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Nonlinear Control of Bilateral Teleoperators Interacting Non-passive Termination 
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ABSTRACT:  In this paper, an interconnection and damping assignment passivity based controller 
is developed for nonlinear bilateral teleoperation system. The aim is to track the position and force in 
the teleoperation system in the presence of non-passive external interactions and asymmetric variable 
time-delay in the communication channel.  For this end, a nonlinear control law is designed based on the 
notion of time-delay Port-Hamiltonian systems for unforced teleoperator and the Lyapunov-Krasovskii 
theorem. Sufficient synthesis conditions are derived in terms of linear matrix inequalities to tune the 
parameters of controller. Then, by Lyapunov redesign scheme, an auxiliary controller is developed to 
assure the stable position tracking in the presence of non-passive operator and/or environment. The 
main contribution of the proposed method is that the stability and position tracking of system is attained 
via a fixed-structure controller in the presence of non-passive interaction forces without need to their 
dynamical models and force sensor. Since the proposed design conditions include the upper bounds of 
the varying time-delays and their rates; they are less conservative than some rival methods in literature. 
Finally, transparency of the proposed scheme is proved. Simulation results on a 2-degree of freedom 
teleoperation system are compared to rival methods to demonstrate the merits of the proposed strategy.
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1. INTRODUCTION
In bilateral teleoperation systems, one remote robot 

follows the motions of a local one. Generally, a human 
operator manipulates the local robot, the resulting movement 
is communicated to the remote manipulator which imitates 
that motion; and then the remote robot returns back 
reaction forces of the environment to the local robot to give 
the operator a feeling of telepresence [1,2]. An important 
challenge in design of bilateral teleoperation systems is 
to provide the stability, position and force tracking by the 
controller especially in the presence of time-delay in the 
communication channel. Compensation of destructive 
effects of time-delay in the controller design for teleoperation 
systems has been studied by many researchers in the fields of 
robotics and control during the recent years [3].

A survey by Nuno et al. [4] categorizes the telemanipulator 
controllers into three groups: scattering based, damping 
injection and adaptive schemes. The aim of the scattering 
based controllers is to render the connection channel passive 
by imitating the action of an electrical lossless transmission 
line. These schemes can provide stability independent of delay 
value but cannot guarantee position tracking, as originally 
designed [5,6]. In the second group the Proportional (P) or 
Proportional Derivative (PD) controllers with damping (d) 
injection term are considered [7-9], in which the damping 

injection by passive output feedback ensures asymptotic 
stability. These methods result in position tracking with delay-
dependent stability. In general damping injection schemes 
create a slow response. Eventually, the adaptive strategies 
[10,11] lead to position tracking in spite of constant delay, 
through estimation of the parameters of the teleoperation 
system. Only scattering based adaptive approaches [12] can 
stabilize the teleoperation system with variable time-delay.
The stability of teleoperation system in the most of 
aforementioned controllers is analyzed by Lyapunov-
Krasovskii (LK) argument under the restrictive assumption 
that the environment and human operator are energetically 
passive. Passive interaction forces decrease the robots’ 
velocities which benefit the system stability, but this property 
may be violated in many real-world applications. For 
instance, the human operator has non-passive behavior in the 
rigid grasping [13] or trajectory following tasks [14] or the 
environment is non-passive when external forces are applied 
to the teleoperator, in situations such as mining, drilling 
or beating heart surgery [15]. In general, the non-passive 
behavior of human or environment can be modeled by a 
constant force which may deteriorate the performance of the 
system or even destabilize it. Only few papers have considered 
this issue in the controller design and stability analysis of 
teleoperation systems. These papers can be classified in to 
two groups. In the first group [16,17] the interaction forces 
are compensated locally using sensors for measurement 
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of the interaction forces, which are costly and noisy. In the 
second group [18-22], force sensors are not required and 
the controller parameters are tuned to retain the stability of 
system interacting with non-passive termination.   

In reference [18], the pioneer work addressing this issue, 
the teleoperation system interacting with constant human 
force and passive environment in the presence of constant 
communication delay is stabilized using LK theorem. In 
reference [19], linear teleoperator with non-passive human 
operator and environment is controlled by common PD+d 
approach neglecting the communication delay. In reference 
[20], a teleoperation system interacting with constant human 
force and passive environment and varying communication 
delay, controlled by PD+d scheme is studied, in which using 
LK theorem the asymptotical stability of the closed-loop 
system is guaranteed. In references [18,23], the LK theorem is 
used for stability analysis of a nonlinear teleoperator controlled 
by P+d based scheme, where the system is subject to varying 
communication delay, non-passive operator and environment. 
In references [21,22], the nonlinear autonomous teleoperator 
in the presence of varying time-delay is considered. Using LK 
theorem delay-dependent criteria are derived to determine 
controller gains provided that the non-passive interaction 
forces satisfy hard-to-hold conditions which relate their 
values to current amounts of positions and velocities of local 
and remote robots. 

Interconnection and Damping Assignment Passivity 
Based Controller (IDA-PBC) is a nonlinear state-feedback 
control law that is designed to tackle stabilization and 
tracking problems of physical systems by assigning a desired 
Port Hamiltonian (PH) structure to the closed-loop [24]. PH 
description is a natural method of formulating a physical 
system in terms of its energy interchange with the environment 
through its ports. The Hamiltonian function in a PH model is 
considered as the sum of kinetic and potential energies in the 
physical systems, and can be used as an appropriate candidate 
of Lyapunov function in stability analysis. When time-delay 
appears in PH model, suitable LK functional is constructed 
using Hamiltonian function of system for stability analysis 
[25-27].

In this paper, the notion of IDA-PBC is adopted to 
design controller for bilateral teleoperator in the presence 
of asymmetric variable time-delay without any restriction 
on dynamics and passivity of interacting terminators. In 
the first step, the structure of IDA-PBC is designed for 
the teleoperation system without considering interacting 
forces. Then, an appropriate LK functional composed of 
Hamiltonian function of system is employed to derive Linear 
Matrix Inequality (LMI) conditions to tune the parameters 
of IDA-PBC such that the stability of motion is achieved for 
unforced system. In the second step, in the Lyapunov redesign 
framework, an auxiliary controller is developed to assure the 
stability of the system in spite of non-passive human and 
environment.  

The contributions of this paper are threefold: First, 
the theory of IDA-PBC is extended to time-delay systems. 
Since, the proposed synthesis conditions include the upper 

bounds of varying time-delays and their rates; they are less 
conservative than some rival methods in the literature. 
Second, no restrictive assumptions are made on the passivity 
and dynamics of interacting forces. Third, force sensors are 
not required to implement the proposed control strategy. 
The comparative simulation results are presented to show the 
merits of the proposed method.

It is worth noting that, the proposed P+d based controller 
in reference [21] includes some adaptive terms to compensate 
the effects of external forces. Therefore, the controller 
preserves stability and tracking using computationally 
demanding adaptive terms. Moreover, non-passive part of 
the operator force is modeled by an impedance with negative 
spring-damper, which is only a special case of general non-
passive model (i.e., unknown force with unknown dynamic 
model), and the environment non-passive forces were 
estimated. While in our work, the interaction forces are 
considered in more general case (i.e. unknown forces with 
unknown dynamic models) and the fixed structure controller, 
designed using Lyapunov redesign method, maintains stability 
and performance objectives without any online adaptive 
part. The considered teleoperation system in reference [19] 
is linear and time-invariant. Moreover, the time-delay in 
communication channel is neglected. Proportional-derivative 
based controllers are considered for system, which need 
force sensors for implementation. In our work, the nonlinear 
model of teleoperation system is considered in the presence 
of asymmetric varying delay in communication channel. 
Furthermore, the implementation of the developed controller 
requires no force sensors.

 The organization of the paper is as follows:  in Section 2, 
the general dynamical model of the considered teleoperator 
is presented; in Section 3, the proposed IDA-PBC controller 
for teleoperation system is developed and delay-dependent 
stability condition is obtained by LK theorem. Simulation 
results are presented in Section 4. Finally, conclusions are 
given in Section 5.

2. PROBLEM FORMULATION
In this section, the Euler-Lagrange equations of the 

considered nonlinear teleoperation system comprising 
n-Degrees Of Freedom (DOF) manipulators are recalled from 
reference [7]. Then, the relations are reformulated as an affine 
state space model. 

2-1- Euler-Lagrange model of system
The nonlinear equations of local and remote manipulators 

together with the interaction forces are as follows [7]: 

( ) ( ) ( )
( ) ( ) ( )

*

*

,
,  

l l l l l l l l l l h

r r r r rr r r er r

M q q C q q q g q
M q q C q q q g q

τ τ
τ τ

+ + = −
+ + = −

  

  

 
(1)

where , ,  n
i i iq q q ∈   are the joint positions, velocities and 

accelerations, ( )  n n
i iM q ×∈  are the inertia matrices and
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( ) , n n
i i iC q q ×∈     are the Coriolis and centrifugal effects, 

( ) n
i ig q ∈  are the gravitational force vectors, * n

iτ ∈   are 

applied control forces and , n
h eτ τ ∈  represent the external 

forces exerted by the human operator and environment 
to the local and remote manipulators, respectively. Here, 
demonstrate the local manipulator and  i r=  the remote one.

The dynamical model of manipulators presented in Eq. (1) 
have the following property [7]:

P1.  The inertia matrix ( )i iM q of a robot is bounded as

( ) 0 m i i MI M q Iλ λ ∞< ≤ ≤ < .
To simplify the computation, the gravitational forces 

are locally pre-compensated (i.e., ( )*   l l l lg qτ τ= + and 

( )*
r r rr g qτ τ= − );  so, the dynamical model Eq. (1) is changed 

to: 

( ) ( )
( ) ( ) r

,
,  r r

l l l l l l l l h

r r r r r e

M q q C q q q
M q q C q q q

τ τ
τ τ

+ = −
+ = −

  

  

 
(2)

It is assumed that the local and remote robots exchange 
data by a communication medium which imposes variable 

time-delays, ( )iT t  that have known upper bounds h1, i.e., 

( ) 0 i iT t h≤ ≤ < ∞   and do not grow or decrease faster than a 

known value 
iµ , i.e.,  ,;i iT µ i l r< = .

2-2- State space model   

By definition of state vector
1 2

2

 :l l n
l

l l

q x
x

q x
   

= = ∈   
   

 , the 
input vectors  l lu τ=   and  l hw τ= , the affine model for local 
manipulator is achieved as 

( ) ( ) ( )l l l ul l l wl l lx f x g x u g x w= + +

 
(3)

where ( ) l lf x  describes the sub-system dynamics, ( ) ul lg x and

( ) wl lg x   are the control and external input functions 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
1

1 1 2 2

1 1
1 1

,  
,

0 0
; ;  0

l
l l

l l l l l l

n n
ul l wl l

l l l l

x
f x

M x C x x x

g x g x
M x M x

−

×
− −

 
=  − 

   
= = ∈   −   



Similarly, the model of remote manipulator is 

( ) ( ) ( )r r r ur r r wr r rx f x g x u g x w= + +

 
(4)

where 1 2

2

   : rr

rr

n
r

q x
x

q x
   

= = ∈   
   

 , 
r e,  r ru wτ τ= =  and 

( ) ( ) ( )

( ) ( ) ( ) ( )

2
1

1 1 2 2

ur r 1 1
1 1

,
,

0 0
; ;  0

r
r r

r r r r r r

n n
wr r

r r r r

x
f x

M x C x x x

g x g x
M x M x

−

×
− −

 
=  − 
   

= = ∈   −   


By augmenting the states of the local and remote manipulators 
in the vector 4 nx∈ , the overall system can be expressed as 

( ) ( )( )x f x g x u w= + −

(5)

where

, , ,   , ,  
T T TT

r r r
T T T T T

l l lx x x u u u w w w     = = =      , 

( ) ( ) ( ),
TT T

l l r rf x f x f x =  
and

( ) 20
 ; 0

0
ul n n

ur

g
g x

g
× 

= ∈ 
 

 .

It should be noted that the input vector u is calculated and 
applied by the controller and the input w is interaction input 
caused from human/environment. The problem of interest is 
to determine the control input u for both of manipulators to 
achieve stable position coordination in spite of varying time-
delay in data exchange between them without any limiting 
assumptions on w .

3- MAIN RESULTS
The schematic of the considered teleoperation system is 

depicted in Fig. 1. In general, the control signal ,  
TT T

l ru u u =    

is constructed from two terms as   idau u v= − , wherein 
idau  

is responsible for desirable performance in unforced system 
and the role of v  is to guarantee stable position coordination 
despite any interaction forces which prevent the IDA 
controller from  providing stability in the system.

3-1- IDA-PBC design
Consider the local manipulator Eq. (3) when  0lw = . 

Algebraic IDA-PBC strategy in which the desired Hamiltonian 
function is defined for the closed-loop system and the 
controller structure is determined by solving a matching 
condition is employed for synthesis of IDA-PBC for the 
unforced manipulator. The aim is to find a control torque u1 
such that the resulting closed-loop for local subsystem, Eq. 
(3) be as

( )( )1 ,
ll x l l r rx F H x x t T= ∇ −

 
(6)
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where the desired closed-loop Hamiltonian function is 
chosen to be as

( )( )

( )( ) ( )( )

1 2 2

1 1 1 1

1,   
2

1   
4

T
l l r r l l l

T
l r r l l r r

H x x t T x B x

x x t T K x x t T

− = +

− − − −
 (7)

in which the first term indicates desired kinetic energy of 
the local manipulator and the second one represents control 

energy. The constant matrices B1 , K1 and 
11 12 2 2

21 22

  n n
l

F F
F

F F
× 

= ∈ 
 


  are 

determined later. By considering the full-rank left annihilator 
matrix of ( ) [ ]    0  ; 0 ,  n n

ul ul lg as g x I I⊥ ×= ∈ , the matching equation 
is

( ) ( )( ) ( )( )l  , 0
lul l x l l r r l lg x F H x x t T f x⊥ ∇ − − =      (8)

which can be trivially solved by 
1

21 22

0
 l

l
B

F
F F

− 
=  
 

. So, the control 
law is as the following

( ) ( )( ) ( )
( )( ) ( )( )

1

l

:

 ,
ida

l

T T
l l ul l ul l ul l

x l l r r l l

u u g x g x g x

F H x x t T f x

−
= =

∇ − −
 (9)

Similarly, for remote subsystem in Eq. (4) with  0rw =  we have

( ) ( )( ) ( )
( )( ) ( )( )

1

r r

:

 t ,
ida

r

T T
r r ur r ur r ur r

x r l l r r

u u g x g x g x

F H x T x f x

−
= =

∇ − −
 (10)

where 
1

43 44

0
 r

r
B

F
F F

− 
=  
 

 and

( )( )

( )( ) ( )( )

1 2 2

1 1 1 1

1t ,  
2

1  
4

T
r l l r r r r

T
l l r r l l r

H x T x x B x

x t T x K x t T x

− = +

− − − −  (11)

The unknown parameter of controllers Fi, Bi and Ki 
are chosen such that stability and desirable performance 

in position tracking and transparency are achieved for the 
unforced subsystems. 

In what follows, computationally amenable LMI 
conditions are derived to tune efficiently the free parameters 
of the control laws. Note that the overall dynamic of the 
closed-loop system with the IDA controller can be expressed 
as a delayed PH model

( )r, ,  d x d lx F H x x x= ∇             (12)

where

( ) ( )r , t ,   , ,  
TT T

l lr l rx x x x x T x x t T = = − = −   

( ) ( )( )r 1 , ,  ,d l l l r rH x x x H x x t T= − +   

( )( )1 t ,r l l rH x T x− and { }rdiag ,  d lF F F= .

Along the lines of reference [25], stability criteria are 
extracted for PH system with two variable time-delays to cope 
with the model of teleoperation system (Eq. (12)). 
As the Hamiltonian function Hd is regular 
positive definite with regards to x. Then

( ) ( ) ( ), ,  , , ,   and , ,  
l rx d l r x d l r x d l rH x x x H x x x H x x x∇ ∇ ∇
 

       can be 
written as

( ) ( )

( )

1

2 3

, ,  , , ,  

, , ,  

l

r

x d l r l x d l r

r

l x d l r l

r r

x
H x x x F x H x x x

x

x x
F x H x x x F x

x x

 
 ∇ = ∇ = 
  

   
   ∇ =   
      





    



   

 

       (13)

where 4 12
1 2 3,  , n nF F F ×∈ . The following theorem 

summarizes the stable position coordination condition of the 
closed loop teleoperation system (Eq. (12)). 

Theorem1. The system (eq. (12)) is locally asymptotically 
stable provided that for the regular positive definite 
Hamiltonian function ( )r, ,  d lH x x x   

1) there exist constant matrices
1 2   , , ,L S Z Z   with appropriate 

dimensions satisfying

 

Fig. 1. Schematic of teleoperator with the proposed controllers 

  

Fig. 1. Schematic of teleoperator with the proposed controllers
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2 2 1 1 1

3 3 1 2 1

 ;
  ; 

;
;

T
d d

T
d d

T T

T T

F F L
F F S

F F F Z F
F F F Z F

+ ≤
≤

≤
≤  (14)

2) There exist constant positive definite matrices

1 2 1 2 , , , ,  P Q Q R R with appropriate dimensions such that

11 12 13

12 22

13 33

: 0 0
0

T

T

Γ Γ Γ
Γ Γ Γ

Γ Γ

 
 = < 
             (15)

where 4 4 0 n n×∈    and

( )

( )
( )

11 1 2

2 2
1 2 1 r 2

12

13

22 1

33 2

;
 
 

1
;

;

1

;
;

T
d d

l

d

d

l

r

L Z Z PAF PAF

Q Q h R h R
PBF
PCF

Q S
µ Q S
µ

Γ

Γ
Γ

Γ
Γ

= + + + +

+ + + +
=
=

= − − +
= − − +

in which, 

( ) ( )

( ) ( )

, ,
 : , , ,  

, ,
: , ,

l

x l r
xx d l r

x d l r
xx d l r

l

H x x x
A H x x x

x
H x x x

B H x x x
x

∂∇
= ∇ =

∂
∂∇

= ∇ =
∂

 

 

 

 



( ) ( ), ,
  : , ,

r

x d l r
xx d l r

r

H x x x
C H x x x

x
∂∇

= ∇ =
∂

 

 

  .
Proof.   See the Appendix A.

3-2- Lyapunov redesign
Now, consider the teleoperation system with external forces, 

i.e. system Eq. (5) with  0w ≠ . If the controller is chosen as 

idau u v= −   (16)

where   ,
ida ida

TT T
ida rlu u u =   ,  regarding Eq. (12), the 

closed-loop system can be expressed as

( ) ( ) ( ), , d x d l rx F H x x x g x v g x w= ∇ − −    (17)

In theorem 2, v  is computed to achieve stable position 
coordination in the teleoperation system despite bounded 
interaction forces.

Theorem 2. Consider the bilateral teleoperation system 
(Eq. (17)). The system is asymptotically stable and has 
coordinated positions if the control term v  in Eq. (16) be as

( ) 1 : , ,  l rv v x x x ωη
ω

= = − 

 (18)

where [ ]1 2 3 , , Tω ω ω ω=  with

( )( ) ( )( )
( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

1

2

3

2 , ,   

 2 , ,  , ,  

2 , ,  , ,  

l

r

TT
x d l r

T
T T
x d l r x d l r l

T
T T
x d l r x d l r r

H x x x I PA g x

H x x x H x x x PB g x

H x x x H x x x PC g x

ω

ω

ω

= − ∇ +

= − ∇ +∇

= − ∇ +∇





 

    

    

and  η ρ≥  , where
( ) ( )

  ,  , ,

: ,  :

,

 

TT T T
w w l r

l l r r

W W w w w

w w t T w w t T

ρ  ≤ =  
= − = −

 

 

.

Proof.   See the Appendix A.
Remark 1. The IDA controllers (Eqs. (9) and (10)) can 

provide input-to-state stability without need to Eq. (18), if the 
external forces satisfy the following condition

( ) 2

 min
w

H
W

λ Γ
ω
∇

< −
          (19)

Where

 

( )

( )
( ),

: ( 2 ),

, , ,

,  ,  , ,

,   

l

r

T
T

x d l r

T

x d l l rl l

T

x d r r

l

r l

H x x

x

H x x x

H x

x

x x t T

xH

 ∇
 
 ∇ = ∇ 
 
∇  

= −




 

  

   

 

  

  
: ( 2 ),r rx x t T= −

 : ( ),rl l rx x t T T= − −

 ,   and ( ) minλ Γ   is the 
smallest eigenvalue of the matrixΓ .

Remark 2.  Since the parameters of the manipulators 
are difficult to be determined precisely in practice, often 
there are uncertainties in Eqs. (1) and (2). These dynamical 
uncertainties can be modeled by additive terms to the nominal 
model of system as

( ) ( ) ( )
(q ) (q ) (q )

, , ,
(q ) (q ) (q )

 
i i i i i i

i i i i i i

i i i i i i

i i i

M M
C q q C q q C q q
g

M

g g
= + ∆

= + ∆

= + ∆

  

 (20)

where ( )(q ), ,i i i iiC qM q  and (q )i ig   are the nominal model 

matrices/vectors and ( )(q ), ,i iii iM C q q∆∆ 

, (q )i ig∆ are norm 
bounded dynamical uncertainty matrices/vectors as follows:

( )(q ) ; , ; (q )i i M i i ii C i gM C q q gδ δ δ∆ ∆ ∆≤ ≤ ≤

 (21)

If the models of robots have uncertainty as Eq. (20) and the 
controller is designed using nominal model, the closed loop 
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system is as the following 

( ) ( ), , ( )d x d l rx F H x x x g x w= ∇ + −  



 (22)

w h e r e { }diag , , w ( g ) ( g )
TT T

l ld l r r rw wF F F  = = + ∆ + ∆ 
 



    
and

( ) ( )

1

1

1
21

1
21

0
; (q ) (q ) ;

(q ) (q ) ,

l
l l l

l

l
l l

l l l l l

l l

ll l

F M F

C

B

M F q q

M

M B

α
α γ

γ

−
−

− −




∆


= = 


= −





( ) ( )

1

1

1
43

1
44

0
; (q ) (q ) ;

(q ) (q ) ,

r
r r r r

r r

r r r r r r r

r

r r

rF M F

C

B

M F q q

M

M B

α
α γ

γ

−
−

− −




∆


= = 


= −





For robust stability and position coordination, the controller 
parameters should satisfy the conditions in theorems 
1 and 2. Since, regarding property 1 and Eq. (21), the 
variable parameters iα  and iγ  in lF  and F are bounded as 

,i i i i ii
α α α γ γ γ< < < < ;  the set of LMIs (Eqs. (14) and (15)) 
should be satisfied in the corners, , , andi i ii

α α γ γ .
Proposition1 is presented to verify the transparency of the 

proposed scheme.

Proposition 1. Consider the teleoperator described with 
Eqs. (3) and (4) controlled by Eqs.  (9) and (10). In the steady 
state (i.e., 0i iq q= =  ), the human operator feels what the 
remote manipulator is touching (i.e. ehτ τ= ) if the controller 
parameters 21F , 43F  and iK   satisfy in 

21 43  l l r rM F K M F K=            (23)

Proof. This proposition is easily established if we rewrite the 
teleoperator dynamic (Eqs. (3) and (4)) with controller (Eqs. 
(12) and (13)) in steady state as 

( )( )21 1 1
1  
2h l l l r r eM F K x x t Tτ τ= − − =  (24)

4- SIMULATION RESULTS
In this part, the teleoperator controlled by the proposed 

controller are simulated in Matlab®. The local and remote 
robots are 2-DOF manipulators, as shown in Fig. 2.   The 
dynamics of the system is as Eq. (1) with the  following inertia 
matrix adopted from reference [7]

( )
( ) ( )
( )

2 2

2

2 cos cos
 

cos
i i

i

i i i i

i i

i i i

q q
M q

q

α β δ β

δ β δ

 + +
 =
 + 

where { } ,  1, 2
ikq k∈   is the angular position of link, 
( )2 2

2 2 1 1 2 1 2 2 : ,   :   
i i i i i i i ii il m l m m l l mα β= + + =  and 2

2 2:
i ii l mδ = . The lengths 

of links 1i
l  and 2i

l  are 0.38 m and the masses of links are 

1 23.9473kg, 0.6232
i i

m m= =  kg. The Coriolis and centrifugal 
forces are shown by the matrix ( ) ,i i iC q q  as 

( )
( ) ( )
( )

2 2 2 1

2

sin sin
 ,

0
 

sin
i i i i

i

i i

i i i i

i

q q q q
C q q q

q

β β

β

 − −
 =
 
 

 

 

where { } ,  1, 2
ikq k∈ is the angular velocity of  link. The gravity 

is given by

( )
( ) ( ) ( )

( )

1 2 1
2 1

1 2
2

1 1 cos cos

 
1  cos

i i i

i i

i i

i

i i i

i i

i

g q q q
l l

g q
g q q

l

δ α δ

δ

 + + − 
 =
 

+ 
  

with =9.8g .
  The time-delays in forward and backward paths vary as 
shown in Fig. 3. So, the lower and upper bounds of delays are

0.8, 0.70l rh h= =   and the upper bounds of their derivatives 
are 0.72, 0.68l rµ µ= = . 

The interaction forces between human and local manipulator 
and between environment and remote manipulator are 
considered to be non-passive as follows

0

0

3 0 2 0
0 3 0 2

 
1 0 2 0
0 1 0 2

h h l l

e e r r

q q

q q

τ τ

τ τ

   
= + +   

   
   

= − −   
   





 (25)

 

Fig. 2. Schematic of  simulated 2-DOF teleoperation system [7]  

 

 

 
Fig. 3.  The variable time-delays in forward and backward paths. 

  

Fig. 2. Schematic of  simulated 2-DOF teleoperation system [7] 

Fig. 3.  The variable time-delays in forward and backward paths.
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where their constant part, 0hτ  and  0eτ   are as depicted in 
Fig. 4.

Using the LMI toolbox of MATLAB®, the parameters of 
IDA controllers are obtained from Theorem 1 as the following:

2 2
21

43 22 44

 8 , 7 , ;
7 3 1 0.3

, .
3 43 0.3 10

l r l rB B I K K I I R F

F F F

×= = × = = × ∈ =

− −   
= = =   − −   

 The position coordination of teleoperator and the velocity of 
manipulations are depicted in Figs. 5 and 6, respectively. The 
initial conditions are chosen as 1 2 2 1 [0  0] [0.1  0.1, ]

l l r r

T Tx x x x= == =  
rad.

The proposed IDA-PBC controller improves the 
performance of coordination compared to the methods 
developed in references [20,22]. It is worth noting that the 
controller proposed in reference [20] is as

( ) ( )
( )

( ) ( )
( )

*

*

 

 

( ( ))

( ( ))

( ( ))

( ( ))

l l l d l

p l l l

r

r

d

r r

r l

p

r r

r l r

rll r

g q k q q

k q q q

g

t T t

t T t

t T t

t Tk

q k q

q qt

q

q

τ

α

τ

α

= − −

−

= + +

− −

− −

−

− − −

−

 



 

            (26)
where 1, 1.5, 0.2.p d l rk k α α= = = =  Also, the controller suggested 
in reference [22] is as

( ) ( )
( )

( ) ( )
( )

*

*

 

 

,

( ( ))

,

( ( ))

l

l

l l l l l l l

p l l l

r

r

r r

r r r

l

r

p l r

r r

r

g q C q q q

k q q q

g q

q

t T t

t T t

C q q q

k q q

τ

α

τ

α

=

−

+ −

−

= + +

− −

− −

 



 

            (27)

where 3, 0.5, 0.5.
lp l rk α α= = =  The simulation results of 

system with proposed controller and methods in references 
[20, 22] in joint space and workspace are shown in Fig. 
7.  Moreover, mean square errors and maximum errors are 
reported in Table 1, where l rk k ke q q−=  for 1,2k =  represents 
position error of links in joint space. As seen, the Mean Square 
of position Errors (MSEs) and maximum errors obtained by 
our method are considerably lower than the rival ones. 

To illustrate the force tracking in the system (i.e. 
transparency) the profiles of the force applied by the 
environment to the remote robot and the force felt by the 
operator via the local robot are shown in Fig. 8. In this part 
of the simulation, the external interaction force applied by 
the operator to the local robot is zero. As seen, the proposed 
control strategy can provide transparency as well as stability 
and tracking in the telemanipulation system interacting non-
passive human and environment. 

To evaluate the performance of system in the 
presence of uncertainties in the manipulators models, 
it is assumed that the knowledge about the masses of 
the links has 10% uncertainty. i.e., 1 [3.54,4.33]kg

i
m ∈  and 

 

Fig. 5. Positions in the joint space for the teleoperator system controlled by the proposed method 

  

Fig. 4. The profile of the constant part of interaction forces

 

 

Fig. 4. The profile of the constant part of interaction forces 
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Fig. 5. Positions in the joint space for the teleoperator system 
controlled by the proposed method

 

 

  Fig. 6. Velocities in the joint space for the teleoperator system controlled by the proposed method 

  

Fig. 6. Velocities in the joint space for the teleoperator system 
controlled by the proposed method
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(a) 

 

(b) 

Fig. 7. Position errors in  (a) joint space  (b) workspace for the teleoperator system controlled by proposed controller and rival 

ones 

  

Fig. 7. Position errors in  (a) joint space  (b) workspace for the 
teleoperator system controlled by proposed controller and rival 

ones

 

Fig. 8. Interaction forces between environment and remote robot and forces sensed by the human operator. 

  

Fig. 8. Interaction forces between environment and remote robot 
and forces sensed by the human operator.

 

Fig. 9. Disturbance forces from environment applied on remote robot. 

  

Fig. 9. Disturbance forces from environment applied on remote 
robot.

 

 

Fig. 10. Positions in the joint space for the teleoperator in the presence of model uncertainty and unknown disturbance 

  

Fig. 10. Positions in the joint space for the teleoperator in the 
presence of model uncertainty and unknown disturbance

 

 

 

Fig. 11. Velocities in the joint space for the teleoperator in the presence of model uncertainty and unknown disturbance 

 

Fig. 11. Velocities in the joint space for the teleoperator in the 
presence of model uncertainty and unknown disturbance
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2 [0.55,0.68]kg
i

m ∈ . In this case, the uncertainty bound of 
system matrices by assumption that 15iq ≤ rad/sec are 

0.096, 0.324, 0.98M C gδ δ δ= = = . From property1, it is clear that
(q0. ) 1.06047 i iI M I<<  and  

2 20.052 (q ) 0.96 ,i iI M I I ×< < ∈  Regarding 
Remark 2, the parameters of IDA controllers for closed-loop 
system (Eq. (22)) are obtained from Theorem 1 as below:

2 2
21 43 22

44

 8 , 9 ,
7 3

; ,
3 60

4 0.3
.

0.3 13

l r l rB B I K K I I

R F F F

F

×

= = × = = × ∈

− 
= = = − 

− 
=  − 

The performance of system in the presence of uncertainty 
and some unknown disturbance (depicted in Fig. 9) for the 
remote robot, is shown in Figs. 10 and 11. As seen, the effects 
of uncertainties are compensated by the controller and system 
has appropriate behavior. Compared to the deterministic case, 
the unknown disturbance on the remote robot has decreased 
the performance of system but stability of system is preserved.

5- CONCLUSIONS
In this paper, the notion of IDA-PBC has been employed 

for nonlinear bilateral teleoperation systems with asymmetric 
variable time-delay in the communication medium and non-
passive operator and environment. First, using the Lyapunov-
Krasovskii theorem, the delay-dependent conditions have 
been extracted which is used to tune the parameters of IDA-
PBC in order to achieve stable position and force tracking 
in system. Employing the Lyapunov redesign scheme, 
another control term has been added to assure the stability 
of system in spite of non-passive interaction forces. Unlike 
literature dynamical model of these forces in not needed in 
the design procedure. Comparative simulations show that 
by the proposed approach, the position tracking of system is 
improved compared to P+d based controllers. Considering 
more imperfections in the communication channel defines 
future research line.

Appendix A:
Proof of Theorem 1.  The LK functional candidate is as below:

( ) ( ) ( )
( ) ( )

1

2 3

 , : 2 , ,  ,

, ,
t d l r t

t t

V t x H x x x V t x

V t x V t x

= + +

+

 

 (A1)

where ( ) { } : ,  for 2 max ,  0,   t l rx x t h hθ θ= + − ≤ ≤  and

( ) ( )1 : , ,  , ,  T
x d l r x d l rV H x x x P H x x x= ∇ ∇   

( )
( ) ( ) ( )( )
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 

 
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l x d l r
t h s
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∇
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=

∇

∫ ∫

∫ ∫

 

 

 

 

The derivative of ( ) 2 , , d l rH x x x   along the system (Eq. (12)) is 
calculated as

( )
( )
( )
( )

( )( ) ( )
( ) ( )

, ,  

2 , ,  2 , ,  

, ,  

 , ,  , ,  

2 , ,  ,  ,  
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   (A2)

where
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  : 2 ,    :

2 ,  : .
l l r

r rl l r
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x x

x x

t T t Tx T

= − =

− = − −
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

1e 2e 1e 2e

Table 1. Position errors in joint space
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Using the inequality  2 T T Ta b a a b b≤ +  leads to 
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According to Eqs. (13) and (14), we have
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In similar way, we obtain
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 (A5)

Combining the above inequalities results in the upper bound 
for ( ) 2 , , d l rH x x x   as below
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 (A6)

On the other hand, the time derivative of 21,V V   along the 
system Eq. (12) is computed as

( )

( )

( )

( )

( )
( ) ( )

1 2 , ,  

, ,  

, ,  

, ,  

2 , ,  

, ,  2 , ,  

P ,  ,  
l

r

l

T
x d l r

A

xx d l r

B

xx d l r l

C

xx d l r

T
x d l r d x d

T
l r x d l r

d x d l l

r

H x x x

H x x x x

P H x x x x

H x x x x

H x x x PAF H

x x x H x x x

BF H xx

V ∇

 
 ∇ +
 
 
∇ + 
 
 
∇  
 

= ∇ ∇

+ ∇

=

∇

















 

 



  



  

 

   



 ( )
( )

( )
2 , ,  

 ,  ,  ;
r

rl

T
x d l r

d x d r rl r

H x x x

PCF H x

x

x x

+ ∇

∇






 

 

  

 (A7)

( )
( ) ( )
( ) ( )

( )
( ) ( )

( )

2

1 2

1

2

, ,  

 , ,  

1 ,  ,  
 

,  ,  

1 ,  ,  

,  ,  

l

l

r

r

T
x d l r

x d l r

T
l x d l l rl

x d l l rl

T
r x d r rl r

x d r rl r

x x

x x

x

V H x x x

Q Q H x x x

T H x

Q H x

T H

x

x

x x

x

Q H

= ∇

+ ∇

− − ∇

∇

− − ∇

∇











 

 

 

  

 

  

 

  

 

  

   (A8)

Regarding delay characteristics, the upper bound of 2V  is
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 3V  is calculated as
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Some manipulations yields to
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So, the upper bound of 3V  is obtained as below
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Finally, regarding Eqs. (A6), (A7), (A9) and (A12), the upper 
bound for V is obtained as
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That can be expressed in compact form as
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            (A14)

By LK Theorem, the system Eq. (12) is locally 
asymptotically stable if the upper bound of V is negative. By 
attention to Eq. (A14) the upper bound of V  is negative if the 
matrix 0Γ < , thus the proof  is completed.

Proof of Theorem 2. Consider again the LK functional 
(E. (A1)). Calculating the derivative of ( ) , tV t x   along the 
trajectories of the system Eq. (17), yields to
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which is rewritten as 
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where ( ) ( ) : ,  :l l r rw w t T w w t T= − = −  , ( ) ( )  : ,  :l l r rv v t T v v t T= − = −  . 
Defining 1 2 3, ,T T T Tω ω ω ω =   ,  , ,  

TT T T
w l rW ww w =    and , ,

TT T
r
T

v lV v vv =   

, Eq. (A16) is rewritten as ( ) , ,  T T
l r w vV D x x x W Vω ω≤ − + +

  ,   Since
 wW ρ≤   , we have

  

  

T T
w v w

T T
v v

W V W

V V

ω ω ω

ω ρ ω ω

+ ≤

+ ≤ +           (A17)

If the auxiliary controller v is considered as

( ) 1  : , ,  l rv v x x x ωη
ω

= = − 

          (A18)

Then,     vV ωη
ω

=−  ; so, the following holds 

    T T
w vW Vω ω ρ ω η ω+ ≤ −  (A19)

By choosing  η ρ≥  , we have     0T T
w vW Vω ω+ ≤ , which yields 

to  0  V ≤ . The stability of the states of system Eq. (17) is 
proved. 

NOMENCLATURE
                     The set of real numbers
 n
                   n-dimensional real vector space
 n m×
                 n m× -dimensional real matrix space
 g⊥

   The full-rank left annihilator matrix of g  i.e.,  0g g⊥ =  
xH∇                The gradient of  with respect to x . i.e., 

H
x

∂
∂

 
 0 n m×∈           n m× -dimensional zero matrix
 n nI ×∈            n n× -dimensional identity matrix
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