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ABSTRACT:  The optimization process for an airfoil using genetic algorithm has been an increasingly 
popular problem in recent years. In recent years, the role of the population model in genetic algorithm 
has been underlined. In many of the recently proposed models, the convergence time was adversely 
increased or the elitism or mutation operators failed to work properly due to the inherent oscillations 
in the oncoming generations. In this paper, the idea of continuous variable population size has been 
introduced to optimize the airfoil shape. This scheme has been shown to converge to higher performance 
airfoils and can decrease the convergence time, without any oscillatory behavior. Furthermore, to reduce 
the run time to evaluate the fitness value, a generalized regression neural network has been developed 
and trained by the numerical data to evaluate the lift to drag ratio for a vast range of NACA four digits 
airfoils. The values predicted by this neural network have been proved to be in good agreement with 
the other experimental and numerical data and were then used to calculate the lift-to-drag ratios as the 
fitness value for various airfoils generated during the optimization process. The idea can ever be more 
effective in similar problems with a huge amount of computational time to calculate the fitness values 
and converge to the most efficient airfoil in a reasonable time.
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1- INTRODUCTION
Airfoil optimization has been a practical engineering 

problem in recent years. Though each airfoil has its own 
geometric parameters and produces particular performance 
characteristics, no realistic airfoil shape can necessarily 
be associated with a given performance. Therefore, the 
airfoil optimization problem today is a tradeoff between 
performance and physical constraints. For this reason, the 
classical optimization methods mainly adopt the trial and 
error approach, which strongly relies on the designer’s future 
experience rather than the current needs. In such problems, a 
global optimization method based on evolutionary algorithms 
is likely to shorten and simplify the iterative optimization 
process and improve the final result. 

Recently, Genetic Algorithms (GAs) have emerged as 
available tools in a wide range of application areas, such as 
medicine, image processing, laser technology, aeronautics, 
artificial neural networks, control, robotics, etc. The genetic 
algorithm belongs to a class of heuristic searching for a given 
optimization problem and attempts to imitate the mechanism 
of Darwin’s survival theory [1].

The basic idea of a GA uses the probabilistic transition and 
non-deterministic rules to search the possible solution spaces, 
and eventually achieved a global optimum. It is realized 
in a computer by including the selection, crossover, and 

mutation operations in the algorithm. Bechert [2] provided 
an interesting summary of the early use of evolutionary 
strategies for experimental shape optimization in fluid 
dynamics. These approaches were very similar to the modern 
genetic algorithms used today.

Applications of GAs in the context of aerodynamic 
optimizations have been the focus of considerable attention 
for the past two decades. Chen [3] has reported a multi-
objective genetic algorithm to optimize some classes of thick 
airfoils used in wind turbine blades. They have exploited a 
purely numerical approach to evaluate the airfoils with a 
classic genetic algorithm for optimization.

Gage and Kroo [4] applied GAs to the topological design 
of non-planar wings. Yamamoto et al. [5] proposed a new 
operator for GAs to determine the evolutionary direction, 
which is less time-consuming than the usual gradient-based 
optimizers. The introduction of evolutionary direction into 
GA, by this method, is more efficient than the traditional 
schemes in finding the global optima.

Anderson [6] used a penalty weight approach to consolidate 
several different subsonic wing design objectives into a single 
objective functional, but has noted that the solutions had an 
undesirably strong dependence on the weights. Doorly et 
al. [7] used a parallel GA in conjunction with a flow solver 
to determine optimal airfoil shapes approximated using a 
B-spline. The population size in the latter two studies was 
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80 and this number seems to be typical of research involving 
shape optimization using GAs. 

More recently, various successful applications of the 
GA have been reported in multi-element airfoil design [8], 
helicopter blade shape optimization [9], drag reduction in 
hypersonic flow [10], and performance optimization of a 
vapor compression refrigeration system [11]. 

Once the high performance of the GA in optimization 
problems was acknowledged, attempts were made to improve 
this algorithm and its methodology to decrease the run time 
and enhance the algorithm efficiency and the convergence 
speed. The improved GAs have been usually shown to offer 
more optimized results than the classic ones.

Hacioglu [12] has augmented the genetic algorithm with 
a neural network to increase the speed of the aerodynamic 
calculations. He exploited the neural network to predict the 
airfoil shape corresponding to a given pressure distribution, 
though remarkable errors have been raised at the airfoil 
trailing edge and poor agreements were observed between 
the airfoil shape and the corresponding pressure distribution. 
The idea has been followed by Chen [13] to optimize the blunt 
trailing edge airfoils. They also employed neural networks to 
predict the aerodynamic coefficients using numerical data 
with a classic genetic algorithm in the optimization phase. 
In another survey, Chen [14] has reported a successful 
combination of the radial basis neural network and the 
response surface method, RSM, including the Kriging method 
to construct an aerodynamic model using numerical data to 
speed up the computations of the fitness value in a genetic 
algorithm.

For complex Computational Fluid Dynamics (CFD) 
applications, Duvigneau [15] proposed an inexact pre-
evaluation using a neural network to reduce the number of 
evaluations through the flow solver at each generation and a 
hybrid method to perform the final local search. This method 
is shown to give acceleration to the algorithm. Liu [16] offered 
an intelligent cross-over process in GA to select good genes 
from the parents. Su et al [17] suggested an approximate 
model to evaluate the individual’s fitness to reduce the 
computational costs in the GA. 

Hacioglu [18] examined an improved vibrational mutation 
technique in a genetic algorithm as a stochastic search 
method to accelerate the algorithm for airfoil inverse design. 
He showed that a low population rate and a short generation 
cycle are the most important benefits of this method. He also 
combined GA with a neural network to search the design 
space and proposed an interactive process between a genetic 
algorithm and a neural network to improve the exploration 
power of the GA [19].

A genetic algorithm for an optimization problem starts 
with an initial solution as the parent or the first generation. 
The children or the next generations are created from the 
initially given solution by the cross over, mutation, and 
elite selection operations. In a classic genetic algorithm, the 
next generations have the same size as the previous ones. 
However, in the real world, the population size varies from 
one generation to the next. The number of individuals in a 

generation directly affects the convergence time and the final 
solution accuracy. 

Some limited investigations started in the last two decades, 
have been devoted to this issue. Goldberg [20] studied the effect 
of stochasticity on the convergence behavior of the genetic 
algorithms. He derived a theoretical relation to calculate the 
optimized population size in a GA in each generation. Despite 
finding some improvements in the algorithm performance 
for a proper choice of the population size, the idea has been 
worked out through mathematical manipulations and no 
practical optimization problem has been examined to prove 
its applicability to real engineering problems.

Arabas et al. [21] proposed an adaptive method for 
maintaining variable population size. In this method, the 
lifetime and the age of each member have been taken into 
account. As time elapses, the old members are removed and 
are replaced by the new ones, creating a new population in the 
next generation. The final results would strongly depend on 
the choice of the optimum lifetime for the members and this 
strongly restricts the applicability of the proposed method. 

Koumousis [22] developed a genetic algorithm with 
variable population size and periodic partial re-initialization 
of the population in the form of a saw-tooth function. He 
studied the synergy of the combined effects of population size 
variation and re-initialization in performance enhancement 
in GA. However, a saw-tooth population model may cause 
an oscillatory behavior in the best fitness values between 
the generations and can prevent converging to the optimum 
solution or may considerably increase the convergence time. 

In a very recent survey, the biologically-inspired concept 
of the hidden gene has been introduced [23]. The hidden 
gene in a chromosome does not affect the fitness value. It 
just carries the information to the next generation. With this 
concept, different lengths can be coded in a chromosome and 
can be employed in trajectory optimization problems.  

Up to now, the impact of population size on the 
convergence speed and accuracy of the results in a GA 
is perfectly underscored. However, despite the valuable 
theoretical and basic information achieved on the matter, the 
authors found nearly no practical problem in the literature to 
be treated by the idea of variable population size.

The saw-tooth population model, the vibrational 
mutation technique, and the concept of lifetime for each 
member are the highlighted ideas in this regard. As stated 
earlier, assigning a lifetime for a member adds a new variable 
to the problem and there is no physical base to determine the 
proper value of this lifetime to achieve the desired optimum 
solution. The discontinuities in the saw-tooth model in some 
problems may induce oscillations during the evolution and 
inhibit convergence to the optimum point. The vibrational 
mutation technique has an inherent randomness behavior 
and can prevent the mutation of some elite members to the 
next generation. 

Many optimizations using GA, on the other hand, are 
performed nowadays by MATLAB® in which, any change in 
the logic and the structure of the GA operators are not always 
possible and easy. 
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In this paper, several ascending and descending population 
continuous models were implemented in a genetic algorithm 
to optimize the aerodynamic shape of a series of thin airfoils 
which are widely used in such applications as the wind turbine 
blade section and general aviation. The GA performance 
with these models was compared to the classic algorithm of 
constant population size. The lift to drag ratio, L/D, was the 
fitness value to be optimized. Since calculating this ratio in 
a viscous flow is a time-consuming process and should be 
repeatedly performed, several 4-digits NACA airfoils have 
been analyzed using ANSYS Fluent and along with the existing 
experimental data, a database has been created to express the 
lift to drag ratio for various 4-digit NACA airfoil as a function 
of the airfoil thickness, camber and position of the maximum 
camber. A generalized regression neural network, GRNN, 
was then developed and trained by this database to calculate 
the fitness value for each airfoil in the optimization process, 
with high accuracy and in a minimum time. 

2- OPTIMIZATION PROBLEM
The problem under consideration is the impact of the 

population size in a GA code developed for optimization of an 
airfoil in the family of NACA 4-digit series which are mostly 
used in certain wind turbine blade sections. Some of the wind 
turbines utilize NACA series airfoils such as NACA 230XX 
and NACA 44XX series with a thickness variation of %28 at 
root and %12 at tip sections [24].

These airfoils have a fairly sufficient lift for wind turbines. 
However, one of the most important disadvantages of them 
is their high sensitivity to surface containment. Despite, their 
good aerodynamic performance and easy-to-manufacture 
behavior make them still popular choices for wind turbines. 

The initial airfoil for producing the next generations was 
NACA 4415. This airfoil has a camber-to-chord ratio, m, of 
0.04, the maximum camber, p, is located at 0.4 chord and the 
thickness-to-chord ratio, t, is 0.15. The airfoil angle of attack 
was considered to be zero. According to the experimental 
results, the values of the lift coefficient and the lift to drag ratio 
for this airfoil at zero angle of attack and a Reynolds number 
of 6×105, are about 0.45 and 65 respectively [25].

The problem is to achieve a more efficient member in 
the family of 4-digits NACA airfoils with higher values of 
lift to drag ratio than the original NACA 4415, considering 
a variable population model in the optimization process. 
Several ascending and descending population models 
during the evolution process in the GA were examined and 
the performance in each case was compared to the constant 
population model to find the best remedy for the problem 
under consideration.

3- AERODYNAMIC MODEL
The lift to drag ratio, L/D, plays a vital role in airfoil 

aerodynamics and is known as the aerodynamic efficiency 
parameter for the airfoil. In airfoil optimization problems, 
it is a suitable choice for the fitness function or target to 
be maximized. The problem has cumbersome and time-
consuming calculations to determine the drag force, whereas 

the sectional lift can quickly be determined using the well-
known thin airfoil theory [26]. 

To facilitate the study of the algorithm performance for 
various population models, a quick method was needed to 
calculate the lift to drag ratio of this family of airfoils in a 
minimum time. This was conducted by a database containing 
the lift to drag ratios for several four-digit NACA airfoils. 
An aerodynamic model based on Generalized Regression 
Neural Network, GRNN, has been developed and trained by 
this database to calculate the lift to drag ratio for the airfoils 
under consideration in the optimization process. At the end 
of the training process, this network could predict L/D for the 
airfoils produced in each generation, knowing the values of 
m, p, and the thickness.

Once the proper and efficient population model for the GA 
was determined, this approach would work as well for more 
complex problems with massive calculations in various exact 
numerical schemes. During the optimization process, several 
airfoils have been produced and evolved through generations 
to converge to the best contour shape with a maximum 
L/D. For the airfoils with no available experimental data in 
the literature, a numerical simulation was performed using 
ANSYS Fluent.

In CFD simulations for this paper, C-type structured 
grids have been provided around the airfoils extending 21c 
downstream and 12.5c in other directions in the flowfield, 
where c is the airfoil chord length. Totally, 49000 grid points 
were generated for each airfoil using ANSYS GAMBIT 2.4.6. 
The clearance between the grids adjacent to the surface and 
the wall was chosen to be 10-4 with a growing rate of 1.11 
for the next rows. Moreover, 15 nodes were provided inside 
the boundary layer. The k-ω SST turbulence model was used 
which is a usual choice for such 2-D problems. The solver was 
the pressure-based SIMPLE algorithm. Some results from 
these numerical simulations will be presented in the coming 
sections to support the results predicted by the GRNN. Fig. 1 
shows the grid points on two typical airfoils, NACA0012 and 
NACA6409.

In 4-digit NACA airfoils, the mean camber line equation 
is expressed as [26]:

2
2 [2 ( ) ]c

mc x xy p
p c c

= −
 

(1)

for  x/c ≤ p and

2
2 [(1 2 ) 2 ( ) ]

(1 )c
mc x xy p p

p c c
= − + −

−  
(2)

 
for x/c > p.

As stated earlier, m is the maximum value of yc expressed 
as a fraction of the chord c, and p is the value of x/c 
corresponding to this maximum. The thickness distribution 
for the NACA 4-digit sections is given by the following 
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equation [26]:

2 3 4

5 [0.2969 0.1260

0.3516 0.2843 0.1015 ]
ty ct ξ ξ

ξ ξ ξ

= ± − −

+ −  

(3)

where t is the maximum thickness expressed as a fraction 
of the chord and ζ= x/c. Thus, using the independent variables, 
m, p, and t, the airfoil shape can easily be determined. To 
calculate the lift to drag ratio for a given profile, the values of 
m, p and t have been entered into the trained GRNN and the 
output was L/D. 

Let Xi denotes the input array for the ith airfoil in the 
training process. 

[ , , ]i i i iX m p t=

And the output Yi is the associated lift to drag ratio, 
L/D. The probability density function of the training inputs 
and outputs used in GRNN is the normal Gaussian type 
distribution and each input Xi is the mean for this normal 
distribution. 

The independent array X contains the geometric 
information of the newly born airfoil in a generation and 
the dependent variable Y is the associated L/D value for this 
airfoil. In this paper, the range of the inputs, Xi, was from 
[m,p,t]=[0,0,0.12] to [0.06, 0.4, 0.09]. This covers nearly the 
full range of NACA 4 digit series used for wind turbine blade 
sections.

Using the training sets of Xi and Yi to correlate the new 
airfoil in the evaluation phase to the existing airfoils from the 

  

(a) NACA 0012 

  

(b) NACA 6409 

Fig. 1. Grid generation for CFD calculations around two typical airfoils 

  

Fig. 1. Grid generation for CFD calculations around two typical airfoils
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training phase, the estimation Y(X), i.e. the lift to drag ratio for 
the new airfoil would be in the following form [27]:

2
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where n is the number of the training data sets and Di is 
the distance between each training sample and the point of 
prediction which is defined as: 

2 ( ) ( )T
i i iD X X X X= − −

This distance parameter in the present work indicates how 
similar is an airfoil born in a generation, to either of the NACA 
4-Digits airfoils used in the network training phase. Each 
airfoil in a generation was produced by a random selection 
of the parameters m, p, and t. Knowing the input array X, 
the output Y(X), which is the fitness value for the airfoil, is 
predicted by Eq. (4).

The geometric parameters and the corresponding lift to 
drag ratios of each training airfoils are in arrays Xi and Yi, 
respectively. The parameter σ is the probability width for 
each training data set. It is the standard deviation of the 
training data and is usually called the smoothness parameter. 
As observed in Eq. (4), the prediction accuracy directly 
depends on the value of σ. In this paper, the holdout method, 
suggested by Specht [27], was used to expediently choose σ. 
In this method, one sample from the entire set is removed and 
for a fixed σ, GRNN is used again to predict this sample with 
the remainder set of training samples. The squared difference 
between the predicted value of the removed training sample 
and the training sample itself is then calculated and stored. 

The process is repeated for several values of σ and for 
all training samples. The σ for which, the sum of the mean 
squared difference is a minimum for all mean squared 
differences, is the proper choice for σ and should be used for 
the predictions using this set of the training samples.

Shown in Fig. 2 is the mean prediction error for various 
amounts of σ for NACA 4415 at zero angle of attack as the 
initial airfoil to start the optimization process in this paper. 
Here, the mean estimation error is defined as the difference 
between the value of L/D for the airfoil predicted by the 
GRNN for each choice of σ and the corresponding value 
obtained from the present numerical solution. 

For the range of σ between 0.01 to 0.1, the mean estimation 
error is minimum. Beyond this range, a dramatic increase is 
observed in prediction error. The value σ=0.05 has thus been 
selected for present predictions throughout the optimization 
process.

4- MODEL VALIDATION 
The performance of the GRNN with this choice of σ to 

predict the L/D will be first shown to give reasonable results 
for various NACA 4-digits series. Fig. 3 shows the values 
of L/D predicted by the present GRNN for NACA 4415 and 
NACA 2424 airfoils as typical. Within the small angles of 
attack range considered in this paper, the predicted values of 
L/D are in good agreement with both the experimental and 
numerical data, especially at zero angle of attack. However, 
the values predicted by the GRNN primarily show a slight 
over-estimation comparing to those obtained by CFD and 
experiment. This can make sure that the aerodynamic model 
constructed to calculate the fitness value, i.e. the L/D, in the 
optimization process works satisfactorily.

5- THE GA OPERATORS 
In this paper, a classic approach, i.e. constant population 

 
  Fig. 2. Variations of the mean error with the correlation parameter, σ at zero angle of 

attack 
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  Fig. 2. Variations of the mean error with the correlation parameter, σ at zero angle of attack
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GA was first developed as a baseline and then several 
variable population models were implemented as well and 
the associated performances were compared. Totally 100 
generations were considered in this survey and in the classic 
code, the population size in each generation was chosen to 
be constantly 100 members. A permutation encoding system 
was used to identify the chromosomes and they have been 
designated by natural numbers. 

For airfoil shapes as the members in a GA-based 
optimization, this system has been found to be more efficient. 
The initial population of the independent variables, i.e. m, p, 
and t in this study were randomly generated by a FORTRAN 
code. The Random generation was according to the CPU clock 
to prevent a duplicated random number in each generation. 
This inhibits generating identical airfoils in a generation and 
remarkably increases the convergence speed in comparison 
to the conventional random generation mechanism in which, 
the random number is picked up from a pre-produced seed of 
numbers. Once all random numbers within the seed are used, 
the same numbers will be repeated over and over again. 

The fitness function, as stated before, was the airfoil lift 
to drag ratio and has been calculated by the GRNN trained 
to predict L/D for NACA 4-digits series as a surrogate to 
time-consuming CFD runs for about104 airfoils. The top %5 
of members in each generation with higher values of L/D as 
predicted by the aforementioned trained GRNN have been 
directly transferred to the next generation by an elite selection 
operator. 

Each new generation receives 65% of the top members 
of the previous generation by a “cut and splice” approach 
cross-over operator and the remainder 30% were constructed 
by the mutation operator from the previous generation. 
The mutation probability in this study was considered to be 
0.01% of each chromosome fitness value, i.e. its L/D value. 

With this operation, the good chromosomes which have 
been vanished during elite selection or cross-over operations 
could be retrieved. Using a natural number designation for 
the airfoils in this algorithm, this mutation operator would 
have a remarkable effect in converging the algorithm to the 
best result.

Two constrainers were provided in the algorithm during 
evolution. The first is the number of generations that 
terminates the process at NGen=100, even if the convergency 
has not been achieved, i.e. in the case of an unsuccessful 
optimization. The second constraint is the airfoil shape 
produced in each generation. The airfoils having the camber 
values larger than m=0.0475 or the maximum camber 
locations larger than p=0.475, are somehow, unrealistic and 
do not worth considering. Once such airfoil is born, it will be 
replaced by another choice in the desired ranges of m and p.

To sum up, the procedure followed in this paper for 
airfoil optimization has been elucidated schematically in Fig. 
4. A database has been provided containing the geometric 
parameters of a vast range of NACA 4 digit airfoils, including 
m, p, and t as inputs and the lift-to-drag ratio as output for 
each airfoil. This database encompassed both the available 
airfoils data in the literature and those analyzed by the 
numerical simulations performed by the authors. 

A GRNN subroutine in FORTRAN was then developed 
and trained by this database to get the values of m, p and t as 
input and deliver the associated L/D for any 4-digit NACA 
airfoil. Since the exact numerical simulation of various airfoils 
is a time-consuming process, this is an essential and innovative 
step in optimization. This subroutine has been repeatedly 
called in the main genetic algorithm program during the 
optimization process to evaluate the fitness value, i.e. L/D 
for each airfoil. In the main GA program, several ascending 
and descending population models have been included and 
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Fig. 3. The lift to drag ratio, predicted by the present GRNN 
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the user can select the desired one. The optimization process 
starts with selecting the population model. For each model, 
the optimization process has been individually carried out and 
the associated performance parameters were then compared. 

6- POPULATION MODELS
A robust code based on the genetic algorithm was 

developed and different population models were implemented 
to compare the convergence behavior as well as the final 

results. A constant 100 members in each generation was first 
examined as a baseline. Three ascending population models 
including linear increasing, positive curvature increasing, 
and negative curvature increasing models were considered 
in the second step. The two later models were third-order 
polynomials. For these ascending models, the population 
increases from 100 initial members in the first generation 
to 1000 members in the 100th generation. Figs. 5 and 6 
show the increasing and decreasing models, respectively. 

 
Fig. 4. The optimization flow chart in the present paper  

  
Fig. 4. The optimization flow chart in the present paper 

 

Fig. 5. The ascending population models 
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For the descending population schemes, shown in Fig. 5, 
the corresponding linear, positive curvature, and negative 
curvature models were used to decrease the initial 1000 
members in the first generation to 100 members in the last 
one.

7- RESULTS AND DISCUSSION
Fig. 7 shows the variations of the averaged L/D in 

each generation as the algorithm evolves with a constant 
population of 100. The convergence occurs at about NGen=55 
and the optimized airfoil has a lift to drag ratio of 84, which 
is higher than that for the original NACA 4415 airfoil. This 
behavior would be the baseline to be compared with the 

variable population models.
Shown in Fig. 8 are the best airfoils, i.e. those having 

the maximum L/D in each generation for some typical 
successive generations up to the convergence point. For the 
last generations, both the optimized airfoil camber and the 
associated location of the maximum camber increase. At 
about NGen=40 the shape variations decrease and it remains 
more or less constant. From NGen=55 on, the algorithm 
converges to the best result.

For the ascending population models, the evolution of 
lift to drag ratio through the generations is shown in Fig. 9. 
It shows that there is a subtle increase in the optimized lift 
coefficient compared to the constant population scheme. 

 

Fig. 6. The descending population models 
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For the linear ascending model, the optimized value of L/D 
has been increased to 86.2, which means that the algorithm 
has been converged to a relatively better and more efficient 
airfoil. However, the convergence point has been postponed 
to higher generations, namely NGen=57. 

In ascending population with positive curvature, the 
optimized L/D and the convergence generation are 86.2 
and NGen=57 respectively, which are the same as the linear 
ascending model. For the negative curvature ascending 
model, the convergence generation remains the same as that 
of the two later ones, however, the optimized L/D has been 

converged to a slightly higher value of 88.5. This shows that 
the ascending population models have improved the solution 
accuracy comparing to the constant population while 
deteriorated the convergence speed by a small value.

Figs. 10 to 12 show the evolution of the best airfoil in each 
generation for some typical generations up to convergence 
point for the three ascending population models mentioned 
above. A comparison between the airfoil evolution trend with 
that shown in Fig. 8 approves that the shape optimization 
mechanism towards the best airfoil with maximum L/D is 
essentially the same in both constant and ascending models, 

 
Fig. 8. The evolution of the best airfoil in each generation for typical generations up to 

convergence point for constant population model 
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Fig. 8. The evolution of the best airfoil in each generation for typical generations up to convergence point for constant population model

 
Fig. 9. The evolution of the averaged L/D for different generations in various ascending 

population models  
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Fig. 9. The evolution of the averaged L/D for different generations in various ascending population models 
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Fig. 10. The evolution of the best airfoil in each generation for typical generations up to 

convergence point for linear ascending population model 
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Fig. 11. The evolution of the best airfoil in each generation for typical generations up to 

convergence point for positive curvature ascending population model 
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Fig. 12. The evolution of the best airfoil in each generation for typical generations up to 

convergence point for negative curvature ascending population model 
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Fig. 10. The evolution of the best airfoil in each generation for typical generations up to convergence point for linear ascending 
population model

Fig. 11. The evolution of the best airfoil in each generation for typical generations up to convergence point for positive curvature 
ascending population model

Fig. 12. The evolution of the best airfoil in each generation for typical generations up to convergence point for negative curvature 
ascending population model
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especially for the initial generations.
Shown in Fig. 13 is the evolution of the lift coefficient 

for the descending population model. At a glance, the 
higher performance of this model compared to the fixed 
and descending population ones can be observed. In linear 
descending, the optimized lift to drag ratio is 96.8 and the 
algorithm converged at NGen=56.

For the positive curvature descending scheme, the 
optimized L/D decreased to 95.2 and the convergence was 
observed to occur at the 54th generation which means a little 
lower optimized value at a faster optimization process than 
the linear descending case. For the last model, i.e. negative 
curvature descending, the optimized L/D has been reduced 
to 98.5, converging at 56th generation. This model is less 
favorable than the two former descending ones. 

The evolution of the best airfoil in each generation for some 
typical generations up to convergence for positive curvature 
descending population model, which observed to be the best 
model, is shown in Fig. 14. The differences between the airfoil 
shape at the 30th generation and that at the end of the process 
at NGen=54 starts to decrease. This approves faster convergence 
comparing to the other models.

A comparison has been made between the final airfoil 
optimized by the negative curvature descending population 
model, as an instance, and the initial NACA4415. Fig. 15 
shows the surface mold lines for these two airfoils.

To facilitate performance comparison, these results have 
been summarized in Table 1. The number of the function 
calls, NFC, has been determined by defining a counter in the 
code when calling the operators. Note that NFC in this case 

 
Fig. 13. The averaged L/D growth during evolution in various descending population models 
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Fig. 13. The averaged L/D growth during evolution in various descending population models

 
Fig. 14. The best airfoil in each generation for typical generations up to convergence for positive 

curvature descending population model 
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Fig. 14. The best airfoil in each generation for typical generations up to convergence for positive curvature descending population 
model
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can be a measure of the operation time as well. 
According to this table, despite all of the variable 

population schemes were more successful in the optimization 
process than the constant population model, the descending 
population models have overally shown to have a better 
performance in either convergence speed or the maximized 
lift to drag ratio than the others. Among various population 
models examined in this paper, the higher performance of the 
airfoil obtained by the negative curvature descending model 
compromises its NFC comparing to other schemes and makes 
it a suitable choice for such optimization problems.

Excluding the constant population classic model, 
the increasing models have fewer function calls than the 
decreasing ones. The reason is that the increasing models are 
started with smaller function calls at the initial generations and 
NFC gradually increases leading to the stop generation which 
is less than 100 in this paper. The increasing models never get 
the chance to engage with the highest-member generation, 
i.e. 1000 members at NGen=100, since before NGen=100 the stop 
criteria have been met. However, the decreasing models start 
with the 1000-member generation at NGen=1. That is why the 
NFC for the decreasing models is larger than the increasing 

ones. 
Since the NFC in this paper, stands for the computational 

time, it can evidently be deduced that the decreasing 
population models are more time-consuming than the 
increasing schemes. However, this additional time, as 
indicated in Table 1 above, is actually the time required for 
the algorithm to generate more eligible members among the 
crowded initial generations, while in the increasing models, 
the members for the next generation should be selected and 
created from a sparse community in initial generations. As 
a result, the fitness values for the individuals in decreasing 
population models are much higher than the increasing 
models. 

In the negative curvature decreasing model, the rate of 
decrease gradually fades off as NGenapproaches 100. This is to 
ensure that more elite members are coming into play when 
50% of the total generation number has been passed and 
the algorithm could not find the optimum solution. For the 
problems in which the algorithm has been converged to the 
final solution in the first half of the total generation number, 
the rate of decreasing the members is rather steep and the 
non-elite members are rapidly removed. For this reason, 

 
Fig. 15. The final airfoil optimized by the negative curvature descending population model in 

GA 
 

Fig. 15. The final airfoil optimized by the negative curvature descending population model in GA

Model L/D NFC 
% Increase in L/D 
comparing to the 

constant population 

The convergence 
generation 

Cont. population (Baseline) 84 5600 - 55 
Linear ascending 86.2 20667 2.7 57 

+ curvature ascending 86.2 13284 2.7 57 
- curvature ascending 88.5 29115 5.4 57 

Linear descending 96.8 42636 15 56 
+ curvature descending g 95.2 48492 13 54 
- curvature descending 98.5 34401 17 56 

Table 1. Summary of the performances for each model
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among the decreasing models, with a slightly higher NFC, has 
been converged to the highest fitness value member in the last 
generation.

8- CONCLUSION
Several population change patterns were examined in 

a genetic algorithm and compared with the classic fixed 
population model to study the effects of population change 
and pattern on the optimization result and convergence 
speed in a wind turbine section optimization process. The 
lift-to-drag ratio has been chosen as the fitness value for 
optimization. To avoid the time-consuming numerical 
simulations to determine the fitness value, a generalized 
regression neural network has been trained using a database 
from several numerical and experimental results provided 
either by the authors or those available in the literature. 
The network has then been employed to predict the lift-to-
drag ratio for every 4-digit NACA airfoils. The results of the 
optimization operations using various population models 
in GA show that there is a small difference in convergence 
time between the fixed and variable population models and 
for a real problem with exact and heavy calculation of the 
fitness value, an increase in this time difference is anticipated. 
Amongst the various decreasing population patterns, the 
negative curvature decreasing one offers a good improvement 
in the optimized fitness value while increasing negligibly 
the convergence time. For the problems of this type, with 
remarkable convergence time, when a GA is chosen, a 
descending population model with positive curvature, similar 
to that occurs in a real-life, exhibits the highest performance 
and is suggested to be implemented in this algorithm.

NOMENCLATURE
c Airfoil chord length
x Airfoil longitudinal coordinate, measured from the 

apex
y Airfoil lateral coordinate, measured from the apex
yc Mean camber line from x Axis
yt Thickness distribution from x axis
t Airfoil thickness, expressed as a fraction of the 

chord
m The Max. camber, expressed as a fraction of the 

chord
p The longitudinal position of the Max camber, 

expressed as a fraction of the chord
a Angle of attack
Re Reynolds number, based on chord length
L/D Airfoil Lift to Drag Ratio, the fitness value
NGen The counter for the generation number
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