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ABSTRACT: In the present research, vibration behavior is presented for a thermally postbuckled two
side clamped monolayer graphene nanoribbon. The monolayer graphene nanoribbon is modeled as
a nonlocal orthotropic plate strip which contains small scale effects. The formulations are based on
the Kirchhoff’s plate theory, and von Karman-type nonlinearity is considered in strain-displacement
relations. The thermal effects are also included and the material properties are assumed to be
temperature-dependent. The initial deflection caused by thermal postbuckling and internal loads are

taken into account. A coupled system of equations is derived and a new semi analytical solution is  Keywords:

obtained. The effects of variation of small scale parameter €, to the natural frequencies, deflections  Graphene nanoribbon

and mode shapes of graphene nanoribbon are analyzed and the numerical results are obtained from the  Thermal postbuckling

nonlocal plate model; also, molecular dynamics simulations are used to investigate different properties  Nonlocal plate model

Postbuckled vibration
is calibrated using molecular dynamics simulations. Numerical results are compared with those of  piae strip.

of graphene nanoribbon including both buckling and vibrational behaviors. The small scale coefficient

similar researches. Effects of various parameters on the postbuckled vibration of graphene nanoribbon
in thermal environments such as scale parameter, length and thermal load are presented. Stability and
occurrence probability of internal resonance between vibration modes around a buckled configuration

is investigated.

1. Introduction

Graphene is a 2 Dimensional (2-D) leaf that consists of
carbon atoms in a hexagonal configuration. In a monolayer
graphene sheet, each carbon atom connects to three other
carbons. These bonds are in a single flat plate and all of
them have the equal angles. Graphene structures have
superior properties and they are introduced as one of the
fundamental carbon forms and graphene is the base of many
other configurations such as graphite, carbon nanotubes and
fullerenes [1]; therefore, studying Single Layer Graphene
Sheets (SLGSs) is very important in nanoscale studies
[2].Recently nanoscale structures such as nanobeams,
nanoplates and the strip type of nanoplates that are called
nanoribbons have gained considerable attention from both
the experimental and theoretical researchers [3-7]. This is
because nanostructures possess much superior mechanical,
electrical, electronic, and thermal properties as compared to
the conventional structural materials [8-10].

In nano scale plate problems, solutions due to classical
theories such as Kirchhoff’s plate theory and shear
deformation plate theory usually have remarkable errors
because in these theories, the relation between stress and
strain is point wise and the size effects are not considered
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[11]. In nonlocal elasticity theory, the stress at a reference
point is assumed to be a functional of the strain field at every
point in the body and the effects of scale are considered by a
new quantity called scale parameter [12].

Based on Eringen’s nonlocal elasticity theory, effects of
size are taken into account by employing a scale parameter and
applying it into classical continuum models [11,12]. Pradhan
and Phadikar [13] used the nonlocal differential constitutive
relations of Eringen to reformulation of CLassical Plate
Theory (CLPT) and First-order Shear Deformation Theory
(FSDT) of plates. Nazemnezhad [14] studied shear effect of
Van Der Waals (VDWs) interactions on free vibration of a
Multi-Layer Graphene NanoRibbon (MLGNR) in a cantilever
form by employing nonlocal Timoshenko beam model and
Molecular Dynamics (MD) simulations. He showed that the
quantity of nonlocal parameter is directly related to the number
of MLGNR layers, and its value increases by increasing
the number of Graphene NanoRibbon (GNR) layers. Shi
et al. [15] showed that the natural frequencies of MLGNR
embedded in an elastic matrix are significantly influenced
by nonlocal effects. Varzandian and Ziaee [7] proposed an
analytical method for solution of non-linear free vibration of
thin rectangular nanoplates with various boundary conditions
based on non-local theory using Jacobi elliptic functions.

Nowadays MD simulations are widely used for modeling
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the mechanical and thermal properties of nanoscale materials
[14, 16-18]. Sen et al. [3] combined molecular dynamics and
experimental data to studying the tearing of graphene sheets
from adhesive substrates. Their research was also including
the observation of the formation of tapered graphene
nanoribbons. It has shown that tearing of graphene sheets
leads to tapered nanoribbons by means of experimental
studies and atomistic simulations [19]. Scarpa et al. [4] used
an equivalent atomistic continuum Finite Element (FE) model
and a molecular mechanics model based on the Universal
Force Field (UFF) potential to simulation of the mechanical
vibration, natural frequencies and acoustic wave dispersion
characteristics of graphene nanoribbons.

Thermal effect has one of the most important roles on
the vibration behaviors of structures in macro and also nano
scales such as nanotubes and nanoplates. If the temperature
of the plate is raised or lowered it expands or contracts,
respectively. Within a certain temperature change, such
expansion or contraction, for most structural materials, is
directly proportional to the change in temperature. When a
free plate made of homogeneous isotropic material is heated
uniformly, there appear normal strains but no thermal stresses
[20]. But for the case of graphene, considering thermal
effects is very important [21]. Researchers showed that the
thermal effects on the mechanical behaviors of the carbon
nanotubes are obvious [22]. Wang et al. [23] showed that the
vibration properties can be tuned by the thermal effects and
the influences on the vibration behaviors are usually different
for different modes. Na and Kim [24] investigated three-
dimensional thermal buckling and postbuckling analyses of
Functionally Graded (FG) materials subjected to uniform
or non-uniform temperature rise for fully clamped plates by
using finite element method. Nonlinear vibration behavior
of a simply supported, single and bilayer graphene sheet in
thermal environments is analyzed by Shen et al. [25,26].

Investigation of vibration around a buckled configuration
at large scale is reported in some researches. Yamaki and
Chiba [27] proposed theoretical analyses for nonlinear
vibrations of a clamped rectangular plate with the effects
of both initial deflection and initial edge displacement.
The influence of initial deflections are also investigated
for analysis of large deflection orthotropic plate under
combined biaxial compression/tension and lateral pressure
loads, considering the overall (grillage) buckling collapse
mode [28]. Nayfeh and Emam [29] introduced an exact
solution for stability and postbuckling configurations of
beams with various boundary conditions. They showed that
many internal resonances might be activated among the
vibration modes around the same as well as different buckled
configurations. In nano scale, there are many researches
about buckling and vibrations separately and few of them are
about vibration around a buckled configuration. Refaeinejad
et al [30] used a nonlocal higher order shear deformation
beam theory to present an analytical solution for bending,
buckling and vibration of FG nanobeams. An isogeometric
vibration analysis of small-scale Timoshenko beams based
on a novel size-dependent theory is investigated by taking
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the nonlocal and strain gradient effects into account [31].
Nonlinear resonant behavior of microbeams over the buckled
state is investigated by employing Hamilton’s principle along
with the modified couple stress theory [32]. In their research,
the Galerkin scheme is used to discretize the nonlinear
partial differential equation of motion into a set of ordinary
differential equations. These sets of equations are solved
numerically employing the pseudo-arclength continuation
technique.

There are a large number of papers dealing with the
analysis of buckling, postbuckling and vibration problems;
however, to the authors’ knowledge, there are few solutions
for vibration analysis of buckled beams and buckled plates
especially those due to thermal effects. Also, investigation
of thermally buckled beam and plate vibration at large scale
is noteworthy in some researches but is less seen for small
scale such as nanobeams and nanoplates. So inquiries about
dynamic behavior of nanoplates in various types and cases
around a thermally buckled state are still open for research.

In the present research, a nonlocal plate strip model
to study the vibration behavior of thermally postbuckled
monolayer GNR is proposed. The governing equations are
based on classical thin plate theory with a von Karman-
type of nonlinearity and containing small scale effects. The
thermal effects are also included and the material properties
are assumed to be orthotropic and temperature-dependent.
The stability analysis around the buckled configurations is
considered. The effects of variation of small scale parameter

e,a to the natural frequencies, deflections and mode shapes
of GNR are analyzed, and the numerical results are obtained
from the nonlocal plate model and some molecular dynamics
simulations. The numerical illustrations show linear vibration
response of Single Layer Graphene NanoRibbons (SLGNRs)
under two side clamped and different sets of thermal,
environmental and dimensional conditions.

It is also valuable to say that this research is useful for
further investigating and analyzing the complex and non-
linear dynamics of postbuckled GNR in presence of internal
resonance.

2. Theoretical Formulation
2.1. Deriving the primary equations of motion

A plate strip with length a and the Cartesian coordinate
are considered for modeling the nanoribbon; also, the origin
of the coordinate system is located in the middle of the strip
as shown in Fig. 1.

Based on Eringen’s [11,12] nonlocal elasticity theory,
size effects are taken into account by the integration of a
scale parameter into classical continuum models. In nonlocal
elasticity theory, the stress at a reference is assumed to be a
functional of the strain field point in the body. According to
nonlocal elasticity theory, the nonlocal constitutive behavior
of'a Hookean solid is represented by the following differential
equation [12]:

(1-V)o" =o', p=ea )
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clamped

al2
Fig. 1. Geometry of the nanoribbon

Here p is the nonlocal parameter, o' is the local stress

tensor and o is the nonlocal stress tensor. Also V* is
Laplacian operator in 2D Cartesian coordinate system.

Let U, W be components of the displacement vector of
points in the middle surface of the plate occurring in the x
and z directions, respectively. The displacement field for a
postbuckled rectangular nanoplate is defined as following:

U=u+u0—26(w+w0)/8x, W=w+w, )

The capital letters represent the total displacements, small
letters with the zero subscript introduces the displacement
components of middle surface for postbuckled state
(static problem) and small letters without subscript are for
displacement components due to vibration.

Based on von Karman-type nonlinearity, the nonlinear
strain components in the plate middle surface in postbuckled
state are:

&% =0ul dx+0u, | x+1/2(ow/ x+ow, / ox)';

3
]/By:(?(v+v0)/8x ®

0 .
5W=O,

The thermal forces N’ and moments M” caused by
elevated temperature are defined by [25]:

fo M\:( hi2 Axx(T)
N, M= 4, (0.2)e )
NI M| LA ()
And
4.0 |E, E, E | ¥ @
— — — (04
A (T)|=-E, E, E,|s ¢ { } )
4 _ = _ a,(T)
A\;(T) 31 32 33 2¢s —2cs ’

In which }_77,, are the transformed elastic constants, defined
by [25]:

E, c' 2¢’s? st 4c’s’

E,| |s* '+t s —4c%s* [ E,

E,| | s 2¢’s? c' 4c’s’ E,

E.|l | s o'=cs —cs —ZCs(c2 —Sz) E, ©
E,, s’ c’s—cs® —c's ZCS(C2 —sz) | E,,

E,| |’s° -2t s (cz —sz)2 |

where ¢=cos#, s=sin@ and E is the skew angle
with respect to the plate x axis. Also, it is assumed that the

effective Young’s moduli E; are temperature-dependent.

When @ =0, the type of graphene sheet is called armchair
and for ¢ = 90" its type is called zigzag.

The complete derivation of motion equations for 2D
plates is accessible in the reference books [20,33]. For the
plate strip case in which all derivatives with respect to y are
equal to zero, by exerting material constants of graphene and
nonlocal effects, the final equations of motion are simplified
as following:
x-direction:

ou  ou, 18(6w awoj2
B\ —S5+—+=—|—+—| -
Oox ox 20x\ ox Ox

ONT o o’u 2
SR e S | A
o [ H 8x2][ 0 aﬁ}
z-direction:
6“_w+64w0 +62Mx7; 3
"ot axt ox?
*uow O'W
5 0(?5‘—&2 ] ®
(- &)
Ox? 4 2
1, % +P+N 9 VZ
ox“ ot o oox

where P is the lateral load and 7,7, are mass moment of
inertias and defined as:

hi2

(1,.1,)= [ pl1,2* )z ©)

—h/2

2.2. Postbuckling equations

Using the linearized buckling analysis, only the initial
elastic buckling of nanoplates and the critical forces and
stresses can be found [20]. By considering the postbuckling
analysis, a different behavior of nanoplate is revealed. The
equilibrium configuration is divided into stable and unstable
states and the critical points are observed which denoted the
borders of two mentioned regions.

For mathematical analysis, a relation between
compressive axial forces due to thermal loads and deflection
must be calculated. This connection is usually in the form of
parabolic function for a rectangular nanoplate and changes
with variation of modes. Substituting time dependent terms
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in primary equations of motion equal to zero and eliminating
lateral load P yields:
x-direction:

Qu, 10(ow )| oN"
B oy 2 L e g 1
{8}62 28x( 8xJ} ox (10)

z-direction:

4 2 T
DH(E? WOJ"‘a M, _

ox* Ox?

11)
o *w, (
1_ 2 ¥ NO 0

( H axzj( o ]

But from the equation of motion in x-direction and by

considering /6y=0, o/6r=0 it is observed that on’ /ax=0
Or N' =K =cte ; SO:

D, e[ 2 O (12)
ox ox ox

And by considering plate strip case (6/dy =0) yields

N
Nx(l_ll'lz axzxx :Bllggx_'—cllkxx_Nn (13)

Then by supposing material properties reported in

reference [25], the axial load n° is:

2
N =g, | Qo 1OM ) (14)
ox 2\ ox
Hence, substituting Eq. (14) into Eq. (12) and
simplification yields:
D o*w, : %azwo P %64% 3
oaxt "ox ox? "ox oxt
2 2 4 2
13116_”2/0(%} wLyep O (%j . (15)
2 ox ox 2 ox ox
o*w, o*w,
T o 2NT o _0
wop M MeTaa

Investigating the applications of nanoribbons reveals
that they are extensively used for very sensitive tools and
refined sensors such as nano resonators and mass detectors
that commonly are mounted in two sided fixed (or clamped)
configuration [5, 34-35]; So, the solution of the problem is
reported for this type of boundary condition. In this case, all
boundary conditions are displacement boundary conditions
and thus do not rely on the constitutive relations. The
boundary conditions for a two side clamped plate strip are:

uy(—a/2)=uy(a/2)=0,
wy(—a/2)=w,(a/2)= (16)
ow,(—a/2)/ox=ow,(al2)/ox=0
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where «a is the length of GNR and coordinate center is
placed in the middle (Fig. 1). For seeking an approximate
solution, variational or energy methods are usually used.
Two well-known energy methods are Galerkin and Ritz [33];
Among these two methods, the Galerkin method is more
general, because it doesn’t need any quadratic functional nor
virtual work principle [20]; Moreover, this method can be
applied successfully to diverse types of problems of applied
elasticity including the plate bending problems and so is used
for the rest of the calculations.

One admissible form for satisfying the above boundary
conditions is:

uy(x)= ;u()m cos((2m—1)zx/a),

wy (x) =Y w, cos® (2m—1)zx/ a), 7)
m=l,2,...r:1j

where j is the degree of freedom in both directions.
Galerkin formulation is [33]:

LFN [ui,‘P:V (x)]‘l‘j’ (x)dx=0
,i=1,2,.,N

(18)

Here ¥"(x) are the admissible shape functions, u; are
components of displacement and is the left hand side of
governing equations. Applying the Galerkin method to

Egs. (10) and (15) and [, using Eq. (17) yields the long
formulation system of nonlinear algebraic equations that
reported in Appendix A.

Eq. (Al) is a system of 2/ nonlinear equations with 2/
unknown functions. Solving these equations, the displacement
components are achieved. This system is solved by Newton
method which is highly efficient for the solution of nonlinear
algebraic equations. For getting the final results, initial
guess is set to linear solution of the system equations and by
repetition of the method, final solution is obtained.

2.3. Stability analysis

In this section, the dynamic stability of a buckled
configuration is investigated. For this purpose, a small
dynamic disturbance around the buckled configuration
is considered. After calculations of displacements due
to buckling state, the total components of displacements
and natural frequency of nanoribbon are computable. By
considering postbuckling solution, primary equation of
motion in z-direction is simplified as following:

o or ox
o*w , 07 o*w o*w
D, | S 1= | | S22 |- N - |=0
“[ax‘*] [ #ad )| \aver )T e (19)
*w,
N _NO 0
( xx xx) axz
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Again by considering plate strip case (9/ay =0) yields:

O’N
N —u° X
o T H P
: (20)
B11 %4_%_{_1(@4,%} _N;
ox oOx 2\ ox  Ox

Then using Eq. (14):

6u+1(6wJ2+

~ T4 A 2

NN, =g, & 2] a0 Q1)
| ow, ow o

Ox Ox

But from equation of motion in x-direction and by
differentiating yields:

O°N O’u
XX — I
ox’ ’ axor? (22)
So

%1(@)1
N_-N" =B, ox 2\ ox +

h N %@ 23
ox Ox (23)
, Ou
* axor®
Substituting into Eq. (19) results in:
azw_
o*w , 07 or?
D a5 -
11(a4j ( ﬂaz [, O d(w+w,)
or? ox
Ou Ou,
+_
ox Ox
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R T
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o H o ovar

ou 1(6Wj2 ow, ow
By| —+-|— | +—— |t|
ox 2\ ox Ox Ox 0w,
—>1=0
ox

Ou
)
H o aar

For the case of linear vibration, by using material
properties of amonolayer graphene sheet reported in reference
[25], neglecting the nonlinear terms and after substitution and
simplifications, the following equations are achieved in x and
z-direction:

ou 0w, ow Ow, O*w
Bi\ozt——= ot (=
ox ox~ Ox Ox Ox

0* o’u
- = || I,— |,
[ s

Ow _owy &) ]
Lot ax ot
4
]2(662;2j7
o (25)
ou, 1 aw, Y
o'w , )| B Loy p [70)_ *w
D,| — |+|1- " — 1 1 _|=0
“(5)64) [ H o - ox 2 Ox o
(Lo 2n),)
ox Ox Ox 0w,
,. Ou ox’
H Ly ——=
L Oxot ]

Again applying the Galerkin method to Eq. (25) and

supposing u =u(x)e, w=w(x)e in which @ is the natural
frequency where:

u(x)= ;um cos(ax),
w(x)= ;wm cos’ (ax), (26)

az(Zm—l);z/a, m=12,...

Yields the long formulation system of nonlinear algebraic
equations that reported in Appendix B.

Eq. (B1) is a system of  nonlinear equations with
unknown functions. Solving this system of equations by
Newton method, the displacement components due to
vibration are achieved.

Eq. (B1) also represents an eigenvalue problem for @

. For a stable buckled configuration, @® must be positive
[29], and hence @ is real. To investigate the stability of

the buckled shapes, according to reference [29] letting q:
be a little greater than critical buckling load (for example

q! =1.001q", ) and exploring concerned physical mode
shape, the stable and unstable positions are revealed.

3. Molecular Dynamics Simulation

One of the most famous numerical methods for analysis
of nano structures is the molecular dynamics simulation. This
method is relevant to the interaction between the atoms and
molecules in a large system [36]. Employing this method
is successful if the true and accurate potential function is
selected.

In the present work, all simulations are performed using
the molecular dynamics simulator “Lammps”. Lammps
is a free open source MD simulator which has suitable
features that can be used to model different mechanical and
thermal loading conditions of nanostructures. To modeling
of two sides clamped boundary conditions, four layers of
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carbon atoms should be fixed at two parallel sides of the
graphene sheet [36]. To explain the long-range van der Waals
interaction (Lenard Jones terms), the short-range covalent
C—C interactions and torsion interactions, the Adaptive
Intermolecular Reactive Empirical Bond Order (AIREBO)
potential [37] is accomplished. AIREBO is a potential energy
which is widely used to describe mechanical properties of
carbon-based nanomaterials such as graphene and carbon
nanotubes. For beginning the MD simulation, the nanoribbon
is optimized initially and relaxed to reach the minimum
energy configuration; also, the effective thickness A=0.34
nm is used for analysis. After simulating the boundary
conditions appropriately, the natural frequencies of SLGNR
are calculated at different temperatures. Then, by adapting the
results obtained from theoretical method and MD simulations,
the small scale parameter is achieved at different thermal
environmental conditions. Numerical quantities of e for
some temperatures and chirality conditions are reported in
numerical section.

4. Verification

In this section, first of all, convergence for present
approach is investigated; then, vibration behaviors of a
postbuckled aluminum plate strip subjected to an axial load
and with two clamped edges are analyzed.

To show the rate of convergence for present approach, the
Galerkin results of critical buckling temperature for different
scale parameters and some number of basic functions are
listed in Table 1. The numerical results in Table 1 are obtained
for orthotropic single-layered zigzag graphene nanoribbon. A
fast rate of convergence of the present approach is evident for
all values of scale parameters. Also, more investigation of the
results reveals that 3 terms of basic functions are suited for
using in calculations.

Although in present work only the thermal load is
considered and physical axial load is not presented, but effect

of the thermal load (N7) is comparable with the axial load

(v, Nf) with the aid of Eqgs. (14) and (23). In both cases,
these loads become apparent only in the in-plane load term
of motion equation. Material properties used in verification
process are represented in Table 2. Results are displayed in
Table 3 and show that there is close agreement between the
results of the present approach (for 3 terms of basic functions
used for calculation) and those of separation of variables
method [38].

For the rest of the calculations, a zigzag single layer

Table 2. Material properties of aluminum (Alloy 1100-H14,
99% A1) plate strip [38]

Properties Value

Young’s modulus (GPa) 70

Poisson’s ratio 0.346
2710

Density (kgm®)

Table 3. First five frequencies of Al plate strip (rad/s)

Ref.[38] Present
VN 2761.706 2761.177
A, 10162.422 10161.978
Ay 21560.441 21560.064
A 36742.969 36742.278
A 55862.672 55862.245

ui

graphene nanoribbon with temperature dependent material
properties is investigated. The numerical quantities of
material properties are deduced from reference [25]. For
further inspection of the method, the relation between the
natural frequency and the scale coefficient is plotted in Fig.
2 for vibration around the first buckled configuration and
compared to exact solution method suggested by reference
[29]. Again 3 terms of basic functions are used for calculation.

Verification studies for MD simulations involving both
buckling and vibrational studies are displayed in Fig. 3 and
Table 4.

0.044

0.042

0.04
0.038
0.036

0.034

Exact Solution

Natural frequency (THz)

00321 ___ Present

0.03

0 0.5 1 1.5 2

e,a (nm)
Fig. 2. Relation between the natural frequency and the scale
coefficient with the high temperatures for mode I and T =700 K.

Table 1. Convergence study for the Galerkin method.

Scale Number of basic functions used for calculation of critical
parameter buckling temperature

(eoa) 1 2 3 4 5
0.0 395.21 394.37 393.42 393.42 393.42
0.5 383.54 382.63 381.09 381.09 381.09
1.0 366.62 364.93 363.05 363.05 363.05
1.5 349.08 347.64 346.21 346.21 346.21
2.0 333.02 33143 330.07 330.07 330.07
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Table 4. Resonant frequencies of clamped zigzag single-layered graphene sheets.

MD (THz) MD (THz) Side length of square
Present study reference [36] SLGS (nm)
0.1147461 0.1146223 10
0.0519233 0.0517078 15
0.0311567 0.0306219 20
0.0180037 0.0179975 25
0.0134090 0.0132953 30
0.0104284 0.0104182 35
0.0081272 0.0081090 40
0.0069476 0.0067681 45
0.0058614 0.0056362 50
1.4 1600 —c0a=2
£ 1.2 1 X ——Ref.[5] 1400 -
§ 11 X Present 1200 |
c
= i ~ 1000
'§ 0.8 §,
° | 800 1
z ° X =
= | 600
X 0.4 X
@ 02 X 400 1
200 1
0 ‘ ‘ ‘
0 5 10 15 20 0 ‘ ‘ ‘
a(nm) 20 40 ah 60 80 100

Fig. 3. Fundamental critical buckling load per width ratio of a
Zigzag Graphene NanoRibbon (ZGNR) versus length for the
fixed—fixed boundary conditions.

5. Numerical Results
5.1. Postbuckling results

After estimating the accuracy of the method, the numerical
results are presented. The following material properties are
used for the calculations:

E=1TPa, v=03, p=2250kg/m’, h=0.34nm, a=10nm

For determination of the critical temperature, the thermal
buckling analysis is carried out. From Eq. (15), the thermal

force NT was computed explicitly with respect to the
function of . Considering linear part of Eq. (15) and the
related boundary conditions, the critical temperatures can
be obtained by differentiating this equation and solving it
numerically (Newton method). Fig. 4 gives the variation
of the critical temperature gradient of clamped plate strip

Fig. 4. Critical temperature gradient with respect to a/h under
uniform temperature rise.

under uniform temperature rise. Results show that critical
temperature has reverse relation with scale parameter and as
aresult of employing the nonlocal theory, critical temperature
is decreased.

After confirming the accuracy of the MD simulation in
previous section, numerical studies are employed and results
for postbuckling region are shown in the following:

The bifurcation diagram for the first three buckled
configurations of a two side clamped GNR is plotted in
Fig. 5, as the temperature is increased. As the thermal load
exceeds the first critical buckling temperature, the nanoribbon
loses stability and buckles. If the thermal load is increased
beyond the second critical buckling temperature, nanoribbon
has three positions: the one straight configuration and two
buckled configurations. The stability of these positions is

Table S. Critical buckling temperature of clamped zigzag single-layered graphene nanoribbon (K).

MD (K)

Nonlocal continuum model (K)

Present (The values of correspondent Side length of
) X SLGNR (nm)

study epa are in parenthesis.)

611.24 611.57 (1.934) 5

319.67 320.04 (0.598) 8

233.14 233.69 (0.201) 11

206.21 205.87 (0.147) 14

190.26 189.74 (0.101) 17
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'max x10.
=STUN
o o o

N

o

f
)

200 400 600 00

T(K)

Fig. 5. Bifurcation diagram of the system with temperature rise.

determined in the next section.

Fig. 6 shows the comparison between the bifurcation
diagrams of the system obtained via the nonlocal and the
classical theories. It is seen that as a result of taking into
account the scale parameter (i.e. employing the nonlocal
theory), the beginning of bifurcation is transferred to a lower
temperature and it shows the importance of employing the
nonlocal theory in the modeling of nanoribbons.

== Nonlocal Theory
e Classical Theory

100

T(K)
Fig. 6. Comparison between the bifurcation diagrams of the

system obtained via nonlocal and classical theories for a zigzag
GNR.

The numerical results for postbuckled zigzag GNR are
given for different modes and nonlocal parameter (Fig. 7).
In this figure the non-dimensional deflection of postbuckled
clamped plates are depicted. It can be easily seen that
increasing nonlocal parameter increases the non-dimensional
deflection at the different points of the plate strip.

Post Buckling Mode |

......

......

Fig. 7. Effects of nonlocal parameter on different mode shapes of postbuckled GNR, solid lines for ;=0 , dashed lines for y=1

Post Buckling Mode I

5.2. Stability and vibration results

After representing the accuracy of the formulation, a
parametric study of the frequency for the linear vibration of
thermally postbuckled monolayer GNR is presented.

For determining the stability, the method suggested
in section 2.3 is used. Investigations showed that for the
first buckled configuration, all of the positive roots of @
correspond to physical mode shapes. As a result, the first
buckled configuration is a stable equilibrium position.
However, further examinations showed that the upper modes
of buckled configurations from mode II to V have unstable
equilibrium position.

In continuation, a parametric study is carried out to show
the effects of the nonlocal parameter in conjunction with
the geometrical and material parameters on the vibration
characteristics of the monolayer GNR.

In Fig. 8 the effects of scale parameter for instance on the
first mode of plate vibration with increasing temperature is
shown and indicates that without considering nonlocal effects,
critical points and the solution are completely different.

30

Nonlocal Theory
:Classical Theory

25 1

20

15

10

Natural frequency x0.01

600 800
T(K)

0 200 400 1000
Fig. 8. Effects of nonlocal scale parameter in the evolution of
natural frequency with increasing temperature before and after

buckling of ZGNR for mode I.

In Figs. 9 to 11, variation of the vibration frequencies
around the first three buckled configuration with the
temperature is presented. Solid lines indicate odd vibration
modes and dotted lines indicate even ones. This figure

Post Buckling Mode I11

......

and

dotted lines for ,=2.
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Fig. 9. Variation of the natural frequencies of vibration around
the 1* buckled configuration of a two side clamped ZGNR
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Fig. 10. Variation of the natural frequencies of vibration around
the 2™ buckled configuration of a two side clamped ZGNR
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Fig. 11. Variation of the natural frequencies of vibration around
the 3" buckled configuration of a two side clamped ZGNR

shows that internal resonances, such as one-to-one, two-to-
one, and three-to-one, might be activated between vibration
modes around the buckled configuration. For example, a
one-to-one internal resonance might be activated at 7=639K,
978K around mode I, IIT respectively and also two-to-one at

T=456K around mode II. Also, further inspection indicates
that a three-to-one internal resonance might be activated at
T=437K around mode II and also two-to-one at 7=779K
around mode III.

The vibration modes around the first buckling mode of
plate are shown in Fig. 12.

MD simulation results for frequency calculations are
shown in Table 6 and Fig. 13.

3
——c0a=0.0
5 —f—c0a=0.5
—t—c0a=1.0

—=ec0a=1.5
X MD simulation

N

Fundamental
o Freque!lcy(GHz) o
- 4]

)]

o

0 5 10 15 20
a(nm)
Fig. 13. Fundamental frequencies of clamped zigzag single-
layered graphene nanoribbon

5.3. Chirality effects investigation

Fig. 14 shows the effects of temperature change on
the vibration amplitude of the two types of postbuckled
monolayer GNR for a/h=50. It can be seen that under the
same thermal environmental condition and for the same
aspect ratio, the armchair sheets will have lower natural

35

armchair GNR
30 1. e Zigzag GNR
25 TN
20
15
10

Natural Frequency (THz)
x0.01

500 1000
T(K)
Fig. 14. Comparison between linear frequencies aroused from
vibration around third buckling mode of an armchair and zigzag
GNR under the same thermal environmental and dimensional
condition (a/h=50)

A

Vibration Model

Vibration Mode I

R VARV

Vibration Mode IlI

Fig. 12. Three first modes of vibration around the postbuckled state.
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Table 6. Resonant frequencies of clamped zigzag single-layered graphene nanoribbon.

MD (GHz) Nonlocal continuum model (GHz) Side length of

Present study  (The values of correspondent ega are in parenthesis.) SLGNR (nm)
2.2239 2.2241 (1.934) 5
1.3142 1.3148 (0.598) 8
0.7438 0.7440 (0.201) 11
0.3912 0.3905 (0.147) 14
0.2565 0.2552 (0.101) 17

frequencies than those of zigzag sheets. This difference is
due to different chirality and heteromorphic structure of two
mentioned sheets.

More investigations on chirality effect are shown in
Figs. 15 and 16. According to these figures, critical buckling
temperature is negligibly influenced by chirality for a given
graphene nanoribbon; also, results show that the chirality has
an important influence on the natural frequencies at higher
modes of vibration.

700

600 { 4
500 A ® armchair

A zigzag

400 |

300 | J )

200 a

100 | |
0 ‘

0 50 100 150
ah

Fig. 15. Comparison between critical buckling temperatures
for two cases of zigzag and armchair GNR
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— —e—zigzag GNR, mode 4
g 0.2 1 | —m—armchair GNR, mode 4
® 01 | | —*—Zgzag GNR, mode 1
S o

—¢—armchair GNR, mode 1
0 ‘

1 2
Non-local Parameter (nm)

Fig. 16. Natural frequency of single-layered GNR with clamped
edge and different chirality

6. Conclusion

In this research, vibration response of postbuckled
monolayer graphene nanoribbon has been investigated on the
basis of a nonlocal plate strip model and MD simulation for
two side clamped boundary condition. The major difference
between present model and previous ones in literature is
that the present solution includes the deflection caused by
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thermal postbuckling. Solution of the problem is posed into
two phases, one is the thermally equilibrium phase (static
problem) and another one is the small amplitude vibrations
around the static response. In thermal postbuckling analysis,
the bifurcation-type buckling behavior is observed and a
thermal postbuckling equilibrium path is obtained. The
complete formulation of nonlinear vibration of postbuckled
GNR is presented and by neglecting the nonlinear terms,
solution of linear vibration is introduced by solving a
system of nonlinear algebraic equations. A stability analysis
is also considered using an Eigen value problem in terms
of frequency. By using MD simulations, some calibrated
small scale coefficients are obtained for both vibration and
postbuckling analysis. The effect of chirality on the buckling
temperature, modes and vibration behavior of nanoribbon
under similar thermal environmental and dimensional
condition by considering two types of zigzag and armchair
GNR is analyzed. The numerical results show that although
the critical buckling temperature is negligibly influenced
by chirality, its effect on vibration behavior is remarkable.
Also results show that the armchair sheets will have lower
natural frequencies than those of zigzag sheets when the two
sheets have the same dimensional properties and thermal
environmental condition; also, this effect is highlighted more
on higher modes. The stability analysis reveals that the first
buckling mode is a stable equilibrium position; whereas,
buckled configurations beyond the first bucking mode are
found to be unstable equilibrium positions. It also reveals
that many internal resonances might be activated among
vibration modes around the same buckled configuration for
the case of fixed-fixed plate strip. Effect of scale parameter
on the different quantities such as natural frequency, critical
temperature and mode shapes is investigated. It is seen that
as a result of employing the nonlocal theory, the beginning of
bifurcation is transferred to a lower temperature; consequently,
taking into account the length scale parameter decreases the
flexural stiffness of the system and hence precipitates the
onset of the bifurcation. Also, increasing nonlocal parameter
increases the nondimensional deflection of the plate strip.
By increasing temperature, the natural frequencies have
two opposing behaviors; decreasing before buckling state
and increasing after buckling state. Also considering scale
parameter has two different effects, by increasing temperature
before buckling, considering scale parameter decreases the
natural frequency whereas in postbuckled state, it increases
the natural frequency. The results shows that scale parameter
and temperature change have a significant role on linear
vibration of postbuckled nanostructures. These results also
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open the door for further investigations into the complex and
non-linear dynamics of postbuckled GNR.

Appendix A: Postbuckling equation
The algebraic equation arising from the Galerkin
integration (Eq. (18)) for the postbuckling case is:

60az m’u,, — 642 mwOMZnWO" - 60az mu,,, + 642 mw,, + ISaZ u,,, —162 WOMZWOH =0,

-1 15m207r5/fBHZ’:n5wgm +144007° 1° B, l"’z mzwwz:zzw 96007[5/12B112m wo +

360071'5,uzBHZr:;w0m2nw0” +384071'5,u2b;n”2m OmZn w,, —7207° 4* B, Zm wo +

3607°a’B, ]zmmww zﬂnww - 120773a2BHZ mw —115207°a* i’ N, ZmZn +38407°a’ > N, Zm -

76807r3a2/12N;Zm22n2 +153607r3a2,u2N£Zm +2407r3azBHZm'WMZn w,, —4807°a’ HZm we - (A1)
64m BHZM +607° u BHZ MZWO” —480m4NZ;ZmZn—4807r3a2/12N; +480m4N':Zm+

76807r3azDHZm Zn —153607°a DHZmZ n2p+115207r3a2DHZmZn 38407°a’D, Zm +

157°a B,,Z MZ w,, —120ma* N, +4807°a’D,, - 40967’ ay’B, Y m'u,, +81927°a’ B,y m'u,, —

61447°au’ B,y m'u,, +20487°ap’ B, Y mu,, —2567ay’ B, Zuﬂ -256m’B,, Y m'u,, +m2567ra331 D mu,, =0

Appendix B: Vibration equation

The algebraic equation arising from the Galerkin
integration (Eq. (18)) for the vibration case is:

1207°aB,, Y \m'u, —1807°aB, Zm u, +15m’l,0 Zu +907° aBHZmu +157%al ,piP o Zu -
30m310w2imum —157r3ab’”2um +327° BHZWDWZW” —2567°B,, mZanZquZW +
3847r3BHZWmWMan" —192;-‘3112m2w0,:zw:—120;:%:10#20) 2y mlu, +1807’al 1’ Y m*u,, —

0 'al 0 Y, - - "’ '"
~1927m° 1,0 Y mYy u, D w,, —607’a’K Y w, +24007°D, > mw, 2407’ Ku* Y w, +76807° D, > m'w, —
192007r5DllZI:n4w,: + 19!7200n50112m3wmm— 96007°D,, zmzﬁvm +96m’ [, 0’ Zu:z w,, m
48072'3a210,u:a)22m3wm +7207z3a2n}”yza)22mzwm 736(;17r3a21()y2a)22mwm o
43527r3a10,uza)zim2nz pYu, Y w, +m6528773a10,u2w22mumZrlznww =32647al y’ Yy my u, Yy w,, +

S44z’al 1’ @Y u, Y w,, —2407°D, Y w, + 607 a I,y Yy w, 4807 a’ [’ Y m'w, +

(B1)

7207’ Lo’ ) m'w, —90m' [0’ Y mw, —3607’a’ L,y mw, —192007° Ky’ Y m'w, +192007°Ku’ Y m'w, —
96007[5Ky22m2wm +24007ISK,uZmem +76807r5K,u22m5wm +607z3a212w22wm +4807r3a2KZm3wm -
7207°a’K Y m*w, +3607°a’K Y mw, +45ma’[,0 Y w, +2407° L’ 0> Y w, —192007° L 1’ Y m*w, +

96007° L, 1 @* Y m'w, —24007° 1,1’ 0* Y mw, = 76807 L’ @* Y m’*w, +192007° L’ w* Y m'*w, =0

Nomenlature . .
J degree of freedom in x and z
) directions
a length of graphene nanoribbon M, moment resultants
JE,./ effective Young s moduli M thermal moment
E, transformed elastic constants N, in-plane stress resultants
1,,1, mass moment of inertias N” thermal force
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P lateral load

u displacement component due to
vibration in x direction

u, displacement of middle surface
for postbuckled state in x direction

U total displacements in x direction

w displacement component due to
vibration in z direction

W, displacement of middle surface
for postbuckled state in z direction

w total displacements in z direction

a, thermal expansion coefficient in x
direction

a, thermal expansion coefficient in y
direction

& nonlinear normal strain
component in the plate middle
surface

H nonlocal parameter

o' local stress tensor

o" nonlocal stress tensor

References

[1] B.L. Dasari, J.M. Nouri, D. Brabazon, S. Naher, Graphene
and derivatives - Synthesis techniques, properties and
their energy applications, Energy, 140 (2017) 766-778.

[2] R. Saito, G. Dresselhaus, M.S. Dresselhaus, physical
Properties of Carbon Nanotubes, Imperial College
Press, 1998.

[3] D. Sen, K.S. Novoselov, P.M. Reis, M.J. Buehler, Tearing
Graphene Sheets From Adhesive Substrates Produces
Tapered Nanoribbons, Small, 6(10) (2010) 1108-1116.

[4] F. Scarpa, R. Chowdhury, e.a. K. Kam, Dynamics of
mechanical waves in periodic graphene nanoribbon
assemblies, Nanoscale Res. Lett., 6(430) (2011).

[5] M. Neek-Amal, F.M. Peeters, Graphene nanoribbons
subjected to axial stress, PHYSICAL REVIEW B,
82(085432) (2010).

[6] Y.T. Beni, Size-dependent analysis of piezoelectric
nanobeams including electro-mechanical coupling,
Mechanics Research Communications, 75 (2016) 67-80.

[7] G.A. Varzandian, S. Ziace, Analytical Solution of Non-
Linear Free Vibration of Thin Rectangular Nano Plates
with Various Boundary Conditions Based on Non-Local
Theory, Amirkabir Journal of Mechanical Engineering,
48(4) (2017) 331-346.

[8]Y. Tang, Y. Liu, D. Zhao, Wave dispersion in viscoelastic
single-walled carbon nanotubes based on the nonlocal
strain gradient Timoshenko beam model, Physica E:
Low-dimensional Systems and Nanostructures, 87
(2017) 301-307.

[9]1 Y. Zhen, L. Zhou, Wave propagation in fluid-conveying
viscoelastic carbon nanotubes under longitudinal
magnetic field with thermal and surface effect via
nonlocal strain gradient theory, Modern Physics Letters
B, 31(8) (2017) 1750069 (16 pages).

[10] Y.T. Beni, Size-dependent electromechanical bending,
buckling, and free vibration analysis of functionally

226

graded piezoelectric nanobeams, journal of intelligent
material systems and structures, 27(16) (2016) 2199-
2215.

[11] A.C. Eringen, Nonlocal Continuum Field Theories,
Springer, New York, 2002.

[12] A.C. Eringen, On differential equations of nonlocal
elasticity and solutions of screw dislocation and surface
waves, J. Appl. Phys., 54 (1983) 4703—4710.

[13] S.C. Pradhan, J.K. Phadikar, Nonlocal elasticity theory
for vibration of nanoplates, J. Sound Vib., 325 (2009)
206-223.

[14] R. Nazemnezhad, Nonlocal Timoshenko beam model for
considering shear effect of van der Waals interactions
on free vibration of multilayer graphene nanoribbons,
Composite Structures, 133 (2015) 522-528.

[15] J.-X.S. et.al., Nonlocal vibration of embedded double-
layer graphene nanoribbons in in-phase and anti-phase
modes, Physica E., 44 (2012) 1136-1141.

[16] T. Ragab, J. McDonald, C. Basaran, Aspect ratio effect on
shear modulus and ultimate shear strength of graphene
nanoribbons, Diamond & Related Materials, 74 (2017)
9-15.

[17] K. Cai, L. Liu, J. Shi, Q.H. Qin, Winding a nanotube
from black phosphorus nanoribbon onto a CNT at low
temperature: A molecular dynamics study, Materials
Design, 121 (2017) 406-413.

[18] M. Lopez-Suarez, G. Abadal, L. Gammaitoni, R. Rurali,
Noise energy harvesting in buckled BN nanoribbons
from molecular dynamics, Nano Energy, 15 (2015)
329-334.

[19] A. Farajpour, M. Danesh, M. Mohammadi, Buckling
analysis of variable thickness nanoplates using nonlocal
continuum mechanics, Physica E., 44 (2011) 719-727.

[20] E. Ventsel, T. Krauthammer, Thin Plates and Shells:
Theory, Analysis and Applications, Marcell Dekker Inc.,
2001.

[21] S.K. Georgantzinos, G.I. Giannopoulos, N.K.
Anifantis, Thermoelastic Analysis of Graphene-Based
Nanomaterials, Journal of Computations & Modelling,
7(1) (2017) 1-14.

[22] S. Narendar, S. Gopalakrishnan, Temperature effects on
wave propagation in nanoplates, Composites: Part B, 43
(2012) 1275-1281.

[23] Y.Z. Wang, EM. Li, K. Kishimoto, Thermal effects on
vibration properties of double-layered nanoplates at
small scales, Composites: Part B, 42(5) (2011) 1311-
1317.

[24]K.-S. Na, J.-H. Kim, Thermal postbuckling investigations
of functionally graded plates using 3-D finite element
method, Finite Elements in Analysis and Design, 42
(2006) 749-756.

[25] L. Shen, H.S. Shen, C.L. Zhang, Nonlocal plate model
for nonlinear vibration of single layer graphene sheets in
thermal environments, Comput. Mater. Sci., 48 (2010)
680-685.

[26] H.-S. Shen, Y.-M. Xu, C.-L. Zhang, Prediction of
nonlinear vibration of bilayer graphene sheets in thermal



G.A. Varzandian et al., Amirkabir J. Mech. Eng., 4(2) (2020) 215-228, DOI: 10.22060/ajme.2019.16038.5799

environments via molecular dynamics simulations and
nonlocal elasticity, Comput. Methods Appl. Mech.
Engrg., 267 (2013) 458-470.

[27] N. Yamaki, M. Chiba, Nonlinear vibrations of a clamped
rectangular plate with initial deflection and initial edge
displacement part I: theory, Thin-Walled Struct., 1
(1983) 3-29.

[28] J.K. Paik, K. Anil, T. amballi, B.J. Kim, Large deflection
orthotropic plate approach to develop ultimate strength
formulations for stiffened panels under combined biaxial
compression/tension and lateral pressure, Thin-Walled
Structures, 39 (2001) 215-246.

[29] A.H. Nayfeh, S.A. Emam, Exact solution and stability
of postbuckling configurations of beams, Nonlinear
Dynamics, 54 (2008) 395-408.

[30] V. Refacinejad, O. Rahmani, S.A.H. Hosseini, An
analytical solution for bending, buckling, and free
vibration of FG nanobeam lying on Winkler-Pasternak
elastic foundation using different nonlocal higher order
shear deformation beam theories, Scientia Iranica F,
24(3) (2017) 1635-1653.

[31] A. Norouzzadeh, R. Ansari, H. Rouhi, Isogeometric
vibration analysis of small-scale Timoshenko beams

based on the most comprehensive size-dependent theory,
Scientia Iranica F, 25(3) (2018) 1864-1878.

[32] H. Farokhi, H. Mergen, G.M. Amabili, Nonlinear
resonant behavior of microbeams over the buckled state,
Appl. Phys. A., 113 (2013) 297-307.

[33] J.N. Reddy, Theory and Analysis of Elastic plates and
Shels: 2nd Edition, Taylor & Francis Group, 2007.

[34] M.T. etal., Graphene and graphite nanoribbons:
Morphology, properties, synthesis, defects and
applications, nano today, 5 (2010) 351-372.

[35] M.O. Valappil, V.K. Pillai, S. Alwarappan, Spotlighting
graphene quantum dots and beyond: Synthesis,
properties and sensing applications, Applied Materials
Today, 9 (2017) 350-371.

[36] R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model
for free vibrations of single-layered graphene sheets,
Physics Letters A, 375 (2010) 53-62.

[37]1S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential
for hydrocarbons with intermolecular interactions,
Journal of Chemical Physics, 112 (2000) 6472—6486.

[38] T.P. Chang, J.Y. Liang, Vibration of Postbuckled
Delaminated Beam-Plates, Int .J. Solids Structures,
35(12) (1998) 1199-1217.

227






	Blank Page - EN.pdf
	_GoBack




