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Effect of Spinning Speed Fluctuation along with the Twist Angle on the Nonlinear 
Vibration and Stability of an Asymmetrical Twisted Slender Beam

M. Tajik, A. Karami Mohammadi*

Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

ABSTRACT:  In this study, the effect of spinning speed fluctuations along with the twist angle, on the 
stability and bifurcation of spinning slender twisted beams, with linear twist angle and large transverse 
deflections, near the primary and parametric resonances have been analyzed using the Euler–Bernoulli 
model. The spinning speed fluctuation along with the twist angle, asymmetry and imbalance, play an 
important role on the frequency response of the twisted beam. The equations of motion, in the case 
of pure single mode motion, are analyzed by using the multiple scales method after discretization by 
the Galerkin’s procedure. The instability of the twisted and untwisted beams is investigated and cases 
and domains are determined in which bifurcation could occur. Effects of the speed fluctuations, twist 
angle, damping ratio, asymmetry, eccentricity and mass moment of inertia about the longitudinal axis 
on the frequency response of the twisted beam are investigated. This is explained that the spinning 
speed fluctuation effect is weak in lower modes and smaller twist angles while asymmetry effect is 
dominant. By ascending the mode number and twist angle, spinning speed fluctuation effect amplifies 
the amplitude of system. The results are compared and validated with the results obtained from Runge-
Kutta numerical method in steady state, and confirmed with some previous researches.
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1. INTRODUCTION
The analysis of the behavior of rotating systems plays 

an important role in reducing the destructive vibrations of 
rotating systems such as turbine blades, helicopter rotor 
blades, pumps, compressors, satellite booms and machining 
(fluted end-milling cutter, drilling, and boring bar). In 
reality, these systems may be subjected to torsional loads and 
thus spinning fluctuates. These perturbations can produce 
devastating effects on such equipment. Therefore, studying 
the nonlinear vibrational and dynamic behavior of twisted 
and non-twisted beams is of great importance and can help 
to understand the behavior of more complex structures under 
similar conditions. In recent years, numerous studies have 
been conducted on the vibrational behavior of twisted beams. 
These beams are usually introduced using Euler-Bernoulli 
and Timoshenko models and their twist angles may be linear 
or non-linear along the longitudinal axis of the beam. Some 
of the analyses focus on the non-rotating twisted beams and 
rotating twisted beams about the perpendicular direction. 
Early success in modeling of the twisted beams obtained by 
Washizu [1]. He explained that the twisted beams have made 
of flat fibers which have been twisted spirally and make a 
twisted beam. Also, he extracted mathematical equations of 
the twisted cantilever beam and used semi-inverse technique 
to analyze the dynamical behavior of the twisted beam by 

considering the torsional and flexural deformations. Slyper [2] 
studied the coupled bending-bending vibrations of a twisted 
cantilevered beam. By extracting the resonance frequencies 
and the equations of motion, frequencies and modal curves 
of experimental and theoretical models obtained for three 
twist angles 0° and 90°, and indicated a good correlation 
together. Carnegie [3] presented transverse vibration 
equations by considering the coupling between bending and 
rotation and investigated the geometrical effects of twisted 
beams on natural frequencies. Dawson and Carnegie [3] 
predicted modal curves despite the stress along the turbine 
blades. The prediction results depend on the torsion angle, 
cross-section, centrifugal tension and aerodynamic effects. 
Turbine blades are modeled as rectangular twisted beams 
with varying length-to-width ratios and torsion angles of 0 to 
90 degrees. The results are compared with similar work and 
show good agreement. Imregun [4] used a numerical method 
to investigate the frequency response of turbomachinery 
blades. He modelled the blades as rotary twisted beam 
and extracted the equations of motion by considering the 
Coriolis effects, and found that the obtained results have a 
good correlation with the previous researches. Oh et al. [5] 
studied coupled vibrations of the rotating twisted composite 
beams by considering the shear effects and inertia terms. They 
extracted the equations by using the Hamilton’s principle 
and investigated influences of the number of layers and 
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twist angle on the frequency response curves. Banerjee [6] 
used a dynamic stiffness method to determine the natural 
frequency of a non-rotating twisted beam. Rotational inertia 
and shear deformation of the twisted beam were considered, 
and the success of this method for obtaining system 
eigenfrequencies was elucidated. Yardimoglu and Yildirim 
[7] have succeeded in introducing a new method based on 
the finite element method to obtain resonant frequencies 
of non-spinning pre-twisted Timoshenko beams. Sabuncu 
and Evran [8] investigated the effect of twist angle on the 
frequency responses of linear and nonlinear twisted blades 
about the transverse axis and found that the relationship 
between linear and nonlinear blade models was smaller 
for larger twist angles. Lin et al. [9] obtained the transverse 
vibration equations of a twisted beam mounted on an elastic 
foundation. They studied the frequency response of the beam 
in three states under damping, critical and overdamping, and 
the effect of parameters such as twist angle, and damping ratio 
on the frequency response and system instability. Avramov 
and Pierre [10] modeled the rotating blade as a rotating 
asymmetric twisted beam and obtained the nonlinear partial 
differential. They used the Galerkin method to discretize the 
equations. Also, they used the nonlinear normal mode method 
to analyze the set of equations and found that first and fourth 
backbone curves are soft and the second and third backbone 
curves are hard. Verichev et al. [11] studied vibration behavior 
of a rotary system with harmonic speed and without changing 
in the visco-elastic properties of the system. They applied 
averaging method and numerical integration to validate 
analytical results and shown that vibrations of the system 
could be damped by selecting the suitable parameters for the 
harmonic term of rotation speed. Yao et al. [12] investigated 
the nonlinear stability of the rotating blade with speed 
fluctuation under high-temperature supersonic gas flow. 
They modeled the rotating blade as a pre-twist, thin-walled 
rotating cantilever beam and used the isotropic constitutive 
law and Hamilton’s principle to extract the nonlinear partial 
differential equations of motion. Aerodynamic loads were 
explained by first-order piston theory. Then, they discretized 
the obtained equations by Galerkin’s method and applied 
the method of the multiple scales to describe the internal 
and primary resonances. Finally, they found that there are 
the periodic and chaotic motions in this system with speed 
fluctuation. Ebrahimi and Mokhtari [13] presented free 
vibration analysis of rotating exponentially graded thick 
beams based on the Timoshenko beam theory. They used 
Hamilton’s principle to extract the equations and solved 
them by the differential transform method. They studied the 
influences of the constituent volume fractions, slenderness 
ratios, rotational speed and hub radius on the vibration 
characteristics of the rotating thick Functionally Graded (FG) 
beam and indicated that these effects play significant role on 
the dynamic behavior of rotating FG beam. Bekir et al. [14] 
studied dynamical behavior of spinning twisted beam by 
considering the Coriolis effects. They performed their analysis 
using the Spectral-Tchebychev method and compared the 
results with the finite element simulation results. The study 

showed that both results agree with good accuracy. They also 
found that the aforementioned three-dimensional approach 
can be applied to more complex structures and boundary 
conditions. Adair and Jaeger [15] investigated vibration of the 
rotating twisted Euler–Bernoulli beams using the modified 
adomian decomposition method. They obtained the linear 
differential equations of motion considering the centrifugal 
stiffness. Natural frequency and mode shapes obtained 
simultaneously using the Adomian Modified Decomposition 
Method (AMDM). AMDM converts the motion equations to 
recursive algebraic equations and simple algebraic boundary 
conditions. 

However, work on twisted beam vibrations spinning 
around its longitudinal axis is scarce. Tekinalp and Ulsoy 
[16,17] described instability and vibrational response of a 
drill bit as the spinning twisted beam about its longitudinal 
axis and investigated influences of the twist angle, rotational 
speed and aspect ratio on the transverse frequency response. 
They modeled twisted beam as Euler-Bernoulli beam and 
utilized the finite element method and compared results with 
analytical and experimental procedures. Huang [18] simulated 
a drilling bit with the Winkler foundation and investigated 
the impact of structural damage on the stability of the twisted 
beam with time-dependent boundary conditions. He 
investigated the stability of the bit by changing drilling force. 
Young and Gau [19] investigated instability of spinning pre-
twisted beams about the longitudinal axis with simple periodic 
speed and Gaussian white noise axial force as a summation of 
the static and dynamic forces using the finite element method. 
They found that there are unstable domains in main 
resonances and instability domains reduce at the higher 
resonances. Furthermore, results were extracted numerically 
for different combination resonances. Gurgeoze [20] studied 
axial force vibration of a pre-twisted rotor and solved linear 
equations of motion by Galerkin’s method. He used the 
multiple scales procedure explained vibrational responses for 
several and the results boundary conditions. Lee [21,22] 
analyzed stability of twisted beam with simply support and 
clamp-free boundary conditions. He used Euler-Bernoulli 
beam theory and utilized assumed mode method to investigate 
the stability domains of the beam. Above mentioned beam is 
under constant and sinusoidal axial load. The obtained results 
indicated that the spinning speed, the twist angle and the 
slenderness coefficient of the beam effect on the stability 
regions. Tan et al. [23] obtained the equations of motion of 
the twisted beam with zero and non-zero twist angle. The 
beam was modelled by Euler beam theory and was under 
axial force.  They utilized the assumed mode method and 
concluded that ascending the twist angle, unstable domain 
increases. Chen [24] presented the instability results of a 
rotating twisted beam about the axial direction and under the 
axial force. He modelled twisted beam with Timoshenko 
theory and considered Coriolis effect. The equations of 
motion obtained in coordinate system attached to the twisted 
beam by Hamilton’s principle and were discretized by the 
finite element. He studied influences the twist angle, rotating 
speed, constant axial load and slenderness coefficient. Once 
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again, Chen et al. [25] analyzed the vibration behavior of the 
spinning twisted beam by ANSYS software. Chen et al. [26] 
investigated the instability of a pre-twisted beam under a 
periodic axial load. The beam was viscoelastic and rotated 
about the axial direction of beam. They used Hamilton’s 
principle to obtain the equations and discretized equations by 
finite element method. By considering Bolotin’s method, 
influences of spinning speed, twist angle, setting angle and 
constant axial load were studied on the stability regions. Chen 
[27] studied vibrational behavior of twisted beam based on 
the Timoshenko theory and Kelvin-Voigt damping in varies 
boundary conditions. To simplifying, he used coordinate 
frame attached to fluted frame and obtained the equations of 
motion linearly by finite element method. He described that 
descending the internal damping increases imaginary part of 
the eigenfrequencies while twist angle decreases. In other 
research, Chen [28] studied the axial load effect on the 
vibrational responses twisted Timoshenko beams with 
Kelvin-Voigt damping. He presented the previous results in 
above mentioned cases. Li et al.  [29] presented free vibration 
of a spinning composite thin-walled beam with hydrothermal 
conditions. They utilized Hamilton’s principle to extract the 
equations of motion based on the constitutive relationship 
and solved the obtained equations by Galerkin’s discretization 
method. They investigated influences of the moisture, 
spinning speed, temperature and fiber orientation angles on 
the frequency responses of the beam and found that ascending 
the spinning speed decreases natural frequency of the vertical 
beam while increases natural frequency of the horizontal 
beam. Also, the natural frequencies decrease and increase 
with respect to the length-to-radius ratio and thickness-to-
radius ratio, respectively. Li et al. [30] studied the coupled 
vibrations of a spinning composite thin-walled beam with the 
axial moving. They extracted motion equations by Hamilton’s 
principle and discretized them by Galerkin’s method. The 
effects of the fiber orientation angles, length-and thickness-
to-radius ratios, axially moving speeds and spinning speeds 
on the natural frequencies of the beam were studied and they 
found that the natural frequencies of vertical beam decrease 
with respect to the spinning angular speed, while it is unlike 
for the horizontal beam. But, the natural frequencies of 
vertical and horizontal beam decrease with respect to the 
axial speed. Zhu and Chung [31] investigated a new model of 
spinning beam with deployment based on the Rayleigh beam 
theory and obtained coupled equations of motion by using 
the von Karman nonlinear strain theory. Galerkin’s method 
was applied to discretize the equations and natural frequencies 
of the Rayleigh and Euler–Bernoulli beams were compared by 
considering the deploying motions. They explained that 
Rayleigh beam model is more exact than the Euler–Bernoulli 
beam model, because the rotary inertia effect is accounted for 
the Rayleigh beam model. Also, flexural motion of the 
Rayleigh beam is influenced by both of the deployment and 
spinning speed, while flexural motion of the Euler–Bernoulli 
beam is influenced by only the deployment speed. Zhu and 
Chung [32] studied the stability of a simply supported 
spinning beam with an axially moving motion. They extracted 

natural frequencies of the beam and investigated the critical 
speed and stability domains. In this study, they found that the 
present equations of motion are more reliable than the 
previous equations because the present equations completely 
consider the rotary inertia terms. Thomas et al. [33] explained 
the nonlinear vibrations of the cantilever beam and studied 
the influence of the rotational speed on the hardening and 
softening behavior and the bifurcation points. Equations of 
motion were analyzed analytically and discretized by finite 
element method. They compared the maximum amplitude of 
vibrations with both of the above-mentioned methods and 
investigated the accuracy of the results together. Sheng and 
Wang [34] studied nonlinear dynamic behavior of the Euler–
Bernoulli beams with the simply support boundary 
conditions, moving load and Kelvin−Voigt damping. They 
extracted the nonlinear partial differential equations of the 
motion by using the Von Karman nonlinear theory and 
D’Alembert’s principle and discretized them by the Galerkin’s 
method. The results shown that the amplitude of nonlinear 
system responses are higher than that obtained from the 
linear system. Farsadi et al. [35] studied aero-elastic response 
of the blades modeled by asymmetric composite pre-twisted 
rotating thin walled beams. They used Hamilton’s principle to 
extract the equations of motion and boundary conditions and 
the approximation of Green-Lagrange strain tensor to extract 
the strain field of the system. The equations were discretized 
by Galerkin’s method and findings were concentrated on the 
effects of the coupling in circumferentially asymmetric 
stiffness and circumferentially uniform stiffness 
configurations, twist angle, rotating speed and fiber 
orientation, on the natural frequencies of the beam. Mirtalaei 
and Hajabasi [36] studied axial, bending and torsional 
vibrations of the in-extensional rotating beam. Equations of 
motion were solved by perturbation method and investigated 
influences of the coupling axial, bending and torsional 
motion, rotating speed and radius to length ratio of the beam 
on the vibration behavior of system. Qaderi et al. [37] 
presented the nonlinear dynamic behavior of a spinning shaft 
with the parametric and external excitations. They explained 
that external excitation is due to shaft unbalance and 
parametric excitation is due to periodic axial force, and 
investigated combination resonances of parametric excitation 
and primary resonance of external force. In this work, the 
multiple scales method was applied to ordinary nonlinear 
differential equations and the influence of various parameters 
on the response of the system was studied. Xinwei and Zhang 
[38] used the quadrature element technique to solve the 
coupled dynamic behavior of curved and pre-twisted beam 
like structures with irregular shapes of cross-section. Beams 
were rectangular, circular, elliptical and airfoil cross-sections, 
various curvature and pre-twist rates, and different boundary 
conditions. They obtained the results and compared them 
with the 3Dimensioal Spectral-Tchebychev (3D-ST) solutions 
and the finite element data, and indicated that the proposed 
method is accurate when the number of degrees of freedom is 
small. Karimi Nobandegani et al. [39] presented instability of 
twisted beam with clamp-free boundary condition under 
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axial load so that the beam rotates about the axial direction in 
a viscoelastic Kelvin-Voigt foundation. They extracted the 
equations of motion by Hamilton’s principle discretized them 
by finite element method. Finally, stability of the system was 
studied by changing the force coefficient, damping ratio, twist 
angle and slenderness coefficient. Tajik and Karami 
Mohammadi [40] investigated the nonlinear bifurcation and 
stability of the Euler-Bernoulli twisted beam assuming it was 
slender, asymmetric and unbalanced. They studied influences 
of the twist angle, damping ratio and eccentricity on the 
frequency responses and found that the frequency response 
curves in the first two modes are of hardening type. So that 
increasing the torsion angle in the first mode can reduce the 
amplitude of the steady oscillation while in the second mode 
it reverses. As presented above, methods used to analyze the 
twisted beams are discretization methods such as finite 
element and Galerkin methods and the twisted beams often 
have been analyzed linearly, while practically the behavior of 
the twisted beams is nonlinear. Furthermore, in general, all 
studies are about the twisted beams without any eccentricities 
and fluctuations on the spinning speed, while in fact, twisted 
beams may be imbalance and asymmetrical with the spinning 
speed fluctuations. So, identifying and improving their 
vibrational behavior play an important role in the vibrational 
motion of the rotary systems. In reference [40], the twisted 
beam was symmetric and spins with constant speed.  

In this paper, the twisted beam is asymmetric and its 
rotational speed fluctuates. The effects of speed fluctuations and 
twisted angles by considering the asymmetric and unbalance 
are studied on the vibrational behavior of the pre-twisted 
Euler-Bernoulli beams that spin about the longitudinal axis. 
Hence, excitation sources are the imbalance, asymmetry and 
speed fluctuation and influences of the gyroscopic and rotary 
inertia are considered. The obtained equations of motion 
are analyzed in the case of single mode motion by Galerkin’s 
discretization method and then multiple scales method is 
applied on the obtained ordinary differential equations. The 
instability of the twisted and untwisted beams is investigated 
and cases and domains are determined that bifurcation can 
occur. Furthermore, the results are validated using the Runge-

Kutta numerical method in the steady state.

2. GOVERNING EQUATIONS OF MOTION
Consider a slender asymmetrical twisted beam that spins 

about the axial direction with varying speed and simply-simply 
boundary condition in Fig. 1. The frames X-Y-Z andζ η ξ− −
are fixed and twisted coordinate systems, respectively. The twist 
angle changes in linear form by 0 xβ  ( 0β is pre-twist angle per 
unit length) so that the local coordinate ζ η ξ− −  twists on the 
flute of beam. ξ and η are principle axes of the beam cross-
section, and X and ζ are coincident. The beam is isotropic and 
Euler-Bernoulli theory has been utilized so that the shape of 
the cross-section and all its geometrical dimensions remain 
invariant in its plane. Also, rotary inertia and gyroscopic effects 
have been considered. Three successive Euler-angles ( , )t xψ , 
θ( , )t x  and ( , )t xφ about the axes of X, Y, Z [41] are used to 
indicate the rotation of the cross-section of beam. ( , )t xψ and 

( , )t xθ are due to the flexural deformation of the beam and 
( , )t xφ is only due to the spinning speed of the twisted beam. 

By assuming the torsional deformation is small, ( , )t xφ  is,  

( ) ( )φ Ω= ∫0
, t

t
t x dt

�
 (1)

Assume the spinning speed of the simply supported 
twisted beam is under a sinusoidal perturbation as following,

( ) ( )( )2
0 1 cos 2t tΩ Ω ε Ω= + � (2)

So, substituting Eq. (2) into Eq. (1) gives,

( )
2

0, ( sin(2 ))
2

t x t tεφ Ω Ω
Ω

= +
�

(3)

From the Euler angles, angular velocity and curvature 
components of the spinning twisted beam in XYZ frame can 
be written the same as in reference [40]. Extracting the partial 
differential equations of motion is done by using Hamilton’s 
principle as following,
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Fig. 1. Spinning pre-twisted beam with two coordinate frames fixed (XYZ) and local (ζηξ ). 
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δ d 0
t

t

t =∫   (4)  
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  � (4)
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where ncT U W= − + . T, U, and ncW  denote to the kinetic, 
potential and external non-conservative energies. The kinetic 
and potential energies of the spinning twisted beam can be 
calculated the same as in reference [40]. By neglecting the 
internal damping and considering the external damping in 
transverse directions of Y and Z as v wc c c= = , So, dissipation 
energy, ncW , is given the same as in reference [40]. From the 
Fig. 1, displacement components of the center of mass of the 
beam in the global coordinate XYZ are ( , )xu t x , ( , )yv t x and 

( , )Zw t x . By considering the displacement components of the 
natural axis of the twisted beam in the local coordinateζηξ as 

( , )u t xζ , ( , )v t xη and ( , )w t xξ , rotational matrix ℜ  is used 
to describe the displacement components of these frames in a 
single equation and convert them together as following,

0 0

0 0

1 0 0
0 cos( ) ( )
0 sin( ) cos( )

x sin x

x x

β β

β β

ℜ = −

 
 
 
   �

(5)

 
Hence,

x

y

z

uu
v v

w w

ζ

η

ξ

  
    =ℜ   

   
     �

(6)

Similarly, moments of inertia and stiffness matrices 
between the XYZ and  frames can be expressed as,

0 00 0
0 0 0

0 0 0

xx
T

yy yz

zy zz

II
I I I

I I I

ζζ

ηη

ξξ

   
   

=ℜ ℜ   
   
       �

(7)

and   
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Where

2

A

I d dξξ ρη η ξ= ∫∫ , 2 2( )
A

I d dζζ ρ η ξ η ξ= +∫∫ ,

2

A

I d dηη ρξ η ξ= ∫∫
�

(8)

2 2( )
A

D G d dζζ η ξ η ξ= +∫∫ ,  2

A

D E d dξξ η η ξ= ∫∫ ,

2

A

D E d dηη ξ η ξ= ∫∫ ,  xx
A

A A E d dζζ η ζ= = ∫∫
�

(9)

where Tℜ is the transpose matrix of ℜ and, ρ , A, E and 
G are mass density, area cross-section, elasticity and shear 
modules of the twisted beam, respectively. Advantage of using 
the twisted frame ζηξ to extract the equations is that cross-
sectional properties of the twisted beam such as principal 
moments of inertia do not vary along the longitudinal axis. 
The twisted beam has imbalance defined by ( ),e eη ξ . So, 
displacement components of the center of mass can be written 
as,

( ) ( )Gy Gzcos sin( ),     s ),  in o   c s(x y zGxu u v v e t e t w w e t e tη ξ η ξΩ Ω Ω Ω= = + − = + +

( ) ( )Gy Gzcos sin( ),     s ),  in o   c s(x y zGxu u v v e t e t w w e t e tη ξ η ξΩ Ω Ω Ω= = + − = + +
� (10)

Longitudinal strain of centroidal line of the twisted beam 
e can be calculated as [40]

( )2 2 21 1x y ze u v w′ ′ ′= + + + −
�

(11)

The rotational Euler angles ψ  and θ  can be obtained as 
following [40],

( ) ( )2 22 2 2
  ,       

1 1

y z

x y x y z

v w
sin sin

u v u v w
ψ θ

′ ′−
= =

′ ′ ′ ′ ′+ + + + +

� (12)

( ) ( )2 22 2 2
  ,       

1 1

y z

x y x y z

v w
sin sin

u v u v w
ψ θ

′ ′−
= =

′ ′ ′ ′ ′+ + + + +
�

Since the Euler angles of theψ  and θ  are dependent 
variables, the number of independent variables is reduced to 
three translational displacements xu , yv  and Zw . Finally, 
by considering the Eqs. (1) to (12), expanding the angular 
velocities and curvatures by Taylor series up to 3( )O ε , 
converting the displacement, mass moments of inertia and 
stiffness components to twisted frame ζηξ , substituting 
results in the kinetic, potential and dissipation energies 
and applying the Hamilton’s principle, Eq. (4), the partial 
differential equations of motion of the spinning twisted beam 
with speed fluctuation in the twisted frame can be written as 
following,

( ) ( )( )2
0 0 0xxm v wu A u w w v vw v vv wwβ β′′ ′ ′′ ′ ′′ ′′ ′′ ′ ′− + + + − + + =

( ) ( )( )2
0 0 0xxm v wu A u w w v vw v vv wwβ β′′ ′ ′′ ′ ′′ ′′ ′′ ′ ′− + + + − + + =

� (13)
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−
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′ ′′′ ′ ′′ ′′+ − + + + − + 

′ ′+ − − +



   

   

( )
( )

0

2 2 2 2
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0 0 0 0 0 0 0
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22 20
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1 / 4 1 / 2 1 / 2 1 / 4 1 / 2 3/ 4
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i xI

iZ Z iZ Z Z e

I i Z Z iZ Z iZ Z Z e

i Z Z e i Z Z i Z m

Ω

Ω

βΩ
Ω

β Ω β β Ω β

Ω ε β Ω β β Ω β β Ω β

β β β β

−

−

′′ ′′ ′− − − −
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    
− − + − + + =         

  



  

( ) ( )02 0
0 ( ) ( ) i x te x ie x eη ξ

β Ω− −
+

� (14)

With boundary conditions: @ 0, 0, 0x L u Z Z ′′= ⇒ = = =      where

( ) ( ) ( ) ( )
,     , ,    , ,

,   ,
2

  ,
2 2 2

    

Z

I

v iw Z v

D D I D D

v iw u u v w w

I I
D I D Iξξ ηη ξξ ηη ξξ ηη ξξ η

ξ

η

ζ η

− − +
=

= + = − = =

+
∆ = ∆ = Σ = Σ

=

�

(15)

Z is the complex form of flexural displacements of v  and w . For the slender beams, it can be ignored the inertia term mu  
from Eq. (13) [41] and using the simply supported boundary conditions, Eq. (13) can be rewritten as,

( ) ( ) ( ) ( ) (( ))2 2 2 2 2 2 2 2 2 2
0 0 0 00

1 1 1 2
2 2 2

L
u v w vw wv v w v w v w vw v w dx

L
β β β β′ ′ ′ ′ ′ ′ ′ ′ ′= − + + − + − + + + − − + +∫ �

(16)

Once again, substituting and simplifying Eq. (16) into Eqs. (13) and (14) and considering orders ( )v w ε= = Ο  and 2( )u ε= Ο  
from the Eq. (16), expanding the resultant equations up to order 3( )εΟ , and using the non-dimensional parameters given by,

* * * * * * 0
04 40 0 0

4 4

, ,     ,     ,    ,    ,  
Ó Ó

u v w xu v w x
h h h L D D

mL mL

ΩΩΩ Ω
π π

= = = = = =

22 2 2
* * * * * 0

2 2 24
4

Ó , I I , ,  ,     ,  
2

Ó
,     

xxxx
xx

h AIt I m Dt I c c
DmL mL LmL

D
Z v iw Z v iw

ζζ
π π π µ

π
∗ ∗ ∗ ∗ ∗ ∗

Σ
= = = Σ = = =

Σ

= + = −

where 0h  is the side of the cross-section of the twisted beam. It should be noted that to avoid the complexity of equations and 
simplifying them, the asterisk symbol is ignored in the following. So, Complex form of flexural vibration equation is given by,
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where 0h  is the side of the cross-section of the twisted beam. It should be noted that to avoid the complexity of equations 
and simplifying them, the asterisk symbol is ignored in the following. Here, to analyze the above equation of motions, Galerkin’s 
methods and multiple scales are utilized to extract the solution of the system. In this procedure, the partial differential equations of 
motion are converted to the Ordinary Differential Equations (ODEs) by Galerkin’s method and stability of the system is analyzed 
by multiple scales method. Also, the results are obtained numerically by Runge-Kutta method and finally, both of obtained results 
validated together.

3. SOLUTION METHOD 
In this section, the multiple scales method after discretization by the Galerkin’s procedure is applied to analyze the transverse 
parametric resonances due to the asymmetry and spinning speed fluctuation. Furthermore, in this study, it has been assumed that 
the twisted beam is driven near the natural frequency of the linear mode and that the mode is not involved an internal resonance 
with other modes. So, the response is usually referred to a single-mode approximation [42]. A single mode Galerkin method may 
be used to discretize the nonlinear coupled partial differential equation, Eq. (17), as following [42, 43],

( , ) ( ) ( )nZ x t x Z tΦ= � (18)

where n is the mode number and ( )n xΦ  is the linear transverse mode shape which is

( ) sin( )n x n xΦ π= � (19)

Substituting Eqs. (18) and (19) into Eq. (17), multiplying the equation by its corresponding mode shape, integrating by parts 
over the interval [0,1] and using the orthogonality of mode shapes leads to,
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 
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�

(20)
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Since the Eq. (20) has cubic nonlinearities, transverse 
component of ( ) ( ) ( )Z t v t iw t= + is expressed as following [42, 
43],

3
1 0 2 3 0 2( ) ( , ) ( , ) ...Z t Z T T Z T Tε ε= + + � (22)

where ε is the small parameter which can be used as a 
book keeping parameter and nT t=  and 2

2T tε= . Hence, 
time derivatives can be recomputed using the chain rule as 
following,

2
0 2 ...D D

t
ε+ +

∂
=

∂
 and 

2
2 2

0 2 02 2D D D
t

ε∂
= + +…

∂ �
(23)

where /n nD T= ∂ ∂ . To obtain the primary and parametric 
resonances and balance the nonlinearities, the parameters c , 

D∆ , I∆ , eξ  and eη  are written as following,

2 2 2 3 3,     ,    , ,         c c D D I I e e e eξ ξη ηε ε ε ε ε= ∆ = ∆ ∆ = ∆ = = �
(24)

Substituting the Eqs. (22) to (24) into Eq. (20) and equating 
coefficients of like power of ε yields,
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The general solution of Eq. (25) is,

0 0
1 0 2 1 2 2 2( , ) ( ) ( )f bi T i TZ T T A T e A T eω ω= + (27)

where fω  and bω  denote to the linear forward and 
backward frequencies, which for the simply supported beam 
with speed fluctuation are given by [40],

1 3
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where
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And ( )1 2A T  and ( )2 2A T  are complex amplitudes of the 
forward and backward whirling, respectively. To analyze the 
primary and parametric resonances, nearness Ω  to 0Ω  and 

fω  can be indicated by detuning parameters 1σ  and 2σ  as 
following [43],
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2 2
1 0 2,f fΩ ω ε σ Ω ω ε σ= + = +

�
(29)

where 1 2 (1)Oσ σ= = [43]. Substituting Eqs. (27) to (29) 
into Eq. (26) leads to

Π Π Π+ +

= + + +0 0
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where CC and N.S.T denote to the complex conjugate and 
non-secular terms. Also,

, ,2 2 2( ) ( ) ( )f f v f wT TG G iG T= +  and

, ,2 2 2( ) ( ) ( )b b v b wT TG G iG T= + � (31)

, 2( )f vG T , , 2( )b vG T , , 2( )f wG T , and , 2( )b wG T  include the 
secular terms and are given in the Appendix A. To obtain the 
solvability conditions, the secular terms must be eliminated. 
Hence, particular solutions corresponding to the 0fi Te ω±  and 

0bi Te ω±  in Eq. (30) are,
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Substituting Eq. (32) into Eq. (30) and equating the 
coefficients of each of 0fi Te ω±  and 0bi Te ω± , it can clearly be seen 
that the Eq. (30) has a non-trivial solution. So, its solvability 
conditions can be written as,
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Simplifying the Eqs. (33) and (34) gives two equations as 
following,
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where 1A  and 2A  are complex conjugates of 1A  and 2A , 
respectively and,
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As shown in Eqs. (35) to (37), 1Γ  and 2Γ  denote to 
the speed fluctuation and asymmetry terms which are the 
coefficients of 22 Tie σ .  This means that asymmetry and speed 
fluctuation effects lead to the parametric resonances with 
frequency 2Ω . To extend and simplify the solutions of the 
Eqs. (35) and (36), 2Tie σ is eliminated by converting 1 2( )A T  
and 2( )A T  as

( ) 2
1 2 2( ) i TA T A T e σ= � (38)

Then, 2( )A T  and 2 2( )A T  are expressed as the polar forms 

2 2( ) ( )
2 1 2 2 2 2 2

1 1( ) ( ) ( ) ( )
2 2

,i T i TA T a T e A T a T e θΘ= =
�

(39)

where ( )1 2a T  and ( )2 2a T are the amplitudes and ( )2TΘ  
and ( )2Tθ  are phase angles of the forward and backward 
whirling, respectively. Substituting the Eq. (39) into the 
resultant Equations, simplifying and separating the real and 
imaginary parts, four first-order modulation equations are 
obtained as following,
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Because the amplitudes and phases are not change at 
an equilibrium solution, the steady state responses of the 
system occur at this solution. Consequently, to analyze the 
equilibrium solutions, time derivatives are equated with 
zero and according to the Eqs. (42) and (43), 2a  will be 
zero. This means that in the simultaneous resonances of 
nonlinear gyroscopic asymmetrical twisted beam with speed 
fluctuations, the effect of backward mode is negligible and 
vibration modes are only a function of the forward whirling. 
Hence, the following equations can be obtained,
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where 10a and 0Θ  are the equilibrium solutions (steady 
solutions) of Eqs. (40) and (41). 

4. STABILITY ANALYSIS 
The stability of the steady-state motion is investigated by 

the eigenvalues of the Jacobian matrix of the right hand sides 
of Eqs. (40) and (41) [44].
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And its corresponding eigenvalues is checked as following,

0iJ Iλ− =    or    2 ( ) 0i iA D AD BCλ λ− + + − = � (47)

From the Eqs. (46) and (47), the steady-state motion 
is stable for the equilibrium solutions 10 0( , )a Θ , when 

0AD BC− > and unstable when 0AD BC− < .

5. RESULTS AND DISCUSSION
Here, the analytical and numerical results due to the 

imbalance, asymmetry and spinning speed fluctuation on the 
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spinning pre-twisted beam with simply support boundary 
conditions are investigated. Influences of the speed fluctuation, 
damping ratio, eccentricity and mass moment of inertia about 
the x-axis in the different twist angles, natural frequencies and 
stability domains are investigated. As shown in the previous 
section, all of the parameters are dimensionless. Here, 
considered numerical values are, 0.001xxI = , =0.003275Iξξ , 

0.002878Iηη = , values are, 0.001xxI = , =0.003275Iξξ , 0.002878Iηη = , 
0.0005µ = , 0.01c = , 0.05e eη ξ= = .
The first validation for the obtained results is done by 

equating β =0 0  into Eqs. (40) and (41) so that the twisted 
beam is converted to an untwisted beam with and without 
the spinning speed fluctuation and its frequency responses in 
the first mode are plotted in Figs. 2(a) and 2(b). Once again, 
the corresponding curves are extracted from reference [45] 
and both of the curves have been plotted in Figs. 2(a) and 
2(b) with and without the speed fluctuation in first mode 
and symmetrical cross section. Comparison of these curves 
is showing a good correlation together. But, as shown in 
Fig. 2(b) for the present work, since two obtained branches 
are near together, it can be said that the influence of speed 
fluctuation is negligible in the first mode. Consequently, 
according to reference [45], it can be said that there is a single 
peak and a jump occur. 

Figs. 3 and 4 show frequency response curves of the 
spinning asymmetrical twisted beam with and without the 
spinning speed fluctuation for first two modes. Assuming that 
the eccentricities are the same in two principle directions, i.e. 

0.05e eη ξ= = , from the Eq. (35), it is observed that there are 
three excitation sources in case of the asymmetrical beam with 
speed fluctuation, one of which is due to the imbalance with 
the excitation frequency Ω  and second and third excitation 
sources are due to the asymmetry and speed fluctuation of the 
beam with the frequency 2Ω . These two excitation sources 
are parametric excitations and the previous works shown 
that in presence of the asymmetry and speed fluctuation in 
straight beams, frequency response curves have two peaks 
and are bent toward the right direction [40-45]. Hence the 
nonlinearity effects are of hardening type. However, in present 
work, it is shown when the beam is a twisted beam; trend 

 
a) 

 
b) 

Fig. 2. Comparison of frequency response curves of a straight symmetrical beam ( 2 0Γ = ) in present work (for 0 0β = ) and 

work of  Shahgholi and Khadem [45]. First mode and a) without the speed fluctuation ( 1 0Γ = ) and b) with the speed 
fluctuation ( 1 0Γ ≠ ). 
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Fig. 2. Comparison of frequency response curves of a straight symmetrical beam ( 2 0Γ = ) in present work (for 0 0β = ) and work of  
Shahgholi and Khadem [45]. First mode and a) without the speed fluctuation ( 1 0Γ = ) and b) with the speed fluctuation ( 1 0Γ ≠ ).
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b) 0 30β =   

 
c) 0 60β =   

Fig. 3. Frequency response curve of the asymmetrical pre-
twisted beam for first mode and different twist angles. 
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Fig. 3. Frequency response curve of the asymmetrical pre-twisted 
beam for first mode and different twist angles.

of the frequency responses is similar to the straight beams. 
Also, for some valuesσ , there are five solutions which two 
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solutions are unstable and three solutions are stable. There are 
three solutions, for some valuesσ , one of which is unstable 
and the rest are stable. Finally, for some valuesσ , there is a 
single stable solution. Hence, it is clear that there are jump 
phenomena and bifurcation points occur with and without 
the speed fluctuation. In the reference [45] for straight beam 
and the lower modes, in presence of the asymmetry and speed 
fluctuation, it is reported that influence of the asymmetry is 
dominant. However, for twisted beam, as shown in Figs. 3 
and 4, although the effect of speed fluctuation is weak in the 
lower modes, but with increasing the twist angle this effect 
is amplified. For example, in 0 60β =  , frequency response 
curves with the speed fluctuation ( 1 0Γ ≠ ) approach to the 
frequency response curves without the speed fluctuation (

1 0Γ = ). In other words, in lower modes, speed fluctuation 
excitation source can help to pump energy to the system in 
the larger twist angles while in smaller twist angles, generally, 
asymmetry pumps energy to the system. Also, ascending 
the mode number increases speed fluctuation effects. 

Moreover, validating the analytical results obtained from 
the perturbation method is done with the numerical results 
obtained from the Runge-Kutta method. These results have 
been depicted in Figs. 3 and 4 and are compatible together.

Figs. 5 and 6 give the curve of the amplitude versus the 
damping ratio of the asymmetrical spinning pre-twisted beam 
for the different twist angles, first two modes, in presence or 
absence of the spinning speed fluctuation and the natural 
frequency corresponding to 0σ = . As shown in first mode, 
in the case of the asymmetrical pre-twisted beam ( 2 0Γ ≠
) and in presence of the speed fluctuation ( 1 0Γ ≠ ), there 
is a single stable solution in all of the twisted angles while 
in the absence of the speed fluctuation ( 1 0Γ = ), there are 
three solutions which two of them are stable and the other 
is unstable. So, at the any twist angle with speed fluctuation 
( 1 0Γ ≠ ), bifurcation do not occur whereas in the absence 
of speed fluctuation ( 1 0Γ = ), bifurcation occurs. Also, 
ascending the damping coefficient decreases stable amplitude 
at the any twist angle with and without the speed fluctuation. 

 
a) 0 0β =  

 
b) 0 30β =   

 
c) 0 60β =   

Fig. 4. Frequency response curve of the asymmetrical pre-
twisted beam for second mode and different twist angles. 
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Fig. 5. Curve of the amplitude-damping ratio of the 
asymmetrical pre-twisted beam for different twist angles, first 

mode, 0σ =  and 0.05e eη ξ= = . 
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Fig. 5. Curve of the amplitude-damping ratio of the 
asymmetrical pre-twisted beam for different twist angles, first 

mode, 0σ =  and 0.05e eη ξ= = .
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More important result is that ascending the twist angle in the 
asymmetrical twisted beam without the speed fluctuation is 
caused bifurcation point or jump point (point ‘R’) occur in the 
smaller damping ratio and bifurcation is gradually eliminate 
and the system will have a single stable solution in over the 
damping ratios. In presence of the speed fluctuation, the 
conditions are similar to case without the speed fluctuation. In 
this case, ascending the twist angle makes the gradient of the 
amplitude versus damping ratio is more and stable oscillation 
amplitude is quickly damped. In second mode and for both of 
the cases (in presence and absence the speed fluctuation), there 
are three solutions in smaller damping ratios and any twist 
angle which two of them are stable and the other is unstable; 
Hence there is bifurcation point (point ‘R’ in presence of 
the speed fluctuation and point ‘Q’ in absence of the speed 
fluctuation). As shown in Fig. 6, in presence and absence of 

the speed fluctuation, ascending the twist angle shifts these 
bifurcation points toward the left direction and jump occur 
in smaller damping ratios. Comparison of these curves in first 
and second modes indicates that the speed fluctuation effect 
is more in the second mode and ascending the twist angle 
makes these curves near together in presence and absence of 
the speed fluctuation. In the other words, speed fluctuation 
effect is considerable by ascending the mode numbers and 
twist angles.

Figs. 7(a-c) and 8(a-c) show the influences of twist angle (
0β ) on the amplitude-eccentricity curve of the asymmetrical 

twisted beam for first two modes and near the natural 
frequency corresponding to 0σ =  in presence ( 1 0Γ ≠ ) 
and absence of the speed fluctuation ( 1 0Γ = ). As seen, the 
oscillation motion of the spinning twisted beam with and 
without the speed fluctuation has three solutions which two of 
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Fig.6. Curve of the amplitude-damping ratio of the 
asymmetrical pre-twisted beam for different twist angles, 

second mode, 0σ =  and 0.05e eη ξ= = . 
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asymmetrical pre-twisted beam for different twist angles, first 

mode and 0σ = . 
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them are stable and the other is unstable. Consequently, jump 
and bifurcation phenomena occur. Furthermore, as shown in 
Figs. 7 and 8, in lower modes, speed fluctuation effect is weak 
and descending the amplitude while asymmetrical effect is 
dominant. But, in any 

mode, ascending the twist angle amplifies speed 
fluctuation effect so that curves with speed fluctuation are 
approached to the curves without the speed fluctuation. This 
fact is more considerable in larger modes.   

Figs. 9 and 10 show influence of the moment of inertia 
about the x-axis ( xxI ) of the twisted beam on the frequency 
response curves of asymmetrical beam in first mode and in 

presence and absence of the speed fluctuation and different 
twist angles. As shown in Fig. 9, in absence of the speed 
fluctuation ( 1 0Γ = ), changes of xxI  do not effect on the 
frequency responses in any twist angle. But, when there is a 
perturbation on the spinning speed ( 1 0Γ ≠ ), ascending the 
moment of inertia about the x-axis ( xxI ) increases amplitude 
and amplifies the speed fluctuation effect (see Fig. 10). 
However, in this case, it can be seen that ascending the twist 
angle decreases amplitude of the frequency response and 
influence of the ascending xxI  on the frequency responses. 
Once again this means that the twist angle can be considered 
as a damper.  

 
a)    0 0β =  

 
b)    0 30β =   

 
c)   0 60β =   

Fig.8. Curve of the amplitude-eccentricity of the asymmetrical 
pre-twisted beam for different twist angles, second mode and 

0σ = .  
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pre-twisted beam for different twist angles, second mode and 
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a) 0 0β =  

 
b)    0 30β =   

 
c) 0 60β =   

Fig. 9. Influence of the moment of inertia about the x –axis 
on the frequency response curve of the asymmetrical pre-

twisted beam without the speed fluctuation in first mode and 
different twist angles. 
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Fig. 9. Influence of the moment of inertia about the x –axis on 
the frequency response curve of the asymmetrical pre-twisted 
beam without the speed fluctuation in first mode and different 

twist angles.
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Fig. 9. Influence of the moment of inertia about the x –axis 
on the frequency response curve of the asymmetrical pre-

twisted beam without the speed fluctuation in first mode and 
different twist angles. 
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Fig. 10. Influence of the moment of inertia about the x –axis on 
the frequency response curve of the asymmetrical pre-twisted 
beam with the speed fluctuation in first mode and different twist 

angles.

6. CONCLUSION
In this paper, nonlinear instability analysis of the twisted 

beams with linear twist angle, large transverse deflections 
and varying spinning speed near the primary and parametric 
resonances has been. Spinning speed is not constant and the 
slender twisted beam was modeled with Euler–Bernoulli 
theory. The equations of motion obtained by Hamilton’s 
principle and were discretized by applying the Galerkin’s 
method. Then multiple scales method was applied on the 
obtained ordinary differential equations and steady-state 
analysis of system was done in transverse directions. The 
accuracy and validation of the obtained results is investigated 
by comparing the frequency response in first mode and the 
case 0 0β =  with previous researches [45], (Fig. 2). Effects 

of variations on the amplitude, eccentricity, damping ratio 
and mass moment of inertia about the x-axis respect to the 
frequency of the twisted beams are investigated in different 
pre-twisted angles with and without speed fluctuation, and 
the stable and unstable zones are determined. Also, the 
bifurcation diagrams are obtained as a function of control 
parameters such as frequency, damping ratio and eccentricity 
in some of the twist angles. Since frequency response curves 
are bent to the right when spinning speed is constant or 
variable, the nonlinearity effects are of hardening type and 
geometrical nonlinearities are dominant in this system. 
Furthermore, this study explains that the spinning speed 
fluctuation effect is weak in lower modes and smaller twist 
angles while asymmetry effect is dominant. By ascending the 
mode number and twist angle, spinning speed fluctuation 
effect amplifies the amplitude of system. Hence, it can be 
said that spinning speed fluctuation effect is considerable in 
twisted asymmetrical beams by ascending the mode number 
and twist angles. Also, changing the mass moment of inertia 
about the x-axis do not change the frequency response curves 
of the slender beam in absence of the speed fluctuation 
while in presence of the speed fluctuation, ascending the xxI
increases amplitude in any twist angle. However, in any mode, 
ascending the twist angle decreases ascending effect of the 

xxI in presence of the speed fluctuation. Finally, Runge-Kutta 
numerical method is utilized to validate the obtained results 
analytically and have a good correlation together.  

NOMENCLATURE
Cross-section of twisted beam, m2A

External transverse Damping ratios,v wc c

Normalized external damping ratio*c

Torsional and bending stiffness in fixed frame, 
N/m

Dξξ , Dζζ , 
Dηη

Young’s modulus, PaE

Longitudinal strain of centroidal linee

Unit vectors of fixed frame, ,x y ze e e
eccentricity of the cross-section in the twisted 
frame, m,e eη ξ  
shear modulus, GPaG

cross-section side, m
0h  

Moment of inertia and product of inertia in fixed 
frame, Kg/m2, , ,xx yy zz yzI I I I

Moment of inertia in twisted frame, Kg/m2Iξξ , Iζζ , 
Iηη

Jacobian matrixJ
Length of twisted beam, mL
Beam mass per unit length, Kg/mm
Mode numbern
Time component, st
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Normalized Time component*t

displacement components of centroidal line 
of the twisted beam in fixed frame, m, ,x y zu v w  
displacement components of centroidal line 
of the twisted beam in twisted frame, m, ,u v wζ η ξ

displacement components of center of mass 
in fixed frame, mGy Gz,,Gxu v w

Normalized displacement components 
of centroidal line of the twisted beam in 
twisted frame

* * *, ,u v w

fixed frameX,Y,Z

pre-twist angle per unit length, rad
0β  

very small bookkeeping parameterε  

Linear mode shape 
nΦ

Lagrangian of motion

Eigenvalue of Jacobian matrix λ
Spinning speed, rad/sΩ  

Normalized spinning speed*Ω
linear forward and backward frequencies, 
rad/s ,f bω ω

transformation matrix of fixed frame to 
frame ℜ

Transpose matrix of ℜTℜ

detuning parameterσ

Appendix A
Applying the solvability conditions on the Eq. (30) based 

on the Eq. (31), , 2( )f vG T , , 2( )b vG T , , 2( )f wG T  and , 2( )b wG T  are 
following,
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