [60].

![Graph showing velocity rate comparisons](image)

Fig. 17 Comparing velocity rate for distinct states [55].

Figure 18 displays oxygen mole fraction for distinct states in cathode side. In state G, the use of oxygen is higher than other states. This state takes the highest rate in dense outlet current and oxygen use. On the opposite side, state D bears the lowest rate in outlet current and the lowest oxygen use to all other states.
Fig. 18 Comparing oxygen mass fraction for distinct states [55].

Fig. 19 displays the water molar concentration in distinct states in anode and cathode side. State G takes the highest rate of water molar concentration in cathode and the lowest rate in anode (due to use of water). The amount of water generation in cathode bears the direct relation to fuel cell action. Accordingly, when the activity of fuel cell and then outlet flow density increases, the amount of water generation increases as well. As it is clear from the figure 19, the amount of generation and concentration of water bears a direct relation to fuel cell activity.

Fig. 19 Mass fraction of water for different cases [26, 55].
The comparison of mass fraction of water is indicated at figure 20 for new suggested design. As it was clarified before, the current parameter demonstrates the ability of membrane in transport of hydrogen ion to various reaction regions. It should be added that the values of water concentration are the function of the water concentration in the membrane and at the interface of membrane and cathode catalyst layer. In the current design, two factors cause the higher amount of liquid water mass fraction in cathode side. Generally, two factors lead to such condition. First in the novel design, there is higher amount of generated water in cathode side. As the accumulation of water in cathode increases, liquid water increases too. In this way the probability of transport phenomenon specifically in lower voltages increases. Second, both the effective electrode area and membrane is relatively low [4, 61].

7. Conclusion

In this paper a 3D numerical model has presented. In the following an innovative design for the PEMFC is given to enhance its efficiency. Also, the comparison about the studying the transport phenomena for base model and new design is performed [62, 63]. At first the effect of locating semi-circular prominences on GDLs is studied and by posing these prominences the absorbing area of species is increased and the performance of cell grows up. In the following the performance of cylindrical shape PEMFC is investigated. These designs are divided into four subsections called D, E, F, G states. All distinct cylindrical states, comparing with base state, generate higher outlet current. Among all states, state G generates the highest and state D the lowest amount of current. The increment of the channels in fixed width size for cylindrical
cases leads to the velocity increase in gas current [2]. This is because of the increase in number of electrode set, membrane and consequently channel. This process leads to the decrease in channel inlets (G and F state) comparing to D and E states. Accordingly, when cross-section area reduces in constant state, the amount of velocity considerably increases. Very probably transport phenomenon will be quite pertinent if mismanagement of water runs in states E and D. Since the channel inlet area for state G is more and its velocity of species inside channels high, the amount of consuming ability for the current state is higher than other states. State F bears the lowest amount of consuming ability. A model of simulation fuel cell in Lattice-Boltzmann Method is recommended for future studies.

<table>
<thead>
<tr>
<th>Nomenclature [7, 16, 34, 42, 55, 54, 62, 64-90]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a : Water activity</td>
</tr>
<tr>
<td>C : Molar concentration [mol m-3]</td>
</tr>
<tr>
<td>D : Mass diffusion coefficient [m2 s-1]</td>
</tr>
<tr>
<td>F : Faraday constant [C mol-1]</td>
</tr>
<tr>
<td>I : Local current density [A m-2]</td>
</tr>
<tr>
<td>J : Exchange current density [A m-2]</td>
</tr>
<tr>
<td>K : Permeability [m2]</td>
</tr>
<tr>
<td>M : Molecular mass [kg mol-1]</td>
</tr>
<tr>
<td>nd : Electro-osmotic drag coefficient</td>
</tr>
<tr>
<td>P : Pressure [Pa]</td>
</tr>
<tr>
<td>R : Universal gas constant [J mol-1 K-1]</td>
</tr>
<tr>
<td>T : Temperature [K]</td>
</tr>
<tr>
<td>t : Thickness</td>
</tr>
<tr>
<td>U : Velocity vector</td>
</tr>
<tr>
<td>Vcell : Cell voltage</td>
</tr>
<tr>
<td>oc : Open-circuit voltage</td>
</tr>
<tr>
<td>W : Width</td>
</tr>
<tr>
<td>X : Mole fraction</td>
</tr>
<tr>
<td>T : Temperature [K]</td>
</tr>
<tr>
<td>t : Thickness</td>
</tr>
<tr>
<td>U : Velocity vector</td>
</tr>
<tr>
<td>Vcell : Cell voltage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greek Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>α : Water transfer coefficient</td>
</tr>
<tr>
<td>ε_eff : Effective porosity</td>
</tr>
</tbody>
</table>

| ρ : Density [kg m-3] |
| ε : Electrolyte phase potential (varies from -1 to 1) [v] |
| μ : Viscosity [kg m-1s-1] |
| σ_m : Membrane conductivity [1.ohm-1m-1] |
| λ : Water content in the membrane |
| ζ : Stoichiometric ratio |
| η : Over potential [v] |
| λ_eff : Effective thermal conductivity [w m-1k-1] |

<table>
<thead>
<tr>
<th>SUBSCRIPTS AND SUPERSCRIPTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH : Anode Channel</td>
</tr>
<tr>
<td>CCH : Cathode Channel</td>
</tr>
<tr>
<td>ABP : Anode Bipolar</td>
</tr>
<tr>
<td>CBP : Cathode Bipolar</td>
</tr>
<tr>
<td>AGDL : Anode Gas Diffusion Layer</td>
</tr>
<tr>
<td>CGDL : Cathode Gas Diffusion Layer</td>
</tr>
<tr>
<td>ACL : Anode Catalyst Layer</td>
</tr>
<tr>
<td>CCL : Cathode Catalyst Layer</td>
</tr>
<tr>
<td>a : Anode</td>
</tr>
<tr>
<td>e : Cathode</td>
</tr>
<tr>
<td>ch : Channel</td>
</tr>
<tr>
<td>k : Chemical species</td>
</tr>
<tr>
<td>m : Membrane</td>
</tr>
<tr>
<td>MEA : Membrane electrolyte assembly</td>
</tr>
<tr>
<td>ref : Reference value</td>
</tr>
<tr>
<td>saturation : sat</td>
</tr>
<tr>
<td>w : Water</td>
</tr>
<tr>
<td>a : Anode</td>
</tr>
</tbody>
</table>

References

[37] N. Zamel, X. Li, Effective transport properties for polymer electrolyte membrane fuel cells–with a focus on the gas diffusion layer, Progress in energy and combustion science, 39(1) (2013) 111-146.
[58] M. Afzal, Mohsin Saleemi, Baoyuan Wang, Chen Xia, Wei Zhang, Yunjuan He, Jeevan Jayasuriya, and Bin Zhu, Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.
5Co0. 8Fe0. 2O3− δ-Sm0. 2Ce0. 8O1. 9) and Schottky barrier. Journal of Power Sources, 1(328) (2016) 136-142.

