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ABSTRACT:  In this study, strongly nonlinear free vibration behavior of a microbeam considering 
the structural damping effect is investigated analytically on the basis of modified couple stress theory. 
Employing Von Karman’s strain-displacement relations and implementing the Galerkin method, the 
governing nonlinear partial differential equation is reduced to a nonlinear ordinary differential equation 
which is related to the size effect of the beam. Because of large coefficient of nonlinear term and due to 
existence of the damping effect, none of the traditional perturbation methods leads to a valid solution. 
Also, there are many difficulties encountered in applying homotopy techniques when the damping effect 
is taken in to account in the strongly nonlinear damped system. To overcome these limitations, here, a 
new analytical method is presented which is based on classical perturbation methods and fundamentals 
of Fourier expansion with an embedding nondimensional parameter. To solve the equation, the nonlinear 
frequency is assumed to be time dependent. The comparison between time responses of the system 
obtained by the presented approach and numerical method indicates the high accuracy of the new method. 
To validate the results of the presented method with those available in the literatures which are obtained 
for a special case of an undamped system, the damping coefficient is set to zero. The comparison shows 
a good agreement between the results for a wide range of vibration amplitudes.
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1. INTRODUCTION
Nowadays Micro-ElectroMechanical Systems (MEMS) are 

widely used in smart materials in various fields of technologies 
such as mechanical, civil, aerospace and bio-engineering 
[1]. Clamped–clamped microbeams are used numerously in 
MEMS as solo components in devices or as spring components 
to support and add stiffness to other microstructures [2,3]. 
Vibration analysis of microbeams is an important issue 
in modern engineering applications such as arched beam 
structures, micro-machined mechanical resonators, vibration 
shock sensors, atomic force microscopes and many other 
industrial usages. As the amplitude of oscillation increases, 
these microstructures are subjected to nonlinear vibrations 
which often lead to material fatigue and structural damage. 
These effects become more significant around the resonance 
frequencies of the system [4]. Therefore, it is very important 
to provide an accurate method for investigating the nonlinear 
vibration behavior of the microstructures. The nonlinear 
vibration of a microbeam is governed by a nonlinear partial 
differential equation in space and time. For this equation, 
it is very difficult to find an exact or closed form solution. 
The importance of nonlinear Duffing equation has been 
widely recognized by scientists, since it plays a key role in 
some important practical phenomena, such as periodic orbit 
extraction, non-uniformity caused by an infinite domain, 

nonlinear mechanical oscillators, prediction of disease and so 
on [5]. A full analytical solution has not been introduced so 
far for the damped Duffing equation with strong nonlinear 
coefficients. Therefore, considerable attention has been 
directed to study of the strongly nonlinear oscillators. Several 
methods have been used to find approximate analytical 
solutions for the Duffing equation, including the perturbation 
techniques [6,7], Homotopy Analysis Method (HAM) [8], 
Homotopy Perturbation Method (HPM) [9-13], modified 
homotopy perturbation method [4,14], frequency-amplitude 
formulation [15], harmonic balance method [16], modified 
variational approach [17], energy balance method [18], max-
min approach [19], modified Lindstedt-Poincare method 
[20], Variational Iteration Method (VIM) [21,22], and some 
other techniques [23,24]. Through these methodologies, 
there are many difficulties encountered in the application 
of perturbation techniques to solve the strongly nonlinear 
equations [4]. For example, one of the most frustrating is the 
fact that all classical perturbation techniques strongly rely on 
the assumption of a small parameter into the equation which 
might be artificial, and subsequent expansion of the solution 
through the perturbation series around this parameter. 
However, the solutions obtained by these methods may not 
be uniform, restricting the applicability of such perturbation 
methods [25]. 

To overcome the above mentioned limitations of classical 
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perturbation techniques, many novel techniques have been 
proposed in recent years. One of these new methods is 
the homotopy perturbation method which is applicable 
to strongly nonlinear systems. He [26] proposed a new 
perturbation technique to solve the nonlinear undamped 
Duffing equation in which the maximum relative error at 
the first order approximation is less than 7%. However, the 
homotopy technique is not usually employed to solve a 
damped nonlinear equation, because it leads to equations that 
are too complicate to be solved analytically. 

Some researchers considered the damping effect 
in their studies. Recently two new methods, Laplace 
decomposition [27] and homotopy perturbation transform 
[28] are introduced for the solution of nonlinear and non-
homogeneous differential equations which are capable of 
solving the damped Duffing equation. In decomposition based 
methods, obtaining Adomian polynomials is too complicated. 
Nonetheless, in homotopy perturbation transform method, 
this limitation is resolved using He’s polynomials. Therefore, 
to reach a valid solution, by implementing the homotopy 
perturbation transform method or the modified differential 
transform method, one must increase the power of the 
polynomials and this requires too cumbersome mathematical 
calculations. Nourazar and Mirzabeigy [29] applied the 
modified differential transform method to solve the nonlinear 
Duffing oscillator with damping effect, approximately. 
Following these descriptions, when the above mentioned 
methods are used to solve the nonlinear damped equation, 
one can only obtain the approximate response of the system 
with no elucidation about the nonlinear frequency. 

In this paper, strongly nonlinear free vibration behavior 
of a microbeam considering the structural damping effect 
is investigated analytically on the basis of modified couple 
stress theory. Employing Von Karman’s strain-displacement 
relations and using the Hamilton’s principle, the beam 
governing equation of motion is derived. By implementing 
the Galerkin method and assuming the immovable clamped-
clamped boundary conditions, the partial differential 
equation is reduced to a nonlinear Ordinary Differential 
Equation (ODE) which is related to the size effect of the beam. 
To solve this nonlinear equation, according to the mentioned 
justifications, neither the classical perturbation techniques 
nor the homotopy methods, are not suitable solution methods. 

Here, a new analytical approach is presented for solving the 
mentioned nonlinear damped equation. In this new approach 
using the basic concepts of the classical perturbation methods 
together with the fundamentals of Fourier expansion with an 
embedding parameter which is considered as a small parameter 
( 0 1ε< << ), and assuming the time dependent relation for 
the frequency, the strongly nonlinear damped equation of 
motion is solve. This presented analytical approach provides 
a valid asymptotic solution for any positive coefficients of the 
nonlinear terms, and it is the main advantage of this method 
over the other mentioned methods. For this damped strongly 
nonlinear system, comparing time responses obtained by the 
first order approximate solution of the new method and those 
obtained by the numerical technique, i. e. RK45, indicates the 
high accuracy of the new method for a wide range of vibration 
amplitudes. Since the studies about the strongly nonlinear 
vibration of microbeams are restricted to undamped cases, 
here in order to make it possible to validate the method, the 
comparisons are made for such cases. The comparisons show 
a good agreement for a wide range of the vibration amplitudes.

2. Equation of Motion
An Euler-Bernoulli microbeam with a length of L , 

cross-sectional area of A , density of ρ , cross sectional area 
moment of  inertia of I , the elasticity modulus of E and the 
shear modulus of G is shown in Fig. 1. 

The strain-displacement relations for a beam undergoing 
large deflections are as [30,31]:

2 2

2
1
2x x

u w w,
x x x

ε κ∂ ∂ ∂ = + = − ∂ ∂ ∂ 
 (1)

where 
xε is the axial strain at a generic point of the 

microbeam which is located at the mid-plane surface, xκ  is the 
curvature of the beam, u  is the longitudinal displacement, 
w  is the lateral displacement and x is the longitudinal 
coordinate,
Neglecting the axial inertia and using the modified couple 
stress theory was presented by Yang et al. [32] in 2002, in 
which the strain energy density is a function of both strain 
tensor (conjugated with stress tensor) and curvature tensor 
(conjugated with couple stress tensor) [32,33], the strain 
energy, U , and the kinetic energy, T , of the beam is given 
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Fig. 1. A clamped-clamped microbeam. 

  

Fig. 1. A clamped-clamped microbeam.
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by [34]:
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where l is a material length scale parameter and 2GAl
is related to the modified couple stress theory [35]. It should 
be mentioned that the current model based on the modified 
couple stress theory contains only one additional material 
constant besides two classical material parameters. The 
presence of l enables the incorporation of the material size 
features in the new model and renders it possible to explain 
the size effect. Furthermore, when the size effect is suppressed 
by letting 0l = , the new model will reduce to the classical 
beam model [33].

Including the effects of the mid-plane stretching and 
employing the Hamilton’s principle, one obtains the governing 
equations for Euler-Bernoulli microbeam as:

21 0
2

u wEA
x x x

  ∂ ∂ ∂  + =   ∂ ∂ ∂    
  

(4)
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+ −
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∂
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(5)

where Q  is the non-conservative force due to the internal 
damping and is obtained as:

2 3

2 2S
wQ C I

x t x
 ∂ ∂

= −  ∂ ∂ ∂ 
  

(6)

where SC  represents the beam internal damping 
coefficient.

Integrating Eq. (4) and substituting the result into Eq. (5), 
and using Eq. (6) leads to the following equation:

( )
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(7)

where  is the pretension force.
It is more convenient to work with dimensionless 

parameters. Here, the dimensionless parameters are as:

ˆ ˆ ˆ, ,x wt t x w
L L

ω= = =
  

(8)

ω  is the linear natural frequency of the microbeam with 
the value of:

( )
2

2
4

EI GAlL
AL

ω λ
ρ
+

=
  

(9)

where Lλ  is the eigenvalue of the microbeam with doubly 
clamped boundary conditions. In Eq. (9) by letting 0l =
, the system natural frequency computed by the new model 
reduces to that obtained by the classical beam model.

Substituting Eqs. (7) and (8) into Eq. (6) and using the 
chain rule for differentiation, one obtains:

   

( )
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(10)

where /r I A=  is the radius of gyration of the beam 
cross section.

The solution of Eq. (10) can be assumed as 

ˆ ˆˆ ˆ ˆ( , ) ( ) ( )w x t x q tφ=  [36] where ˆ( )xφ is the first mode shape 

of the beam. For the clamped-clamped beam, ˆ( )xφ is as 
follows [37]:
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(11)

Using the Galerkin method and multiplying both sides of 

Eq. (10) by ˆ( )xφ  and integrating over the interval of [0, 1] 
one reaches:
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(12)

After some mathematical manipulations we have:
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where 2
0ω  , β̂  and α̂  are defined as:
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Eq. (13) is the differential equation of motion governing 
the nonlinear vibration of the microbeam. The initial 
conditions are assumed as: 

( ) ( )00 0 0maxWq a , q
L

= = =

 
 (16)

where maxW  is the microbeam maximum deflection.

Using the change of variable 0
ˆt tω=  and applying in Eq. 

(13) one reaches:

3( ) ( ) ( ) ( ) 0q t q t q t q tβ α+ + + =    (17)

where

2
0 0

ˆ ˆ
,β αβ α

ω ω
= =

 
 
(18)

There are different methods to solve Eq. (17). However, 
most of these methods do not result in a valid solution for 

the strongly nonlinear cases ( )1β > . The coefficient of the 

nonlinear term, β , is dependent on the beam parameters 

as well as the boundary conditions [4]. The value of β  for 
microbeam is very large compared with unity. As a case 
study, for the doubly microbeam, 1941.3β = . Therefore, 
the classical perturbation approaches do not lead to a valid 
expansion for the solution. 

3. Introducing the New Analytical Method
As mentioned before, the perturbation methods have many 

limitations for solving and analyzing the behavior of strongly 
nonlinear systems, i.e. to use perturbation techniques, the 
coefficient of the nonlinear term should be smaller than unity 
[4]. Recently, some methods such as homotopy techniques are 
proposed to overcome this limitation. However, the homotopy 

methods have some limitations, too. For instance, as the 
coefficient of the nonlinear term increases, the homotopy 
techniques need more iterations to obtain accurate results, and 
this procedure leads to complicated equations which cannot 
be simply solved. Here, a new analytical approach is presented 
for solving the governing strongly nonlinear damped equation. 
In this new approach using the basic concepts of the classical 
perturbation methods together with the fundamentals of 
Fourier expansion with an embedding parameter which is 
considered as a small parameter ( 0 1ε< << ), and assuming 
the time dependent relation for the frequency, the strongly 
nonlinear damped equation is solved. This presented 
analytical approach provides a valid asymptotic solution for 
any positive coefficient of the nonlinear term, and this is the 
main advantage of the new method over the other available 
methods in the literature. 

By making the change of variable, β εγ= , Eq. (17) can be 
rewritten as below:

3( ) ( ) ( ) ( ) 0q t q t q t q tεγ α+ + + =    (19)

where ε  is the small embedding parameter ( 0 1ε< <<
). Just like the classical perturbation methods, the solution of 
Eq. (19) is considered as:

2
0 1( ) ( ) ( ) ( )q t q t q t Oε ε= + +   (20)

Substituting Eq. (20) into Eq. (19) and collecting 
coefficients of equal powers of ε  and setting each of the 
coefficients of like powers of ε  equal to zero, the differential 
equations for iq ’s , 0,1,2,i = 

 become:

0
0 0 0: ( ) ( ) ( ) 0q t q t q tε α+ + =    (21)

1 3
1 1 1 0: ( ) ( ) ( ) ( )q t q t q t q tε α γ+ + = −    (22)



By solving Eq. (21), the main part of solution can be 
obtained as:

0 ( ) cos( )q t A tΩ θ= +   (23)

Neglecting the homogenous solution of Eq. (22) and 
using truncated Fourier expansion, one reaches the following 
solution [38]:

1 0
2

( ) cos ( ) sin ( )
N

n n
n

q t A A n t B n tΩ Ω
=

= + +∑
 

 (24)

In Eq. (19) the term 3( ) ( )q t q tβ+  is the restoring force, 
where β  is always positive for a clamped-clamped microbeam 
and the nonlinear term acts as a hardening spring. The 
assumed form for ( )q t can be simplified by considering the 
symmetry of the nonlinear restoring force. First, Hayashi [39] 
pointed out that under circumstances when the nonlinearity 
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is symmetric, i.e. when the restoring force is odd, 0A  can 
be discarded. Second, it was demonstrated by Urabe [40], 
numerically and theoretically, that the even harmonic 
components in Eq. (24) are zero. Therefore, the approximate 
solution is simplified to:

1
3,5,...

( ) cos ( )n
n

q t C n tΩ θ
=

= +∑
 

 (25)

Substituting Eqs. (23) and (24) into Eq. (20) and making 
the change of variable, tτ Ω= , result in:

2
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cos
( ) cos( ) ( )

( )
n

n

C n
q t A Oτ θ ε ε

τ θ=

  
= + + +  +  

∑
 

 (26)

where θ  is a constant and 0 ( )Oα ε≤ ≤ . Since α  is a small 
parameter, then the amplitude and the amplitude-dependent 
frequency will vary slowly with the time. Thus, the coefficients 
A  and nC  in Eq. (26), are functions of the time.

Considering 3n = , one reaches:

[ ] 2
3cos( ) cos3( ) ( )q A C Oτ θ ε τ θ ε= + + + + +

  (27)

As mentioned before, due to the damping effect, the 
nonlinear frequency will be time dependent. So, as a first 
approximation, let:

2
0 1
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d

O
t
τ Ω εΩ ε= + +

 
 (28)

Using the change of variables as below:

tψ α=   (29)

3
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The first time derivative of q , will be:
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Also, for the second derivative:
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(32)

Since the embedding parameter ( 0 1ε< << ) and the 
damping coefficient ( 0 ( )Oα ε≤ ≤ ) are small parameters, 
the terms including εα , 2α  and 2( )O ε  will be negligible in 
comparison with the other terms. So:

3cos( ) cos3( )q A Cτ θ ε τ θ= + + +   (33)
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(36)

Substituting Eqs. (33) to (36) into Eq. (17) and setting 
the coefficients of cos( )τ θ+ , sin( )τ θ+ , cos( )ε τ θ+ , and 
cos3( )τ θ+  to zero, a system of perturbed equations is 
obtained as:

( )2 3
0cos( ) : 1 0A QAτ θ Ω+ − + =

 
 (37)

0
0 0

ddsin( ) : 2 0
d d
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0 3
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3

QA C QAτ θ ε Ω+ − + + =
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Eq. (37), leads to:

2 2
0 1 QAΩ = +   (41)

From Eqs. (38) and (41), one obtains:

2

2 d 1
1 d

QA A
A QA ψ

 
+ = − + 

  (42)

By making the change of variable 2AΓ = , and then 
integrating Eq. (42) yields:

3 2 21 0Me
Q

ψΓ Γ −+ = >
 

 (43)

where M  is a constant to be determined from the initial 
conditions.
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Defining 3 227 1
2

Q Me ψη −= −  , it can be easily verified that Eq. 
(43) has one real root for 1 η< < ∞  and one positive and two 
negative roots for 1 1η− ≤ ≤ . For the case of 1 η< < ∞  , i. e. 

when 31 270 ln( )
2 4

t MQ
α

≤ ≤  , the real root is given by:

2 23 31 1 1 1
3Q

Γ η η η η = + − + − − −  
  (44)

Also, for the case of 1 1η− ≤ ≤  , i. e. when 
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MQ t
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≤ < ∞  , the positive root is given by:
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3 3Q

ηΓ
− 

= − 
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It is worth mentioning that when 0α → , Eq. (44) is valid 
for 0t ≥ .

Eqs. (39) to (41) lead to:

( )
( )
( )

222 2
0

1 2 2
0 0 0 0

1

6 7 1 6 7 1
Q ΩΓεΩ

Ω Ω Ω Ω

−
= =

+ +   
(46)
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Therefore,
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From Eq. (42) we have:
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Q AΩ Γ β= + = +   (50)

Integrating Eq. (21), neglecting 2( )O ε  in this equation 

and using Eq. (46), it should be noted that when 0α → , 
then:

( )
( )

22
0

0 2
0 0

(0) 1
(0)

6 (0) 7 (0) 1
t

Ω
τ Ω

Ω Ω

 −
 → +
 +
 

  
(51)

To determine the constants (0)A and θ , considering the 
initial conditions 0(0)q a=  and (0) 0q =

, and using the Eqs. 
(33) and (34), one reaches:

3 0(0)cos (0)cos3 (0)A C q aθ ε θ+ = =   (52)

0 0 1

3 0

d(0) (0)sin cos (0) (0)sin
d

3 (0) (0)sin 3 (0) 0

AA A

C q

ψΩ θ α θ ε Ω θ
ψ

ε Ω θ

=− + − −

= =

  (53)

where, 0
d
d

A
ψψ = and M  may be obtained through Eqs. (42) 

and (43), respectively, as:

( )2

0 2

(0) 1 (0)d
d 2 3 (0)

A QAA
QAψψ =

+
= −

+
  (54)

4
6 4 (0)(0)

3
AM A
β

= +   (55)

So the first approximation will be:

3
2

2( ) cos( ) cos3( ) ( )
32 27

Aq t A O
A

βτ θ τ θ ε
β

= + + + +
+

  (56)

where A  is obtained from Eq. (44) and/or Eq. (45), and 
τ  is obtained from Eq. (49). 

According to Eq. (49), the nonlinear natural frequency 
is a function of vibration amplitude and the damping of the 
system.

4. RESULTS AND DISCUSSION
For demonstrating the accuracy of the new approach, as 

a case study, the method is applied to the doubly clamped 

microbeam. The maximum value of 2
0aβ  for which the beam 

does not exceed the linear elastic limit, depends on the beam 
characteristics, the boundary conditions, the mode shape and 
the initial conditions. It is worth noting that the bigger values 

of 2
0aβ  may be occurred in some other nonlinear equations 

[4].
Since the studies about the strongly nonlinear vibration of 

microbeams are restricted to undamped cases, here in order 
to make it possible to validate the method, the comparison 
is made for such a case. Table 1 summarizes the comparison 
between the results for the nondimensional nonlinear 
resonance frequency obtained through the new approach and 
the other methods reported in the literature for a wide range 
of vibration amplitudes. Table 1 shows an excellent agreement 
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between the results obtained through the presented method 
and the exact solution. It is worth mentioning that by 
qualitative analysis of conservative systems and integrating 
the level curve in phase plane for a given total energy level, 
Nayfeh [7] obtained the exact value for the system period. 
After some manipulations he reached the system period as 
[4]:

2 2
0 0

4 ( , )
2exT F k

a
π

ω β
=

+
 

 (57)

where ( , )
2

F kπ  is called a complete elliptic integral of the 
first kind and its value is [4,7]:

2
0 2 2

d( , )
2 1 sin

xF k
k x

ππ
=

−
∫   (58)

And

2
0

2 2
0 02( )

ak
a

β
ω β

=
+   (59)

So, the exact frequency of the free oscillations reads:

2
ex

exT
πΩ =

 
 (60)

Table 2 indicates the nonlinear frequencies obtained by 
the new presented approach, the VIM, the HPM and the exact 
solution for different values of nondimensional vibration 
amplitudes. From Table 2 it can be seen that there is a good 
agreement between the results obtained from the new method 

and the exact solution for larger values of 2
0aβ ,.

The maximum relative error of the system period, ( )%RE
, is defined as [4,45]:

( )% lim 100ex

ex

T TRE
Tβ→∞

−
= ×

  

(61)

For an undamped system, as β  approaches infinity, the 
maximum relative error for the first order approximation 
through the new approach and the first order approximation 
via VIM and HPM are obtained 0.26% , 4.1%  and 2.22% , 
respectively. Consequently, the first order of the new method 
is more accurate than the others. 

As mentioned before, the homotopy technique is not 
usually employed to solve a damped nonlinear equation, 
because it leads to equations that are too complicate to be 
solved analytically. So, in order to demonstrate the accuracy 
and the effectiveness of the new approach, the damping 
coefficient of the beam is set to zero and the beam response at 
its mid-span is obtained by the first order of the new method. 
Then the result is compared with that obtained by the first 
order of HPM and the fourth-order Runge–Kutta method. Fig. 

Table 1. Comparison of nonlinear frequencies obtained via different methods for small values of 

 2
0aβ ( 0.25, 1, 2.25= ); 

2
0aβ The Solution Method 

2.25 1 0.25 
1.6257 1.3178 1.0892 The exact solution 
1.6240 1.3164 1.0889 The first order approximation of the new method 
1.6394 1.3229 1.0897 First order HPM  
1.6519 1.3278 1.0903 First order VIM 
1.6394 1.3229 1.0897 Azrar et al. [41]-Second order  
1.6393 1.3228 1.0897 HAM [42] 
1.6394 1.3229 1.0897 Qaisi [43] 

1.6394 1.3229 1.0897 Ritz method [44] 

 

  

Table 1. Comparison of nonlinear frequencies obtained via different methods for small values of 2
0aβ ( 0.25, 1, 2.25= );

Table 2. Nonlinear frequencies obtained by the new method, the VIM, the HPM and the exact solution for some large 

values of 2
0aβ .  

Nondimensional Nonlinear Frequency 
2
0aβ First order of 

the new method 
First order HPM First Order VIM Exact solution 

1.316378979 1.322875656 1.327715663 1.317776065 1 

2.868818098 2.915475948 2.957903561 2.866640137 10 

8.553506457 8.717797888 8.873915594 8.533586191 100 

26.87909003 27.40437921 27.90602205 26.81073847 1000 

84.94536879 86.60831369 88.19719974 84.72747996 10000 

 

  

Table 2. Nonlinear frequencies obtained by the new method, the VIM, the HPM and the exact solution for some large values of 2
0aβ .
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2 illustrates the response of a clamped-clamped microbeam 
with a nondimensional amplitude of 0.05 and the pretension 
load of 0 0N = . For this case, 2

0 1ω =  and 1941.3β = , ( 1β >> ). It 
can be readily deduced from Fig. 2 that the response obtained 
by the first order of the new method is more accurate than 
that obtained by the first order of HPM. Moreover, the Figure 
reveals that the first order of the new method can follow the 
RK45 more accurate than the first order of HPM. 

According to Eqs. (28) and (49), the new method provides 
a relation which relates the system nonlinear frequency to 
the vibration amplitude and the time. Due to the damping 
effect, the vibration amplitude decreases by the time, so one 
can illustrate the variations of the nonlinear frequency, the 
vibration amplitude and the time as a three dimensional 
plot. Fig. 3 shows the variation of the frequency ratio, 0Ω ω
, against the nondimensional amplitude and time. As this 
Figure indicates, for small values of t , due to the larger 
vibration amplitudes, the frequency ratio is high. As the time 
goes on, the vibration amplitude decreases and therefore, 
the nonlinear frequency tends to the linear one. In other 
words, at the larger amplitudes, the effect of nonlinearity 
has a significant influence on the vibration behavior of the 
microbeam.

To show both accuracy and effectiveness of the first order 
of the new approach, the damped responses of the system 
at the mid-span of the microbeam is obtained by the new 
method and the results are compared with those obtained by 
the fourth-order Runge–Kutta method. Figs. 4(a) to 4(c) show 
the free responses of a doubly clamped microbeam for various 
values of nondimensional amplitude in the absence of 0N . As 
it can be seen from these Figures, for a wide range of vibration 
amplitudes, the responses obtained by the first order of the 
new method follow the responses obtained by the RK45 with 
a good accuracy. Also, these Figures reveal that even the first 
order approximation of the presented approach is in excellent 
agreement with the numerical solution.

 Fig. 5 illustrates the effect of the beam internal damping 

coefficient, SC , on the frequency ratio of the clamped-
clamped beam for various values of vibration amplitudes. 
It can be seen that by increasing the vibration amplitude, 
the frequency ratio, 0Ω ω ,  increases. Also, at the larger 
vibration amplitudes, the effect of the beam internal damping 
coefficient on the frequency ratio becomes more significant. 
Moreover, for a given vibration amplitude, all the curves start 
from a common point and as the time goes over, they move 
away from each other due to the damping effect.

Fig. 6 shows the effect of the microbeam material length 
scale parameter, l , on the frequency ratio of the clamped-
clamped beam for various values of vibration amplitudes. The 
Figure reveals that by increasing the vibration amplitude, the 

 
Fig. 2. Comparison among the responses of the clamped-clamped microbeam for 0 0 05a .= obtained by the new method, HPM 

and the numerical method 

  

Fig. 2. Comparison among the responses of the clamped-clamped microbeam for 0 0 05a .= obtained by the new method, HPM and the 
numerical method

 
Fig. 3. Variation of the frequency ratio versus the nondimensional vibration amplitude and time. 

  

 Fig. 3. Variation of the frequency ratio versus the nondimensional
vibration amplitude and time.
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                                                    (a)                                                                                             (b) 

 
 (c) 

Fig. 4. Comparison between the responses of the clamped-clamped microbeam obtained by the first order of the new method and 

the numerical method for nondimensional vibration amplitudes of: (a) 0 0 04a .=  (b) 0 0 06a .=
 
(c) 0 0 08a .= . 

  

Fig. 4. Comparison between the responses of the clamped-clamped microbeam obtained by the first order of the new method and the 

numerical method for nondimensional vibration amplitudes of: (a) 0 0 04a .=  (b) 0 0 06a .=  
(c) 0 0 08a .= .

 

 

Fig. 5. Variation of the frequency ratio, 0Ω ω , versus time for various values of the microbeam structural damping, SC .  

  

 

 

Fig. 6. Variation of the frequency ratio, 0Ω ω , versus time for various values of the microbeam material length scale parameter, 

l . 

 

Fig. 5. Variation of the frequency ratio, 0Ω ω , versus time for various values of the microbeam structural damping, SC .

Fig. 6. Variation of the frequency ratio, 0Ω ω , versus time for various values of the microbeam material length scale parameter, l .
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frequency ratio, 0Ω ω ,  increases. Moreover, the effect of the 
microbeam material length scale parameter on the frequency 
ratio is very considerable at the larger vibration amplitudes.

5. CONCLUSION
In this paper, strongly nonlinear free vibration behavior 

of a microbeam considering the structural damping effect 
has been studied. The effect of mid-plane stretching of the 
microbeam on its nonlinear vibrational behavior is considered 
on the basis of modified couple stress theory. Because of the 
large coefficient of the nonlinear term and due to existence 
of the damping effect, none of the traditional perturbation 
methods leads to a valid solution. Also, there are many 
difficulties encountered in the application of the homotopy 
techniques when the damping effect is taken in to account 
in the strongly nonlinear damped systems. To overcome 
these limitations, a new analytical approach is presented 
for solving the strongly nonlinear damped system. This 
new method is based on the classical perturbation methods 
and the fundamentals of the Fourier expansion with an 
embedding nondimensional parameter. To apply the method, 
it is assumed that the nonlinear frequency is time dependent. 
Despite the classical perturbation methods, the new approach 
does not depend upon the assumption of small parameter 
and it is applicable to a damped system for a wide range of 
vibration amplitudes.

The comparison between the time responses of the 
system obtained by the first order approximate solution of 
the new method and the numerical technique demonstrates 
the high accuracy of the new method. Moreover, in order 
to demonstrate the capability of the method, the results are 
also compared with those obtained by the other recently 
introduced methods, e.g. HPM and VIM, as well as the 
numerical method. Finally, it is worth stating that the 
presented approach can help handle the situations of high 
nonlinearity occurring in the damped nonlinear systems. 
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