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ABSTRACT: In this paper, dynamic stability analysis of beams composed of bi-directional functionally 
graded materials rested on visco-Pasternak foundation under periodic axial force is investigated. Material 
properties of beam vary continuously in both the thickness and longitudinal directions based on the two 
types of analytical functions including exponential and power law distributions. Hamilton’s principle 
is employed to derive the equations of motion according to the Euler-Bernoulli and Timoshenko beam 
theories. Then, the generalized differential quadrature method in conjunction with the Bolotin method is 
used to solve the differential equations of motion under different boundary conditions. Various parametric 
investigations are performed for the effects of the gradient index, static load factor, length-to-thickness 
ratio and viscoelastic foundation coefficients on the dynamic stability regions of bi-directional functionally 
graded beam. The results show that the influence of gradient index of material properties along the thickness 
direction is greater than gradient index along the longitudinal direction on the dynamic stability of beam 
for both exponential and power law distributions. Also, the system become more stable and stiffer when 
beam is resting on visco-Pasternak foundation. Moreover, by increasing static load factor, the dynamic 
instability region moves to the smaller parametric resonance. The results of presented paper can be used to 
the optimal design and assessment of the structural failure and thermal rehabilitation of turbo-motor and 
turbo-compressor blades.
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1- Introduction
Dynamic buckling behavior of structures is a complicated 
phenomenon which should be investigated through the 
response of equations of motion. Selection of proper criterion 
is the most important factor in description of a dynamically 
buckled structure. On the other hand, when the structure is 
slender and lightweight, the need to study on the dynamic 
buckling problem would be necessary.At the first time, 
Bolotin [1] introduced dynamic stability in elastic systems. 
Also, Simitses [2,3] presented a wealth review on the concept 
of dynamic buckling and its applications to solid structures. 
In recent years, different works are done in the field of 
dynamic stability and buckling of columns [4], beams [5-
20], plates [21-23], shells [24-26] and etc. Iwatsubo et al. 
[4] solved the governing equations of motion for columns 
using Mathieu equations in conjunction with the Galerkin 
method and then, he determined the influences of internal and 
external damping on the regions of instability of the columns. 
Abbas and Thomas [5], Aristizabal-Ochoa [6], Briseghella et 
al. [7] and Ozturk and Sabuncu [8] employed Finite Element 
Method (FEM) to investigate the dynamic stability of beams. 
The stability parameter of simply supported and clamped 
beams were calculated by Shastry and Rao [9] for different 
locations of two symmetrically placed intermediate supports. 
Li [10] presented a unified method to investigate static and 
dynamic analysis of Functionally Graded Material (FGM) 

beams of Euler-Bernoulli, Timoshenko and Rayleigh types. 
Ke and Wang [11] presented dynamic stability analysis of 
FGMs microbeams according to the Modified Couple Stress 
Theory (MCST) and Timoshenko beam theory. They assumed 
that the material properties of FGM vary in the thickness 
direction of beam based on the Mori–Tanaka homogenization 
technique. Mohanty et al. [12] studied the static and dynamic 
behavior of Functionally Graded (FG) ordinary beam and 
FG sandwich beam for pined-pined end condition. Based on 
the exponential and power law models which consider the 
variation of material properties through the thickness, they 
utilized First order Shear Deformation Theory (FSDT) to 
model beam and used FEM for the analysis. Fu et al. [13] 
obtained the nonlinear governing equation for the FGM 
beam with embedded piezoelectric actuators under clamped 
boundary conditions using Hamilton’s principle. Also, they 
studied the thermo-piezoelectric buckling, nonlinear free 
vibration and dynamic stability for this system, subjected 
to one-dimensional steady heat conduction in the thickness 
direction. Static and dynamic stability of a FG micro-beam 
based on MCST subjected to nonlinear electrostatic pressure 
and thermal changes regarding convection and radiation were 
investigated by Zamanzadeh et al. [14]. They obtained the 
static pull-in voltages in presence of temperature changes using 
Step-by-Step Linearization Method (SSLM) and the dynamic 
pull-in voltages by adapting Runge–Kutta approach. Using 
Timoshenko beam theory, Ke et al. [15] presented dynamic 
stability response of nanocomposite beams reinforced by 
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Functionally Graded Single-Walled Carbon NanoTubes 
(FGSWCNTs). They employed the rule of mixture to estimate 
the material properties of FGSWCNT-reinforced composites. 
Ghorbanpour Arani et al. [16] investigated dynamic stability 
of double-walled boron nitride nanotube conveying viscous 
fluid using Timoshenko beam theory based on nonlocal 
piezoelasticity theory. They applied the mechanical harmonic 
excitation on double-walled boron nitride nanotube with zero 
electrical boundary condition in thermal environment and 
derived the equations of motion according to the von Kármán 
geometric nonlinearity. The nonlinear dynamic buckling and 
imperfection sensitivity of the FGM Timoshenko beam under 
sudden uniform temperature rise were presented by Ghiasian 
et al. [17]. They employed the Budiansky–Roth criterion to 
distinguish the unbounded motion type of dynamic buckling 
and observed that no dynamic buckling occurs based on it 
for beams with stable post-buckling equilibrium path. Xu 
et al. [18] developed the random factor approach to analyze 
the stochastic dynamic characteristics of FGM beams with 
random constituent material properties. They assumed that 
the effective material properties of this structure changes 
continuously through the thickness or axial directions 
according to the power law distribution. Shegokara and Lal 
[19] studied the dynamic instability response of un-damped 
elastically supported piezoelectric FG beams subjected to 
in-plane static and dynamic periodic thermo-mechanical 
loadings with uncertain system properties. They derived the 
nonlinear governing equations based on Higher order Shear 
Deformation beam Theory (HSDT) with von-Karman strain 
kinematics. Recently, Saffari et al. [20] determined dynamic 
stability regions of FG nanobeams exposed to the axial and 
thermal loadings using nonlocal Timoshenko beam theory. 
Also, they considered surface stress effects according to 
Gurtin-Murdoch continuum theory.Various new works are 
carried out on the importance of Bi-Directional Functionally 
Graded Materials (BDFGMs). Zamani Nejad et al. [27-29] 
considered bending, buckling and free vibration analysis of 
arbitrary 2 Dimensional (2D) FGM Euler–Bernoulli nano-
beams based on nonlocal elasticity theory. They obtained 
governing equations using the principle of minimum potential 
energy and utilized Generalized Differential Quadrature 
(GDQ) method to solve them for various boundary conditions. 
Flexure of bi-directional FG circular beams using the 
kinematical assumptions of the Euler–Bernoulli theory were 
analyzed by Pydah and Sabale [30]. They assumed that the 
material properties change along thickness (radial direction) 
and the axis (tangential direction) of the beam and then, 
presented analytical results for statically-determinate circular 
cantilever beams under the action of various tip loads. In the 
next work, Pydah and Batra [31] developed a shear deformation 
theory using logarithmic function for thick bi-directional FG 
circular beams according to the exponential and power laws. 
Karamanlı [32] examined the elastostatic behavior of 2D-FG 
beams with various boundary conditions by using the Euler-
Bernoulli, Timoshenko and Reddy-Bickford beam theories 
and the Symmetric Smoothed Particle Hydrodynamics 
(SSPH) method. Shafiei and Kazemi [33] and Shafiei et 
al. [34] studied buckling and vibration behavior of 2D-FG 
porous nano-/micro-beams. They considered the Eringen’s 
nonlocal elasticity and the Modified Couple Stress Theories 
(MCSTs) to derive the governing equations of micro-scaled 
imperfect beams. Recently, Trinh et al. [35] presented the free 

vibration behavior of 2D-FG microbeams based on MCST. 
Based on the state-space concept, they solved the governing 
equations for natural frequencies and vibration mode shapes 
of microbeams under various boundary conditions. There 
are no significant researches about the dynamic stability of 
beams composed of BDFGMs in above works. In previous 
published papers, the dynamic stability of unidirectional 
functionally graded beams is investigated while in this article, 
the dynamic stability of BDFGMs beam rested on visco-
Pasternak foundation under periodic axial force is studied. 
Material properties of BDFGMs beam vary continuously 
in both axial and thickness directions according to the 
exponential and power law distributions while in previous 
works, power law are mostly used to model the material 
properties distribution. By considering the Euler-Bernoulli 
and Timoshenko beam theories, the equations of motion of 
present system are obtained based on the Hamilton’s principle 
and solved numerically by the GDQ method and the Bolotin 
method under different boundary conditions.

2- Bi-Directional Functionally Graded Material
In 1984 during a space vehicle project, some Japanese 
material scientists presented the concept of functionally 
graded materials [36]. FGMs are made of two (or more) 
different materials which their properties such as mechanical 
strength and thermal conductivity vary continuously in 
a desired direction from point to point. It is the one of the 
most important advantages of FGMs against the classical 
laminated composites. Nowadays, the use of FGMs in 
many applications of engineering are developed such as 
aircrafts, space vehicles, defense industries, electronics and 
biomedical sectors due to their superior mechanical and 
thermal properties. It is seen from the literature survey that 
there are many worthwhile works in the case of conventional 
FG structures whose material properties vary in only one 
direction. Since the temperature or stress distribution in 
some advanced machines such as modern aerospace shuttles 
and craft develops in two or three directions, the need for a 
new type of FGMs is felt whose properties vary in two or 
three directions. Therefore, the number of researches about 
structures consist of BDFGMs is still very limited.As shown 
in Fig. 1, consider a BDFGM beam with length L, width b and 
thickness h which is rested on visco-Pasternak foundation 
includes springs ( wK ), dampers ( dC ) and shear layer ( GK ). 
Also, the beam is exposed to a periodic axial force F(t). It 
should be noted that the origin of the coordinate system is 
chosen at the midpoint of the beam.

2- 1- Power law distribution
In this paper, it is assumed the beam is made of four different 
materials, and thus, the effective material properties in points 
Pm1, Pm2, Pc1 and Pc2, are specified in Fig. 1. Also, Young’s 
modulus E, shear modulus G, and mass density ρ  (except for 
Poisson’s ratio υ ) vary in both the thickness and longitudinal 
directions for BDFGM beam. Therefore, the effective material 
properties of BDFGM beam can be obtained by applying the 
rule of mixture as follows [32]:
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where V is the volume fraction of materials. Based on the 
power law distribution, the volume fractions can be defined 
as: 
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where xn and zn  are the gradient indexes which dictate 
the material variation profile through in x and z directions, 
respectively.
Substituting Eq. (2) into Eq. (1), the effective material 
properties can be found by:
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2- 2- Exponential distribution
Now, consider that the effective material properties of 
BDFGMs beam obey an exponential distribution through the 
thickness and length of the beam as following form [37]:
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It should be noted that by setting 0x yn n= = , the beam 
becomes homogeneous in both exponential and power law 
distributions.

3- Governing Equations for Timoshenko Beam Theory
Based on Timoshenko beam theory, the displacement field of 
BDFGMs beam can be given by:
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In which, u and w represent the axial and transverse 
displacements of the point on the x-axis, respectively, and ϕ  
is the rotation of the cross section about the y axis.
The kinematic relations for Timoshenko beam can be 
expressed as follows:

 

 

 

 

 

 

 

 

,

,

xx

xz

u
x x x

w
z x

u z

u w
x









  
  


  
 


 

 


 (6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6)

where xxε  is normal strain and xzγ is the shear strain. Thus, 
the stress-strain relations according to the Hook’s law can be 
written as:
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where 
xxσ  and xzτ  are the normal and shear stresses, 

respectively. Also, ( )( , ) ( , ) / 2 1G x z E x z υ= + . In addition, 
k is shear correction factor and equal to 5 5 / 6 5υ υ+ +  for 
Timoshenko beam [38].
Based on the Hamilton’s principle, which states that the 
motion of an elastic structure during the time interval 

1 2t t t< <  is such that the time integral of the total dynamics 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Geometry of a BDFGM beam rested on visco-Pasternak 
foundation subjected to a periodic axial force F(t).



A. Ghorbanpour Arani and Sh. Niknejad, AUT J. Mech. Eng., 4(2) (2020) 201-214, DOI:   10.22060/ajme.2019.15913.5792

204

potential is extremum [39]:
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In which, U, T and Wext are the strain energy, kinetic energy 
and work done by external forces, respectively. The virtual 
strain energy can be calculated as:
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where ∀  is the volume of beam. Substituting Eqs. (6) and (7) 
into Eq. (9) yields:
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where subscript TBT refers to Timoshenko beam theory. 
Also, N, M and Q represent the axial force, bending moment 
and shear force, respectively. Generally, this terms can be 
obtained from:
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The kinetic energy for a beam can be written as:
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By substituting Eq. (5) into Eq. (12), for Timoshenko beam, 
the virtual kinetic energy can be expressed as follows:
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The external work variation done by visco-Pasternak 
foundation [39] and periodic axial forces [40] can be given 
by:
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In which, α  and β  are static and dynamic load factors, 
respectively, and Ω  is parametric resonance.
By Substituting Eqs. (10), (13) and (15) into Eq. (8) and 
putting the coefficients of uδ , wδ  and δϕ  to zero, the 
equations of motion can be determined as follows:
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Moreover, the appropriate boundary conditions given by Eq. 
(8) can be written as:
Clamped (C)
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Substituting Eq. (7) into Eq. (11), the normal force-strain, the 
bending moment-strain and the shear force-strain relations 
based on Timoshenko beam theory can be given by:
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The equations of motion of BDFGMs beam in terms of the 
displacements can be derived by substituting for N, M and Q 
from Eq. (19) into Eq. (17) as follows:
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Also, the appropriate boundary conditions in terms of the 
displacements can be given by:
Clamped
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4- Governing Equations for Euler-Bernoulli Beam Theory
In this section, the Euler–Bernoulli beam theory is used to 
derive the equations of motion. Thus, the displacement field 
can be defined as:
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The only nonzero strain and stress are:
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For this case, the strain energy and kinetic energy can be 
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nz Source 
nx 

0 
1
3

 1
2

 5
6

 1 
4
3

 3
2

 2 

0 

Present 
paper 3.3032 3.7383 3.9127 4.1986 4.3171 4.5167 4.6012 4.8079 

Reference 
[44] 3.3018 3.7429 3.9148 4.1968 4.3139 4.5118 4.5956 4.8005 

% Error 0.4240 0.1229 0.0536 0.0429 0.0742 0.1086 0.1219 0.1541 

1
3

 

Present 
paper 3.2189 3.5518 3.6791 3.8759 3.9534 4.0792 4.1307 4.2526 

Reference 
[44] 3.1542 3.5050 3.6305 3.8252 3.9022 4.0277 4.0792 4.2009 

% Error 2.0512 1.3352 1.3391 1.3251 1.3125 1.2790 1.2634 1.2312 

1
2

 

Present 
paper 3.1997 3.4978 3.6099 3.7797 3.8455 3.9511 3.9939 4.0943 

Reference 
[44] 3.1068 3.4258 3.5397 3.7087 3.7745 3.8805 3.9236 4.0245 

% Error 2.9902 2.1017 1.9832 1.9144 1.8810 1.8193 1.7917 1.7343 

5
6

 

Present 
paper 3.1570 3.4080 3.4984 3.6308 3.6810 3.7601 3.7918 3.8655 

Reference 
[44] 3.0504 3.3296 3.4206 3.5548 3.6059 3.6869 3.7194 3.7947 

% Error 3.4946 2.3546 2.2745 2.1380 2.0827 1.9854 1.9466 1.8658 
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Present 
paper 3.1366 3.3720 3.4542 3.5730 3.6179 3.6881 3.7161 3.7811 

Reference 
[44] 3.0359 3.2984 3.3819 3.5035 3.5495 3.6219 3.6508 3.7177 

% Error 3.3170 2.2314 2.1379 1.9837 1.9270 1.8278 1.7886 1.7054 
 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Comparison of fundamental frequency parameter ( ) of BDFGMs beam with SS boundary conditions..

Table 2. Natural frequency (kHz) of BDFGMs beam rested on visco-Pasternak foundation with SS 
boundary conditions.

Mode Theory 
h/L 

0.02 0.05 0.1 0.2 

1 
Euler-Bernoulli 0.158771 0.171958 0.294981 0.570033 

Timoshenko 0.158744 0.171502 0.291014 0.541227 

2 
Euler-Bernoulli 0.376258 0.593961 1.116871 2.084482 

Timoshenko 0.375937 0.587237 1.067453 1.825003 

3 
Euler-Bernoulli 0.679351 1.286848 2.444741 3.014204 

Timoshenko 0.679535 1.25955 2.244661 2.964484 

4 
Euler-Bernoulli 1.130534 2.342319 2.956175 4.368365 

Timoshenko 1.085167 2.155098 2.944391 3.51226 
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Fig. 2. The convergence of grid points of the GDQ method for a) CF, b) SS, c) SC, d) CC 
boundary conditions.
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Fig. 4. Effects of static load factor on the dynamic stability of BDFGMs beam a) power law 
distribution, b) exponential distribution.

Fig. 3. Effects of various boundary conditions on the dynamic stability of BDFGMs 
beam a) power law distribution, b) exponential distribution.



A. Ghorbanpour Arani and Sh. Niknejad, AUT J. Mech. Eng., 4(2) (2020) 201-214, DOI:   10.22060/ajme.2019.15913.5792

208

 

(a) 

 

(b) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Effects of gradient index through in x direction (nx) on the dynamic stability of BDFGMs beam a) power law 
distribution, b) exponential distribution.

Fig. 6. Effects of gradient index through in z direction (nz) on the dynamic stability of BDFGMs beam a) power law 
distribution, b) exponential distribution.

Fig. 7. Effects of thickness-to-length ratio on the dynamic stability of BDFGMs beam a) power law distribution, b) 
exponential distribution.
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written as:
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where subscript EBT refers to Euler–Bernoulli beam theory.
Using the Euler–Bernoulli beam theory, the equations of 
motion and boundary conditions of BDFGMs beam can be 
obtained by substituting Eqs. (15), (25) and (26) into Eq. (8) 
and setting the coefficients of uδ  and wδ  to zero as follows:
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Substituting Eq. (24) into Eq. (11), the normal force-strain 
and the bending moment-strain relations based on the Euler–
Bernoulli beam theory can be expressed as following form:
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By substituting Eq. (29) into Eq. (27), the equations of motion 
and boundary conditions in terms of the displacements can be 
obtained as:
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5- Solution Method
In order to solve the governing differential equations (Eq. 
(30)) and the associated boundary conditions (Eq. (31)), the 
GDQ method [41,42] is employed to determine the dynamic 
stability characteristics of BDFGMs beam. According to 
these method, the partial derivative of a function with respect 
to spatial variables at a given discrete point is evaluated as:
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Fig. 8. Effects of various foundation models on the dynamic stability of BDFGMs beam a) power law distribution, b) 
exponential distribution.

Fig. 9. Effects of Winkler parameter on the dynamic stability of BDFGMs beam a) power law distribution, b) 
exponential distribution.
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Fig. 10. Effects of shear layer parameter on the dynamic stability of BDFGMs beam a) power law distribution, b) 
exponential distribution.
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where N is the number of total discrete grid points along 
the x axis and ( )r

ijA  are the weighting coefficients associated 
with the rth order of derivative. Based on the Lagrangian 
polynomial interpolation, the weighting coefficients for the 
first derivative (i.e., r = 1) can be approximated by:
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Similarly, higher order of derivative can be calculated as:
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On the other hand, the differential quadrature solutions 
usually deliver more accurate results with nonuniformly 
spaced sampling. A well accepted kind of sampling points can 
be obtained by the Chebyshev–Gauss–Lobatto normalized 
distribution equation:
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By inserting Eq. (32) into Eqs. (21), (22), (30) and (31) and 
implementing the GDQ method, a set of discretized governing 
equations and the boundary conditions can be found in the 
matrix form as follows:
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In which M, C, K and 
PK  represent the mass, damping, 

stiffness and geometrical stiffness matrices, respectively. 
Also, X is the displacement vector ( , ,X u wϕ= ).
In 1964, Bolotin [1] suggested a method in order to determine 
the dynamic instability region. He indicates that the first 
instability region is wider than other regions and the structural 
damping becomes neutralized in higher regions. Based on 
this method, the displacement vector can be expressed in the 
Fourier series with the period 2T as following form:
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where 
ka  and 

kb  are unknown constants. By introducing Eq. 
(37) into Eq. (36) and setting the coefficients of each sine and 
cosine as well as the sum of the constant terms to zero, yield:

(a) 

 

(b) 

 
 

 

Fig. 11. Effects of damping parameter on the dynamic stability of BDFGMs beam a) power law distribution, b) 
exponential distribution.
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Eq. (38) can be solved based on the eigenvalue problems, 
and the dynamic instability regions will obtain by plotting the 
variation of Ω  with respect to β .

6- Numerical Results and Discussion
In this section, the influences of various parameters such as 
the gradient index of exponential and power law distributions, 
length-to-thickness ratio, different boundary conditions and 
viscoelastic foundation coefficients on the dynamic stability 
region of beam are discussed in details. Silicon (Si3N4), 
zirconia (ZrO2), stainless steel (SUS304) and titanium (Ti-
6Al-4V) with the material properties at room temperature 
given in reference [43] are employed as ceramic1, ceramic2, 
metal1 and metal2, respectively. In addition, CC boundary 
condition is considered for BDFGMs beam except for the 
cases to be mentioned. Also, In order to obtain the results of 
this research, other parameters are selected as follows:

 

 

2m,L =  / 0.04,h L =  
2x zn n= =  0.3 =  

4 310 N/m ,wK =  310 N/m,GK =  
350 N.s/m ,dC =  0.2 =  

 

 

 

 

Fig. 2 indicates the convergence of grid points of the GDQ 
method used to evaluate the stability of the BDFGMs beam 
with arbitrary boundary conditions. The results show that the 
convergence occurs quickly for different boundary conditions 
and thus, N=11 selected to obtain the numerical results. This 
pattern of convergence of the numerical technique reflects 
its efficiency and reliability.By converging the grid points in 
N=11, validation and convergence of the derived formulation 
must be checked now. For this purpose, in Table 1, the 
fundamental frequency parameters of BDFGMs beam with SS 
boundary conditions are compared with reference [44] where a 
finite element formulation based on Timoshenko beam theory 
was utilized. As can be seen, very good agreement between 
the results of present paper with reference [44].The effects 
of thickness-to-length ratio on the natural frequency (kHz) 
of BDFGMs beam rested on visco-Pasternak foundation with 
SS boundary conditions are studied in Table 2. Generally, 
increasing the thickness-to-length ratio leads to increase the 
natural frequency due to increase the stiffness of BDFGMs 
beam. Also, the natural frequencies predicted by Timoshenko 
beam theory are lower than Euler-Bernoulli beam theory. 
Furthermore, the results of two theories for thin beam are 
close to each other and by increasing the thickness-to-length 
ratio, the difference between results becomes more for thick 
beam.Based on Timoshenko and Euler-Bernoulli beam 
theories, the dynamic stability regions of BDFGMs beam for 
various boundary conditions are demonstrated in Fig. 3. As it 
can be seen from this figure, CC and CF boundary conditions 
have the highest and lowest parametric resonance. Also, the 
dynamic instability region for CC boundary condition is higher 

than that for other boundary conditions.The dynamic stability 
regions of BDFGMs beam for various static load factor are 
shown in Fig. 4. It can be observed that by increasing static 
load factor, the dynamic instability region shift to the left 
and increase. This is expected as the increase of α  means 
the increase of the time independent component of the axial 
force which reduces the effective stiffness of the beam. In 
addition, the parametric resonance obtained by Timoshenko 
beam theory is lower than Euler-Bernoulli beam theory but 
the extent of dynamic instability regions of two theories are 
very close to each other.Fig. 5 indicates the dynamic stability 
of BDFGMs beam for different gradient indexes through in 
x direction. According to this figure for both power law and 
exponential distributions, the parametric resonance increases 
with increasing of nx and will be approximately constant for 

3xn ≥ . Fig. 6 illustrates the dynamic stability of BDFGMs 
beam for different gradient indexes through in z direction. 
It can be found that by increasing nz, the instability region 
decreases and moves to the side of smaller parametric 
resonance. Moreover, the influence of nz is greater than nx 
on the dynamic stability of present system by comparing 
Figs. 5 and 6.The dynamic stability regions of BDFGMs 
beam for different thickness-to-length ratio are depicted in 
Fig. 7. It is obvious that by increasing thickness-to-length 
ratio, the system becomes more stable and thus, parametric 
resonance increases and shifts to the right side of figure.
Fig. 8 shows the effect of various foundation models on 
parametric resonance of BDFGMs beam. Four cases are 
considered to study the effect of foundation models, namely, 
case 1 (without foundation:  0,wK = 0, 0G dK C= = ), case 2 
(Winkler foundation: 50wK = MN/m3 , 0, 0G dK C= = ), case 
3 (Pasternak foundation: 50wK =  MN/m3, 10GK =  MN/m
, 0dC = ) and case 4 (visco-Pasternak foundation: 50wK =  
MN/m3, 10GK =  MN/m, 10dC = KN.s/m3).
It is evident that by adding the effects of elastic substrate to 
the system, parametric resonance increases and the dynamic 
instability region shifts to the right. As can be seen, the 
dynamic instability region of the Pasternak model due to 
consider the effects of normal stresses and the transverse shear 
deformation is higher than that of Winkler or visco-Pasternak 
one. Generally, putting BDFGMs beam in an elastic substrate 
leads to increase the stability and stiffness of system.Figs. 9 
to 11 demonstrate the effects of visco-Pasternak foundation 
parameters on the behavior of BDFGMs beam. Figs. 9 and 
10 show the effects of Winkler and shear layer parameters 
on the dynamic stability regions of BDFGMs beam, 
respectively. By increasing this two parameters, stiffnessOf 
system increase and thus, parametric resonance increases and 
the dynamic instability region shifts to the right. Moreover, 
variations of shear layer parameter have more influence than 
Winkler parameter on the displacement of dynamic stability 
regions. Fig. 11 indicates the effects of damping parameter 
on the dynamic stability regions of BDFGMs beam. It can 
be seen from this figure that the dynamic instability region 
of BDFGMs beam reduces by increasing damping parameter.

7- Conclusions
This paper studied the dynamic stability analysis of BDFGMs 
beams rested on visco-Pasternak foundation under periodic 
axial force. Two types of analytical functions include 
exponential and power law distributions considered to model 
the material properties of BDFGMs beam. The governing 
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equations obtained by utilizing the Hamilton’s principle 
according to the Euler-Bernoulli and Timoshenko beam 
theories and solved by GDQ method in conjunction with the 
Bolotin method.The results indicated that:
• The parametric resonance obtained by Timoshenko theory 
is lower than Euler-Bernoulli theory but the extent of dynamic 
instability regions of two theories are very close to each other.
• The influence of gradient index of material properties along 
the thickness direction is greater than gradient index along the 
longitudinal direction on the dynamic stability of BDFGMs 
beam for both exponential and power law distributions.
• Considering exponential law model in order to determine 
the material properties of BDFGMs beam causes to obtain the 
larger parametric resonance in comparison with power law 
model.
• Putting BDFGMs beam in an elastic substrate makes the 
system more stable and stiffer.
• The dynamic instability region moves to the smaller 
parametric resonance by increasing static load factor.
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