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graded materials rested on visco-Pasternak foundation under periodic axial force is investigated. Material
properties of beam vary continuously in both the thickness and longitudinal directions based on the two
types of analytical functions including exponential and power law distributions. Hamilton’s principle
is employed to derive the equations of motion according to the Euler-Bernoulli and Timoshenko beam
theories. Then, the generalized differential quadrature method in conjunction with the Bolotin method is

used to solve the differential equations of motion under different boundary conditions. Various parametric

investigations are performed for the effects of the gradient index, static load factor, length-to-thickness ~ Keywords:

ratio and viscoelastic foundation coefficients on the dynamic stability regions of bi-directional functionally =~ Dynamic stability

graded beam. The results show that the influence of gradient index of material properties along the thickness  Bj.directional functionally graded

direction is greater than gradient index along the longitudinal direction on the dynamic stability of beam .
for both exponential and power law distributions. Also, the system become more stable and stiffer when . i
. . . . . . . . Visco-Pasternak foundation
beam is resting on visco-Pasternak foundation. Moreover, by increasing static load factor, the dynamic

instability region moves to the smaller parametric resonance. The results of presented paper can be used to Periodic axial force

the optimal design and assessment of the structural failure and thermal rehabilitation of turbo-motor and

turbo-compressor blades.

1- Introduction

Dynamic buckling behavior of structures is a complicated
phenomenon which should be investigated through the
response of equations of motion. Selection of proper criterion
is the most important factor in description of a dynamically
buckled structure. On the other hand, when the structure is
slender and lightweight, the need to study on the dynamic
buckling problem would be necessary.At the first time,
Bolotin [1] introduced dynamic stability in elastic systems.
Also, Simitses [2,3] presented a wealth review on the concept
of dynamic buckling and its applications to solid structures.
In recent years, different works are done in the field of
dynamic stability and buckling of columns [4], beams [5-
20], plates [21-23], shells [24-26] and etc. Iwatsubo et al.
[4] solved the governing equations of motion for columns
using Mathieu equations in conjunction with the Galerkin
method and then, he determined the influences of internal and
external damping on the regions of instability of the columns.
Abbas and Thomas [5], Aristizabal-Ochoa [6], Briseghella et
al. [7] and Ozturk and Sabuncu [8] employed Finite Element
Method (FEM) to investigate the dynamic stability of beams.
The stability parameter of simply supported and clamped
beams were calculated by Shastry and Rao [9] for different
locations of two symmetrically placed intermediate supports.
Li [10] presented a unified method to investigate static and
dynamic analysis of Functionally Graded Material (FGM)
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beams of Euler-Bernoulli, Timoshenko and Rayleigh types.
Ke and Wang [11] presented dynamic stability analysis of
FGMs microbeams according to the Modified Couple Stress
Theory (MCST) and Timoshenko beam theory. They assumed
that the material properties of FGM vary in the thickness
direction of beam based on the Mori—Tanaka homogenization
technique. Mohanty et al. [12] studied the static and dynamic
behavior of Functionally Graded (FG) ordinary beam and
FG sandwich beam for pined-pined end condition. Based on
the exponential and power law models which consider the
variation of material properties through the thickness, they
utilized First order Shear Deformation Theory (FSDT) to
model beam and used FEM for the analysis. Fu et al. [13]
obtained the nonlinear governing equation for the FGM
beam with embedded piezoelectric actuators under clamped
boundary conditions using Hamilton’s principle. Also, they
studied the thermo-piezoelectric buckling, nonlinear free
vibration and dynamic stability for this system, subjected
to one-dimensional steady heat conduction in the thickness
direction. Static and dynamic stability of a FG micro-beam
based on MCST subjected to nonlinear electrostatic pressure
and thermal changes regarding convection and radiation were
investigated by Zamanzadeh et al. [14]. They obtained the
static pull-in voltages in presence of temperature changes using
Step-by-Step Linearization Method (SSLM) and the dynamic
pull-in voltages by adapting Runge—Kutta approach. Using
Timoshenko beam theory, Ke et al. [15] presented dynamic
stability response of nanocomposite beams reinforced by
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Functionally Graded Single-Walled Carbon NanoTubes
(FGSWCNTs). They employed the rule of mixture to estimate
the material properties of FGSWCNT-reinforced composites.
Ghorbanpour Arani et al. [16] investigated dynamic stability
of double-walled boron nitride nanotube conveying viscous
fluid using Timoshenko beam theory based on nonlocal
piezoelasticity theory. They applied the mechanical harmonic
excitation on double-walled boron nitride nanotube with zero
electrical boundary condition in thermal environment and
derived the equations of motion according to the von Kéarman
geometric nonlinearity. The nonlinear dynamic buckling and
imperfection sensitivity of the FGM Timoshenko beam under
sudden uniform temperature rise were presented by Ghiasian
et al. [17]. They employed the Budiansky—Roth criterion to
distinguish the unbounded motion type of dynamic buckling
and observed that no dynamic buckling occurs based on it
for beams with stable post-buckling equilibrium path. Xu
et al. [18] developed the random factor approach to analyze
the stochastic dynamic characteristics of FGM beams with
random constituent material properties. They assumed that
the effective material properties of this structure changes
continuously through the thickness or axial directions
according to the power law distribution. Shegokara and Lal
[19] studied the dynamic instability response of un-damped
elastically supported piezoelectric FG beams subjected to
in-plane static and dynamic periodic thermo-mechanical
loadings with uncertain system properties. They derived the
nonlinear governing equations based on Higher order Shear
Deformation beam Theory (HSDT) with von-Karman strain
kinematics. Recently, Saffari et al. [20] determined dynamic
stability regions of FG nanobeams exposed to the axial and
thermal loadings using nonlocal Timoshenko beam theory.
Also, they considered surface stress effects according to
Gurtin-Murdoch continuum theory.Various new works are
carried out on the importance of Bi-Directional Functionally
Graded Materials (BDFGMs). Zamani Nejad et al. [27-29]
considered bending, buckling and free vibration analysis of
arbitrary 2 Dimensional (2D) FGM Euler-Bernoulli nano-
beams based on nonlocal elasticity theory. They obtained
governing equations using the principle of minimum potential
energy and utilized Generalized Differential Quadrature
(GDQ) method to solve them for various boundary conditions.
Flexure of bi-directional FG circular beams using the
kinematical assumptions of the Euler—Bernoulli theory were
analyzed by Pydah and Sabale [30]. They assumed that the
material properties change along thickness (radial direction)
and the axis (tangential direction) of the beam and then,
presented analytical results for statically-determinate circular
cantilever beams under the action of various tip loads. In the
nextwork, Pydah and Batra[31]developed a shear deformation
theory using logarithmic function for thick bi-directional FG
circular beams according to the exponential and power laws.
Karamanli [32] examined the elastostatic behavior of 2D-FG
beams with various boundary conditions by using the Euler-
Bernoulli, Timoshenko and Reddy-Bickford beam theories
and the Symmetric Smoothed Particle Hydrodynamics
(SSPH) method. Shafiei and Kazemi [33] and Shafiei et
al. [34] studied buckling and vibration behavior of 2D-FG
porous nano-/micro-beams. They considered the Eringen’s
nonlocal elasticity and the Modified Couple Stress Theories
(MCSTs) to derive the governing equations of micro-scaled
imperfect beams. Recently, Trinh et al. [35] presented the free
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vibration behavior of 2D-FG microbeams based on MCST.
Based on the state-space concept, they solved the governing
equations for natural frequencies and vibration mode shapes
of microbeams under various boundary conditions. There
are no significant researches about the dynamic stability of
beams composed of BDFGMs in above works. In previous
published papers, the dynamic stability of unidirectional
functionally graded beams is investigated while in this article,
the dynamic stability of BDFGMs beam rested on visco-
Pasternak foundation under periodic axial force is studied.
Material properties of BDFGMs beam vary continuously
in both axial and thickness directions according to the
exponential and power law distributions while in previous
works, power law are mostly used to model the material
properties distribution. By considering the Euler-Bernoulli
and Timoshenko beam theories, the equations of motion of
present system are obtained based on the Hamilton’s principle
and solved numerically by the GDQ method and the Bolotin
method under different boundary conditions.

2- Bi-Directional Functionally Graded Material

In 1984 during a space vehicle project, some Japanese
material scientists presented the concept of functionally
graded materials [36]. FGMs are made of two (or more)
different materials which their properties such as mechanical
strength and thermal conductivity vary continuously in
a desired direction from point to point. It is the one of the
most important advantages of FGMs against the classical
laminated composites. Nowadays, the use of FGMs in
many applications of engineering are developed such as
aircrafts, space vehicles, defense industries, electronics and
biomedical sectors due to their superior mechanical and
thermal properties. It is seen from the literature survey that
there are many worthwhile works in the case of conventional
FG structures whose material properties vary in only one
direction. Since the temperature or stress distribution in
some advanced machines such as modern aerospace shuttles
and craft develops in two or three directions, the need for a
new type of FGMs is felt whose properties vary in two or
three directions. Therefore, the number of researches about
structures consist of BDFGMs is still very limited.As shown
in Fig. 1, consider a BDFGM beam with length L, width » and
thickness /# which is rested on visco-Pasternak foundation
includes springs (K, ), dampers (C, ) and shear layer (K ;).
Also, the beam is exposed to a periodic axial force F(z). It
should be noted that the origin of the coordinate system is
chosen at the midpoint of the beam.

2- 1- Power law distribution

In this paper, it is assumed the beam is made of four different
materials, and thus, the effective material properties in points
P ,P P, and P , are specified in Fig. 1. Also, Young’s
modulus £, shear modulus G, and mass density O (except for
Poisson’s ratio L) vary in both the thickness and longitudinal
directions for BDFGM beam. Therefore, the effective material
properties of BDFGM beam can be obtained by applying the

rule of mixture as follows [32]:

P(x’Z)ZVaPcl"'Vechz"'V P1+Vm2Pm2’ (1)

ml™ m
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Fig. 1. Geometry of a BDFGM beam rested on visco-Pasternak
foundation subjected to a periodic axial force F(t).

where V' is the volume fraction of materials. Based on the
power law distribution, the volume fractions can be defined
as:

COI

where n_and 7, are the gradient indexes which dictate
the material variation profile through in x and z directions,
respectively.

Substituting Eq. (2) into Eq. (1), the effective material
properties can be found by:

P(x,z){ﬂnﬁ(a,—&])(%

2- 2- Exponential distribution

Now, consider that the effective material properties of
BDFGMs beam obey an exponential distribution through the
thickness and length of the beam as following form [37]:

" } “)
)

It should be noted that by setting n.=n,=0, the beam
becomes homogeneous in both exponentiaf and power law
distributions.

3- Governing Equations for Timoshenko Beam Theory
Based on Timoshenko beam theory, the displacement field of
BDFGMs beam can be given by:

J(x,z,t)=u(x,t)+zg0(x,t),

_ ()
w (x,z,t):w (x,t),

In which, # and w represent the axial and transverse

displacements of the point on the x-axis, respectively, and @

is the rotation of the cross section about the y axis.

The kinematic relations for Timoshenko beam can be

expressed as follows:

o Ou op
L (6)
_ou oW _ow

=—+—=—+0,
Ve T T Y

where ¢ is normal strain and y_ is the shear strain. Thus,
the stress-strain relations according to the Hook’s law can be
written as:

o, =E(x,z)e

xx 2

7. =kG (x ,Z )7xz , M

where o and 7, are the normal and shear stresses,
respectively. Also, G(x,z)=E(x 2)/2(1+0)- In addition,
k is shear correction factor and equal to 5+5v/6+50 for
Timoshenko beam [38].

Based on the Hamilton’s principle, which states that the
motion of an elastic structure during the time interval
t, <t <t, s such that the time integral of the total dynamics

203



A. Ghorbanpour Arani and Sh. Niknejad, AUT J. Mech. Eng., 4(2) (2020) 201-214, DOI: 10.22060/ajme.2019.15913.5792

potential is extremum [39]:

)
[o(r-U+w,,)dt =0, (8)
gl

In which, U, T and W, are the strain energy, kinetic energy
and work done by external forces, respectively. The virtual
strain energy can be calculated as:

(0' oy

gy

)dv
9

j(o_xx 5gxx + sz 57/xz )dv’
A4

where V is the volume of beam. Substituting Egs. (6) and (7)
into Eq. (9) yields:

0ou 00
L NTBT _x _¢
oU = d
! oW X, (10)
01y W"'&D

where subscript 7BT refers to Timoshenko beam theory.
Also, N, M and Q represent the axial force, bending moment
and shear force, respectively. Generally, this terms can be
obtained from:

h 92
2 2
= | [zo.dvdz, 0 (a1

The kinetic energy for a beam can be written as:

1 or\ (owY
T—Ej-p(x,z) (5} +(Ej dV, (12)
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By substituting Eq. (5) into Eq. (12), for Timoshenko beam,
the virtual kinetic energy can be expressed as follows:

[ Ou ddu ow oow |
I, — +1, +
ot ot ot ot

L
5[’:[ ]l(é_q)@+a_u@j+ dx’ (13)
Woe o o ot
0@ 0o
1, ———
L "ot ot J
where
Kb
22 ,
Ly, = _[ Ip(x,z)(l,z,z )dydz. (14)

|
o=

|
SRS

The external work variation done by visco-Pasternak
foundation [39] and periodic axial forces [40] can be given
by:

L
ow Oow
o=l r02 2 a s
where
ow ow
F} =—KWW +KG¥_Cd E,
F(t):Nstatic +Ndynamic COS(QZ) (16)
=aN,, + N, cos(£x),

In which, o and g are static and dynamic load factors,
respectively, and 2 is parametric resonance.

By Substituting Eqgs. (10), (13) and (15) into Eq. (8) and
putting the coefficients of su, sw and §p to zero, the
equations of motion can be determined as follows:

Nrgr _, ou ¢

— 41, (@)
ox ot ' or?
00,57 ow ow
SEBL LR 4 F () — =1, —,
ax T ( )8x2 057 © (17)
aMTBT _Q =] @4_[ @ ()
TBT 152 2 c
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Moreover, the appropriate boundary conditions given by Eq.

(8) can be written as: 5 )
Clamped (C) 4 Ou  ddyou ¢
0 2 + + 1 2
ox dx Ox ox (a)
dd, op _, ou | O
u=w=p=0, (@) Twa et Mt
Slmple(S) A @4_% +% %+¢) K w
vy — _ Noax? ax ) de Lax "
u=w =0, My, =0, (b) , , , (b) 1)
Free (F) (18) ow ow ow ow
+K, —-C,—+F(t)—=1,—F,
. Coa o ()8x2 ‘o
2 2
Nopgr =Mogr =0, Opgr +F(1)—=—=0, () A 8_u dia_u A 8_(0 %a_(p
ox 172t A, 5+
ox° dx Ox ox dx Ox ©
—A (%+¢j—[ &4_[ 62_(0
Substituting Eq. (7) into Eq. (11), the normal force-strain, the *\ox tart o
bending moment-strain and the shear force-strain relations
based on Timoshenko beam theory can be given by: Al . o .
so, the appropriate boundary conditions in terms of the
displacements can be given by:
Clamped
ou op
Ny =4y —+4,—, (a) Clamped
ox ox
My =4, —+4,—, (b) (19) . =5
ox ox Simple
ow
QTBM :A3(ax +¢) ’ (C) u=w :0, Ala_u+Aza—¢:0, (22)
ox ox
Free
where
ou 0 ow ow
PP 0, 4, v |+ FO) =0
L ox Ox ox ox
22
Ao (x)= j I E(x,z )(I,Z ,z° )dydz , Ay (x) 4- Governing Equations for Euler-Bernoulli Beam Theory
) In this section, the Euler—Bernoulli beam theory is used to
22 20 derive the equations of motion. Thus, the displacement field
hob (20) can be defined as:
22
= _[ j kG (x ,Z )dydz ,
h b
22 ow (x,t
LT(x,z,t) =u (x,t)—z %,
X
The equations of motion of BDFGMSs beam in terms of the — (23)
w (x,z,t)zw (x,t),

displacements can be derived by substituting for N, M and Q
from Eq. (19) into Eq. (17) as follows:
The only nonzero strain and stress are:

ou Ou Ow
gxx S Ta 7<% A2

ox Ox ox (24)
O-xx :E(‘x ’Z)gxx’

For this case, the strain energy and kinetic energy can be
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Table 1. Comparison of fundamental frequency parameter () of BDFGMs beam with SS boundary conditions..

Ny
n- Source 0 l l é 1 i 3 5
3 2 6 3 2
P;z;ee‘;t 3.3032 | 3.7383 | 3.9127 | 4.1986 | 43171 | 45167 | 4.6012 | 4.8079
0 Reﬁf]nce 3.3018 | 3.7429 | 3.9148 | 4.1968 | 4.3139 | 45118 | 4.5956 | 4.8005
% Error | 0.4240 | 0.1229 | 0.0536 | 0.0429 | 0.0742 | 0.1086 | 0.1219 | 0.1541
P;zls)ee‘r‘t 32189 | 3.5518 | 3.6791 | 3.8759 | 3.9534 | 4.0792 | 4.1307 | 4.2526
1
3 Reﬁf]“ce 3.1542 | 3.5050 | 3.6305 | 3.8252 | 3.9022 | 4.0277 | 4.0792 | 4.2009
% Error | 2.0512 | 1.3352 ] 1.3391 | 1.3251 | 13125 | 12790 | 12634 | 1.2312
P;z;zrr“ 3.1997 | 3.4978 | 3.6099 | 3.7797 | 3.8455 | 3.9511 | 3.9939 | 4.0943
1
3 Re{if]“ce 3.1068 | 3.4258 | 3.5397 | 3.7087 | 3.7745 | 3.8805 | 3.9236 | 4.0245
% Error | 2.9902 | 2.1017 | 1.9832 | 1.9144 | 1.8810 | 1.8193 | 1.7917 | 1.7343
P;z;ee‘;t 3.1570 | 3.4080 | 3.4984 | 3.6308 | 3.6810 | 3.7601 | 3.7918 | 3.8655
5
5 Refjﬂf]nce 3.0504 | 33296 | 3.4206 | 3.5548 | 3.6059 | 3.6869 | 3.7194 | 3.7947
% Error | 3.4946 | 2.3546 | 2.2745 | 2.1380 | 2.0827 | 1.9854 | 1.9466 | 1.8658
P;Z;ee‘r‘t 3.1366 | 3.3720 | 3.4542 | 3.5730 | 3.6179 | 3.6881 | 3.7161 | 3.7811
1 Reﬁf]“"e 3.0359 | 3.2984 | 3.3819 | 3.5035 | 3.5495 | 3.6219 | 3.6508 | 3.7177
% Error | 3.3170 | 2.2314 | 2.1379 | 1.9837 | 1.9270 | 1.8278 | 1.7886 | 1.7054

Table 2. Natural frequency (kHz) of BDFGMs beam rested on visco-Pasternak foundation with SS
boundary conditions.

Mode Theory WL
0.02 0.05 0.1 0.2

{ Euler-Bernoulli | 0.158771 | 0.171958 | 0.294981 | 0.570033
Timoshenko | 0.158744 | 0.171502 | 0.291014 | 0.541227

5 Euler-Bernoulli | 0.376258 | 0.593961 | 1.116871 | 2.084482
Timoshenko | 0.375937 | 0.587237 | 1.067453 | 1.825003
Euler-Bernoulli | 0.679351 | 1.286848 | 2.444741 | 3.014204

3 Timoshenko | 0.679535 | 1.25955 | 2.244661 | 2.964484

4 Euler-Bernoulli | 1.130534 | 2.342319 | 2.956175 | 4.368365
Timoshenko | 1.085167 | 2.155098 | 2.944391 | 3.51226
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Fig. 2. The convergence of grid points of the GDQ method for a) CF, b) SS, ¢) SC, d) CC
boundary conditions.
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Fig. 3. Effects of various boundary conditions on the dynamic stability of BDFGMs
beam a) power law distribution, b) exponential distribution.
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Fig. 4. Effects of static load factor on the dynamic stability of BDFGMs beam a) power law
distribution, b) exponential distribution.
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Fig. 5. Effects of gradient index through in x direction (nx) on the dynamic stability of BDFGMs beam a) power law
distribution, b) exponential distribution.
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Fig. 6. Effects of gradient index through in z direction (nz) on the dynamic stability of BDFGMs beam a) power law
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Fig. 7. Effects of thickness-to-length ratio on the dynamic stability of BDFGMs beam a) power law distribution, b)
exponential distribution.
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written as:

I Odu 6w
oU :!).(NEBT E_MEBT ?jdx (25)
[ Quddu , ow 3w |
or a8 "ot ot
L 2 2
ow 00u Ou O-ow
ol =I I, — + |dx (26)
W'\ etax o or orox
ow o*ow
| otox orox |

where subscript EBT refers to Euler—Bernoulli beam theory.

Using the Euler—Bernoulli beam theory, the equations of
motion and boundary conditions of BDFGMs beam can be
obtained by substituting Egs. (15), (25) and (26) into Eq. (8)
and setting the coefficients of sy and &w to zero as follows:

ON ooy . Ou B ow (@)
ox ot lottox’
oO*M foa
— 2+ F, +F(@) W2 = (27)
ox ox (b)
ow N ou 7 o'w
“ar loattex  Portox?’
Clamped
ow
u—W—O,g—O, (a)
Simple
(28)
u=w =0,M,, =0, (b)
Free
aMEBT _ % _
NEBT_MEBT_O’T F(t)ax 0, (o)

Substituting Eq. (24) into Eq. (11), the normal force-strain
and the bending moment-strain relations based on the Euler—
Bernoulli beam theory can be expressed as following form:
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ou ow
N gy :A"a?_Al —ﬁxz ) (a)
(29)
ou ow
M ppr =4, 8_X+A2 —8)6 ) (b)

By substituting Eq. (29) into Eq. (27), the equations of motion
and boundary conditions in terms of the displacements can be
obtained as:

ou dA, ou o'w
dymt——"A4 ==
ox dx Ox ox
) 2 ) (2)
P Fu_ G
de ox? ot lartox
3 2 2
Ala_lé.i_zdia_uz_i_d Azla_u_
ox dx Ox dx* Ox 30
4 o'w _,d4, ow _asz2 o'w (39)
*oxt dx ox® dx? ox? (b)
ow ow ow
K w+K,—-C,—+F(t
Ko T g )
ow Su o'w
= +1 -1 ,
ot lotox P otox?
Clamped
u=w =0,%:0, (a)
ox
Simple
ou ow
u=w=0,4,——-4,—=0, (b)
"ax 7 ox? (1)
Free
2
a_”:()’ é_wzzo,
Oox ox
Fu Ow ow (©)
A —-A —+F@t)—=0.
Vo2 > ox? ©) Oox

5- Solution Method

In order to solve the governing differential equations (Eq.
(30)) and the associated boundary conditions (Eq. (31)), the
GDQ method [41,42] is employed to determine the dynamic
stability characteristics of BDFGMs beam. According to
these method, the partial derivative of a function with respect
to spatial variables at a given discrete point is evaluated as:
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Fig. 8. Effects of various foundation models on the dynamic stability of BDFGMs beam a) power law distribution, b)
exponential distribution.
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Fig. 9. Effects of Winkler parameter on the dynamic stability of BDFGMs beam a) power law distribution, b)
exponential distribution.
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Fig. 10. Effects of shear layer parameter on the dynamic stability of BDFGMs beam a) power law distribution, b)
exponential distribution.
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Fig. 11. Effects of damping parameter on the dynamic stability of BDFGMs beam a) power law distribution, b)
exponential distribution.

l {u w (0} X 1 l—cos(ﬁij for i =1,2,...,N (35
ox U e T2 N -1 S ()
N (32)
= ZA ;) {uj (x,)w ; (x, ),goj (x, )} By inserting Eq. (32) into Egs. (21), (22), (30) and (31) and
=1 implementing the GDQ method, a set of discretized governing

equations and the boundary conditions can be found in the
where N is the number of total discrete grid points along matrix form as follows:
the x axis and 4 are the weighting coefficients associated
with the rth order of derivative. Based on the Lagrangian
polynomial interpolation, the weighting coefficients for the

first derivative (i.e., » = /) can be approximated by: [M ]{X } + [C ] {X } + 56
([K]+P ()&, D)X }=1{0}
W N N
4 =k7g!i .(x,. —xk)/kEL(xj —x) (@ #7) In which M, C, K and g, represent the mass, damping,
- - (33) stiffness and geometrical stiffness matrices, respectively.
40— H ; (i=j) Also, X is the displacement vector (X =u,p,w )-
Y i (x, —xy, In 1964, Bolotin [1] suggested a method in order to determine

the dynamic instability region. He indicates that the first
instability region is wider than other regions and the structural
damping becomes neutralized in higher regions. Based on
this method, the displacement vector can be expressed in the
Fourier series with the period 27 as following form:

Similarly, higher order of derivative can be calculated as:

N

Al.j(.’“) :ZAI.SCI)A,;.’) for i,j =12,..,N (34)
k=1 0

X=> (ak sin%+bk cos%j, (37)

On the other hand, the differential quadrature solutions k=13,5,..

usually deliver more accurate results with nonuniformly

spaced sampling. A well accepted kind of sampling points can where 4, and p, are unknown constants. By introducing Eq.
be obtained by the Chebyshev—Gauss—Lobatto normalized (37) into Eq. (36) and setting the coefficients of each sine and
distribution equation: cosine as well as the sum of the constant terms to zero, yield:
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(K]-ap, [K.]+P, 2[K,]
oo 2 (38)
+5[C]—T[M]

Eq. (38) can be solved based on the eigenvalue problems,
and the dynamic instability regions will obtain by plotting the
variation of © with respect to 3.

6- Numerical Results and Discussion

In this section, the influences of various parameters such as
the gradient index of exponential and power law distributions,
length-to-thickness ratio, different boundary conditions and
viscoelastic foundation coefficients on the dynamic stability
region of beam are discussed in details. Silicon (Si,N,),
zirconia (ZrQ,), stainless steel (SUS304) and titanium (Ti-
6Al-4V) with the material properties at room temperature
given in reference [43] are employed as ceramicl, ceramic2,
metall and metal2, respectively. In addition, CC boundary
condition is considered for BDFGMs beam except for the
cases to be mentioned. Also, In order to obtain the results of
this research, other parameters are selected as follows:

L=2m, h/L=0.04,
n, =n, =2 v=0.3

K, =10 N/m’, K, =10 N/m,
C, =50N.s/m’, a=02

Fig. 2 indicates the convergence of grid points of the GDQ
method used to evaluate the stability of the BDFGMs beam
with arbitrary boundary conditions. The results show that the
convergence occurs quickly for different boundary conditions
and thus, N=11 selected to obtain the numerical results. This
pattern of convergence of the numerical technique reflects
its efficiency and reliability.By converging the grid points in
N=11, validation and convergence of the derived formulation
must be checked now. For this purpose, in Table 1, the
fundamental frequency parameters of BDFGMs beam with SS
boundary conditions are compared with reference [44] where a
finite element formulation based on Timoshenko beam theory
was utilized. As can be seen, very good agreement between
the results of present paper with reference [44].The effects
of thickness-to-length ratio on the natural frequency (kHz)
of BDFGMs beam rested on visco-Pasternak foundation with
SS boundary conditions are studied in Table 2. Generally,
increasing the thickness-to-length ratio leads to increase the
natural frequency due to increase the stiffness of BDFGMs
beam. Also, the natural frequencies predicted by Timoshenko
beam theory are lower than Euler-Bernoulli beam theory.
Furthermore, the results of two theories for thin beam are
close to each other and by increasing the thickness-to-length
ratio, the difference between results becomes more for thick
beam.Based on Timoshenko and Euler-Bernoulli beam
theories, the dynamic stability regions of BDFGMs beam for
various boundary conditions are demonstrated in Fig. 3. As it
can be seen from this figure, CC and CF boundary conditions
have the highest and lowest parametric resonance. Also, the
dynamic instability region for CC boundary condition is higher
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than that for other boundary conditions.The dynamic stability
regions of BDFGMs beam for various static load factor are
shown in Fig. 4. It can be observed that by increasing static
load factor, the dynamic instability region shift to the left
and increase. This is expected as the increase of & means
the increase of the time independent component of the axial
force which reduces the effective stiffness of the beam. In
addition, the parametric resonance obtained by Timoshenko
beam theory is lower than Euler-Bernoulli beam theory but
the extent of dynamic instability regions of two theories are
very close to each other.Fig. 5 indicates the dynamic stability
of BDFGMs beam for different gradient indexes through in
x direction. According to this figure for both power law and
exponential distributions, the parametric resonance increases
with increasing of n, and will be approximately constant for
n, >3.Fig. 6 illustrates the dynamic stablhty of BDFGMs
beam for different gradient indexes through in z direction.
It can be found that by increasing #, the instability region
decreases and moves to the side of smaller parametric
resonance. Moreover, the influence of #_ is greater than n_
on the dynamic stability of present system by comparing
Figs. 5 and 6.The dynamic stability regions of BDFGMs
beam for different thickness-to-length ratio are depicted in
Fig. 7. It is obvious that by increasing thickness-to-length
ratio, the system becomes more stable and thus, parametric
resonance increases and shifts to the right side of figure.
Fig. 8 shows the effect of various foundation models on
parametric resonance of BDFGMs beam. Four cases are
considered to study the effect of foundation models, namely,
case 1 (without foundation: =0, K, =0,C, =0), case 2
(Winkler foundation: K, =50 MN/m K =0, C =0), case
3 (Pasternak foundation: K, =50 MN/m K, =10 MN/m
,C,=0) and case 4 (visco- Pasternak foundation: K, =50
MN/m3,K =10 MN/m, ¢, =10 KN. s/m?).
It is evident that by addlng the effects of elastic substrate to
the system, parametric resonance increases and the dynamic
instability region shifts to the right. As can be seen, the
dynamic instability region of the Pasternak model due to
consider the effects of normal stresses and the transverse shear
deformation is higher than that of Winkler or visco-Pasternak
one. Generally, putting BDFGMs beam in an elastic substrate
leads to increase the stability and stiffness of system.Figs. 9
to 11 demonstrate the effects of visco-Pasternak foundation
parameters on the behavior of BDFGMs beam. Figs. 9 and
10 show the effects of Winkler and shear layer parameters
on the dynamic stability regions of BDFGMs beam,
respectively. By increasing this two parameters, stiffnessOf
system increase and thus, parametric resonance increases and
the dynamic instability region shifts to the right. Moreover,
variations of shear layer parameter have more influence than
Winkler parameter on the displacement of dynamic stability
regions. Fig. 11 indicates the effects of damping parameter
on the dynamic stability regions of BDFGMs beam. It can
be seen from this figure that the dynamic instability region
of BDFGMs beam reduces by increasing damping parameter.

7- Conclusions

This paper studied the dynamic stability analysis of BDFGMs
beams rested on visco-Pasternak foundation under periodic
axial force. Two types of analytical functions include
exponential and power law distributions considered to model
the material properties of BDFGMs beam. The governing
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equations obtained by utilizing the Hamilton’s principle
according to the Euler-Bernoulli and Timoshenko beam
theories and solved by GDQ method in conjunction with the
Bolotin method.The results indicated that:

* The parametric resonance obtained by Timoshenko theory
is lower than Euler-Bernoulli theory but the extent of dynamic
instability regions of two theories are very close to each other.
* The influence of gradient index of material properties along
the thickness direction is greater than gradient index along the
longitudinal direction on the dynamic stability of BDFGMs
beam for both exponential and power law distributions.
 Considering exponential law model in order to determine
the material properties of BDFGMs beam causes to obtain the
larger parametric resonance in comparison with power law
model.

+ Putting BDFGMs beam in an elastic substrate makes the
system more stable and stiffer.

» The dynamic instability region moves to the smaller
parametric resonance by increasing static load factor.
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