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ABSTRACT: This paper presents a new hierarchical robust algorithm to solve the position tracking 
problem, in presence of exogenous disturbances and modeling uncertainties, of a quadrotor helicopter. 
The suggested controller includes a nonlinear H∞

 algorithm to track the reference trajectory in the outer 
loop and a nonlinear H∞  controller to stabilize the rotational movements in the inner loop. The resultant 
controller consists of three important parts to regulate tracking errors for translational and rotational 
motions, maintain robust performance confronting random disturbances and modeling uncertainties and 
reject the sustained disturbances from the system to vanish the steady-state errors. Analytical study on 
the stability of the cascade system is mentioned to verify the compatibility of two controllers considering 
coupling terms. Numerical performance analysis is accomplished using Monte-Carlo simulation. 
Statistical results obtained from 1000 simulations considering environmental disturbances and modeling 
uncertainties depict less than 5 cm for position tracking error and less than 2 degrees for attitude tracking 
error in steady state performance. The closed-loop performance of the controller is also compared with 
two previous algorithms by determining two numerical indexes for state tracking performance and 
control efforts, respectively. Simulation results of the suggested control algorithm depict a significant 
reduction in both indexes for a similar mission. 
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1- Introduction
Unmanned aerial vehicles, especially multirotors, have 

attracted a great interest in the automatic control area in last 
few decades due to their special advantages such as simple 
structure, vertical take-off and landing, rapid maneuvering 
and precise hovering. These vehicles have been used in tasks 
such as search and rescue, building exploration and security, 
and industrial inspections [1-3]. Although these vehicles 
have a high capability in aerial missions, their stabilization 
and control is challenging. The unstable and under-actuated 
nature of these systems makes the controller design procedure 
more complicated. Furthermore, quadrotors usually operate 
in presence of environmental disturbances such as wind gusts. 
Thus, quadrotors require not only a fast response hardware 
system but also a high performance control algorithm capable 
of confronting exogenous disturbing effects and uncertainties 
[4,5].

Control system design for quadrotors, has been 
highlighted in a number of papers and researchers have tried 
to satisfy the specifications by utilizing various techniques. 
In practice, especially in civil applications, low-cost 
equipment has been used for hardware, therefore it is crucial 
to compensate the consequent weaknesses by designing 
a simple structure algorithm with low computational 
burden for practical implementation. This controller has 
to consider the nonlinearities of the system and guarantees 

the stability of the closed-loop system [6-8]. Another work 
which presented a simple control algorithm to stabilize the 
quadrotor platform was presented in reference [9]. It resulted 
in a simple controller suitable for an embedded use when low 
computational resources are available. Some researchers have 
proposed a set of more complicated sensors to increase the 
reliability of the localization and obstacle avoidance systems. 
For instance, in reference [10] a Disturbance Observer Based 
(DOB) design was proposed that estimated the disturbance 
based on a dynamic model and a sensor suite including 
ultrasonic range finder and InfraRed (IR) sensors. In this 
work, the experimental results for robust controller based 
on this observer represented a good performance in harsh 
environments dangerous for the human to work. To handle 
the model uncertainty and external disturbances, different 
techniques have been used by researchers such as radial 
basis function neural networks adopted in the attitude control 
design and the backstepping technique [11-13]. A method 
for robustness against both environmental disturbance and 
parametric uncertainty was presented by Nicol et al. [14] using 
Cerebellar Model Articulation Controller (CMAC) nonlinear 
approximators for an experimental prototype quadrotor 
helicopter. The method updates adaptive parameters, the 
CMAC weights, as to achieve both adaptation and robustness 
to unknown payloads and disturbances. In a similar work, 
a robust-optimal control was proposed to compensate the 
parameter uncertainty effects and disturbances in reference 
[15]. In another work a robust-optimal framework was 
suggested using neural network to solve the position tracking *Corresponding author’s email: fshirazi@ut.ac.ir

                                  
   Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article                                                  

                                is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information, 
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.



F. Rekabi et al., AUT J. Mech. Eng., 4(2) (2020) 151-168, DOI: ﻿ 10.22060/ajme.2019.15561.5779

152

problem for a quadrotor helicopter [16]. 
In a different way, some researchers used linear and 

nonlinear adaptive approaches to solve the attitude 
stabilization and path following problem for aerial robots 
[17-20]. Moreover, researchers have tried to apply nonlinear 
methods to conftont the complex dynamic behavior of these 
systems and improve the flying performance [21-23]. An 
underactuated NonLinear H∞  (NL H∞ ) controller based on 
the six degrees of freedom dynamic model was designed by 
Raffo et al. [24] to control the helicopter attitude and altitude 
in the inner-loop. The outer-loop control was performed 
using a Model-based Predictive Controller (MPC) to track 
the reference trajectory. The robust performance achieved 
by the proposed control strategy was checked by simulations 
in presence of aerodynamic disturbances, unmodelled 
dynamics, and parametric uncertainties but no theoretical 
proof of stability was presented for the cascade structure. 
Another work presented a method based on the block 
control technique combined with the super twisting control 
algorithm for trajectory tracking of a quadrotor helicopter 
in 2011. The performance and effectiveness of the proposed 
controller were tested in a simulation study taking into 
account external disturbances [25]. In another approach, a 
linear time-invariant controller consisting of a Proportional-
Derivative (PD) controller and a robust compensator was 
used for robust attitude control of uncertain quadrotors. The 
PD controller was designed for the nominal linear system to 
achieve the desired tracking and the robust compensator was 
added to limit the influence of uncertainties. The simplicity 
of the final structure of control scheme made it applicable 
for practical cases with a simple hardware [11, 26-27]. Liu 
et al. [26] proposed a robust hierarchical controller including 
an attitude controller and a position controller. The position 
controller generated the desired reference of the pitch angle 
based on the tracking error of the travel angle, while the 
attitude controller achieved the reference tracking of the pitch 
and elevation angles. It was proven that the tracking errors 
of the three angles can converge to given neighborhoods 
ultimately. In another study by Zhao et al. [28], the control 
system was divided into two loops: the inner-loop for the 
attitude control and the outer-loop for the position. The 
sliding mode control technology was applied in the inner-loop 
to compensate the unmatched nonlinear disturbances, and 
the immersion and invariance approach was chosen for the 
outer-loop to address the parametric uncertainties. Another 
nonlinear adaptive-robust algorithm based on Invariance 
and Immersion algorithm and nonlinear H ∞  framework 
was presented in 2018 for robust trajectory tracking problem 
[19]. Despite the acceptable performance of this scheme in 
compensating random disturbances, this controller was not 
able to remove the errors caused by sustained disturbances. 
Also the nonlinear adaptive framework used for outer-loop 
was sensitive to parametric uncertainties, and the estimation 
and control performance was affected by this issue. Raffo 
et al. [29] in 2010 presented an integral predictive and 
nonlinear robust control strategy to solve the path following 
problem for a quadrotor helicopter. The proposed control 
structure was a hierarchical scheme consisting of a model 
predictive controller to track the reference trajectory together 
with a nonlinear H ∞  controller to stabilize the rotational 
movements capable of rejecting the effects of deterministic 
disturbances.

The previous algorithms suggested to solve the trajectory 
tracking problem have shown some drawbacks in practical 
cases. In linear approaches the final structure for the 
controller is simple enough for hardware implementation 
but this simplicity might lead to increased tracking errors. 
Applying nonlinear approaches can improve the tracking 
performance but in many cases the closed-loop response 
is sensitive to the model parameters and also the external 
disturbances. Utilizing approaches such as MPC or neural 
networks, conclude a complex framework which might 
not be appropriate for hardware implementation. The 
main contribution of this paper is to propose a new robust 
and nonlinear algorithm which consists of a unified stable 
control framework which has low computational burden 
and is simple enough for hardware implementation to solve 
the position tracking and attitude stabilization problem of a 
quadcopter. Considering previous studies on various types 
of algorithms and architectures utilized for this problem, 
it can be concluded that a cascade structure can be used as 
an appropriate architecture to regulate the position tracking 
error and stabilize the attitude dynamics, simultaneously. In 
this architecture, the outer-loop renders the position tracking 
problem, which uses the nonlinear H ∞  algorithm to estimate 
the position tracking error vector and compensate for it 
simultaneously. The inner-loop controller must be capable of 
stabilizing the attitude dynamics and rejecting both stochastic 
and deterministic disturbances. A suitable candidate to justify 
these requirements is the nonlinear H ∞  control method, 
which is combined with an integral action to regulate the 
steady state errors due to sustained disturbances.

 After the presentation of analytical procedure for 
designing the suggested position tracking control framework, 
it is necessary to show the effectiveness and the acceptable 
performance of the proposed algorithm. To achieve this, 
a Monte-Carlo simulation process is proposed based on 
a detailed simulation environment to evaluate the robust 
performance of the closed-loop system, numerically. In 
this procedure, parametric uncertainties and two types of 
disturbances in 1000 simulations are considered. Accordingly, 
this procedure would be able to depict the average performance 
of the system as well as the bounds for the worst situation. 
Although there exist cascade controllers that use nonlinear 
and robust frameworks for position tracking, but they have 
not mentioned any proof for stability of the cascade system. 
In this paper, the proof of stability for cascade structure 
combining two nonlinear H∞  is presented based on existing 
theories for stability analysis of the cascade controllers [30]. 

The remainder of the paper is organized as follows: in 
Section 2, an explanation of the dynamic model is given. 
In Section 3, the development of nonlinear H∞  for the 
translational movements is presented. The nonlinear H∞  
controller for the rotational subsystem is presented in 
Section 4. The stability of the integrated inner and outer-
loop controller is proven in Section 5. Simulation results are 
presented in Section 6. Finally, Section 7 concludes the paper.

2- Dynamic Modeling
In this paper, two reference frames are used to describe 

the position and attitude of the platform. The first one is 
the inertial frame defined as  , and the second one is the 
body fixed frame described as  . The center of   frame is 
attached to the center of mass of the platform and the position 
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vector of this point with respect to   frame is defined as 
( ) ( ) ( ) ( ) 3[ ]T t x t y t z tξ = ∈ . The attitude vector with 

respect to   is defined as ( ) ( ) ( ) ( ) 3[ ]T t t t tη φ θ ψ= ∈
. According to these definitions, the dynamic behavior of the 
quadrotor can be described by Eqs. (1) and (2) as follows: 

 
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where, m  represents the mass of the platform, ( )J η  
denotes the inertial tensor defined in the inertial frame, 
K ξ  is the matrix of aerodynamic drag coefficients and 
belong to 3 3× . ( ),mC η η  denotes the matrix of coefficients 
related to attitude vector and rotational speed needed for 
computing the Coriolis effect and belongs to 3 3× . The force 
vector in the inertial frame is symbolized as ( )F t  and the 
control torque described in inertial frame is denoted by τ
. Transformation matrix from body to the inertial frame is 
denoted by ( )tR η . The gravity acceleration vector in the 
inertial frame is represented by G . The effects of external 
disturbances and modelling uncertainties are defined by 
dξ  and dη  for translational and rotational dynamics. It is 
also assumed that these terms belong to ( )2 0,∞ . These 
equations are mainly taken from references [6,28] and 
the interested reader is referred to them. In this paper, the 
parameters of three matrices ( )J η , K ξ , rK  and the mass 
m , are assumed to be uncertain but the variation boundaries 
are known. In a quadrotor configuration, the actuator system 
includes four independent rotors. Accordingly, the system 
is naturally underactuated and to control the platform 
completely, two states are used as virtual control inputs to 
control the other states. It means that the cascaded structure is 
chosen for handling the rotational and translational dynamics 
simultaneously. In this case, roll and pitch angles are selected 
as virtual control signals to regulate the tracking error of the 
horizontal components of position vectors ( )x t  and ( )y t
. Therefore, it is necessary to introduce a relative equation 
that can relate the desired value of attitude vector to the 
control force obtained from outer-loop controller utilized for 
regulating the position tracking error. The effects of actuator 
system can be described by Eq. (3) as follows: 
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where, if  is the force generated by the thi  component 
of the actuator system. Two parameters l  and c  are the 
moment arm and yaw moment factor which convert the force 
to moment vector. Therefore, ( )F t  in Eq. (1) is defined as 
follows. 
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It can be assumed that ( )F t  includes three independent 
components described as ( ) ( ) ( ) ( )[ ]T

x y zF t f t f t f t= . 
Therefore, the relation between these components and euler 
angles can be written as follows. 
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According to Eq. (5), if three components of the force 
vector are estimated from position controller loop, the desired 
values of roll and pitch angles can be determined accordingly. 
The explicit relation used to determine the desired value of 
roll and pitch angles is introduced in the following equation 
where, sinSψ ψ=  and cosCψ ψ= . 
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The controller design procedure for the system is divided 
into three steps according to a cascade architecture as follows:  

1. Design the outer-loop controller for the path following 
problem assuming three independent control force 
components, and determine the desired value of the attitude 
vector. 

2. Design the inner-loop controller to stabilize the attitude 
subsystem and track the desired value coming from the outer 
loop. 

3. Prove the stability and boundedness of the cascade 
system considering the coupling terms between the inner and 
outer loops. 

 The remaining parts of this paper are organized to illustrate 
the above steps in more details. 

3- Outer-Loop Contoller
In this section, the design procedure for the outer-loop 

controller is presented. Nonlinear H∞  scheme is suggested 
as an appropriate framework to design a robust controller 
able to compensate both external disturbances and modeling 
uncertainties. Hence, it is necessary to modify the translational 
motion dynamic equation into a proper form consistent with 
NL H∞  framework. The error signal presenting the difference 
between system states and desired values is defined as
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where, 3
dξ ∈  represents the desired path in three-

dimensional space and 3
dξ ∈   is the corresponding velocity 

vector. According to Eq. (1), the following expression is 
suggested as the control effort applied to the system. 
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This control scheme is composed of three segments. The 
first part corresponds to the left side of Eq. (1). The second 
part consists of two terms for regulating the error signal, and 
the third part is considered for disturbance attenuation and 
robustness against parameter uncertainty. In Eq. (8), Tξ  is 
defined as 3 9

1 2 3[ ]T T T Tξ ξ ξ ξ
×= ∈  composed of three 

3 3×  matrices. Using Eq. (8) as control force, and substituting 
it into Eq. (1), the position tracking error dynamics will be 
obtained from the following equation. 
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A more explicit form of Eq. (9) can be written as follows: 
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1 2 3

9 9
0 0

0 0

T T T
T I I

I

ξ ξ ξ

ξ
×

 
 = ∈ 
  

 , and 3
1w T dξ ξ= ∈ .

Therefore, the error dynamics in Eq. (3) obtains a general 
form suitable for NL H∞  design [31] as follows. 
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Comparing Eqs. (10) and (11), the system matrices will be 
defined as follows in Eqs. (12) and (13). 

   1 1 1 1
0 1 1 2 1 3 2 0

0 0

0

K
m

f e T T I T T I T T T T e

I I



          
   

 
 
 
     
 

 
  

 (12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (12)

    1
0

1

0
0

I
m

g e k e T    


 
 
 

   
 
 
 

 (13) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (13)

If the performance index is defined as 
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be stated as follows: 
“Find the smallest value * 0γ ≥  such that for any *γ γ≥  

there exists a state feedback ( ),q q e tξ= , such that the 2l  
gain from w  to ξζ  is less than or equal to γ , that is:” 
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The internal term of integral expression of the performance 
index can be rewritten as Eq. (15): 
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Since TW Wξ ξ
 is symmetric and positive definite, it can be 

decomposed into 3 basic weight matrices as follows: 
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where, Qξ  and Rξ  are two symmetric and positive definite 
matrices and 1 0TQ S R Sξ ξ ξ ξ

−− ≥ . To solve this problem, it 
is necessary to define a Lyapunov function ( )V eξ ξ

 which 
satisfies the Hamilton Jacobi Bellman (HJB) equation stated 
in the following [31]. 
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where, 3 3, ,X Y Zξ ξ ξ
×∈  are three symmetric and positive 

definite matrices and 1 2 0Z X Y X Xξ ξ ξ ξ ξ
−− + ≥ . Using the 

proposed Lyapunov function, the HJB equation in Eq. (17) is 
constituted if the following holds. 
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Proof:

To demonstrate the validity of Theorem 1, it is necessary 
to expand the HJB equation. From Eqs. (11) and (12), the 
Eqs. (20) to (24) can be concluded as follows. 
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Hence, the second term of the HJB is derived to be as Eq. 
(21): 
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After multiplying the inner matrices and simplifying the 
results, Eq. (21) can be written as follows: 
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Eq. (22) can be divided into two parts; the first one is 
composed of only , ,X Y Zξ ξ ξ

 and the second one is a quadratic 
term based on matrix Tξ . Eq. (23) shows this expression as 
follows. 
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Since the term  is a scalar and it equals to its transpose, Eq. 
(23) can be written as follows. 
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The next two terms of HJB equation are evolved in Eq. 
(25). 

 

1
2

2 1
2

1 1
2

1 1
2

T
T T

T T

V V
k k g R g

e e

e T I R T e

 
    

 

    










  
    

 
 

 

.  (25) 

1 1
T

T T T TV
g R S e e T R S e

e


        


 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (25)

After substituting Eqs. (24) and (25) into HJB equation 
and simplifying it, the following expression will be obtained. 
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Therefore, if Eq. (19) is justified, the HJB equation will be 
satisfied using the proposed Lyapunov function. Accordingly, 
the optimal state feedback control law can be derived from 
Eq. (27) as follows: 
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the other hand, three matrices 1 2 3, ,T T Tξ ξ ξ  used in Eq. (8) 
must be calculated to be used in the control law. To do this, 
it is necessary to solve Eq. (19) based on these matrices. The 
following shows an expanded expression of Eq. (19). 
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where, 1
2

1 Ã 2K I Rξ ξ ξγ
−= − + − . According to Eq. (28),

1 2 3, ,T T Tξ ξ ξ  can be calculated by solving at least 4 Riccati 
equations as presented in the following procedure:  

1. Calculate 1T ξ  and 3T ξ  based on Eq. (29): 
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2. Calculate X ξ  using Eq. (30): 
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3. Calculate 2T ξ  using Eq. (31): 
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Using matrices 1 2,T Tξ ξ  and 3T ξ  derived from above procedure 
and Eq. (27), the control law can be obtained as Eq. (32). 
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Hence, the optimal control force *
cf which guarantees the 

position tracking performance in the presence of external 
disturbances and parameter uncertainties can be written as 
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dcf m K mG      (33) 
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Therefore, the control law can be stated in a Project 
Initiation Documentation (PID1) framework as Eq. (34): 
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where, PK ξ , IK ξ  and DK ξ  can be evaluated by comparing 
Eqs. (34) and (33) as mentioned in Eq. (35). 
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For more simplicity the following assumptions were made 
for weight matrices:
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Therefore, the expression for controller gains reduce to the 
following form: 
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1 Proportional-Integral-Derivative
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where, the parameters 1 3, ,ξ ξ ξω ω ω  and rξ , are scalar 
parameters and can be used for controller tunning. It must 
be mentioned that the final expression for the control law 
depends only on general parameters of the system, e.g., mass 
and speed. In addition, it does not depend on γ , and has an 
algebraic form for this special case. 

4- Inner-Loop Controller
The design procedure for the inner-loop controller based 

on nonlinear H∞  is presented in this section. According to 
previous sections the rotational dynamic motion is affected 
by two sources of torque. Therefore, the net torque acting on 
the system can be introduced by the Eq. (37) 

d      (37) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (37)

	
where, ητ  is the control torque acting on the system and 

dη  is the disturbance torque composed of both random and 
stationary components. State equation for determining the 
control law is defined as Eq. (38). 

 ‍

d

d

d

e
dt
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 
 
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 
   
   

 (38) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (38)

	
From the nonlinear rotational dynamics, the torque acting 

on the system can be derived from the control law according 
to Eq. (39) . 

   
¨

,mJ C        (39) 

    1
1 1,mT J T e C T e T u           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (39)

 Therefore, this control law can be divided in three parts:  
•  First part is directly used for compensating the nonlinear 
dynamics, 
•  Second part is the regulator to decrease the error vector eη  
and track the desired value when no disturbance influences 
the system, 
•  Third part consisting the term u  is considered as an extra 
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control effort to compensate the disturbances affecting the 
system. 

The matrix Tη  appeared in the above equation can be 
written as 1 2 3[ ]T T T Tη η η η= . If this proposed control 
scheme is used to track the desired attitude, the dynamic 
equation describing the rotational motion will be summarized 
as follows. 

   ,mJ T e C T e u d          (40) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (40)

where, ( ) ( )1
1d J T J dη η τη η−= . In fact this equation 

represents the error dynamics and based on this equation the 
nonlinear H∞  controller design can be introduced as follows: 

 “Determining the control law ( )u t  which can reduce the 
2l  gain from the cost function ηζ  to the disturbance signal 

energy less than a defined value γ . The cost function ηζ  is 
introduced as equation”: 

T T T e
e u W W

u


           
 (41) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (41)

and the term TW Wη η  which is a symmetric and positive 
definite matrix, can be written as Eq. (42). 

1, 0, 0T
T

Q S
W W Q S R S R

S R
 

     
 

 
    
 

                       (42) 
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If the error dynamics is rearranged in the following form: 

     , , ,e f e t g e t u k e t d           (43) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (43)

then, a norm solution can be found satisfying Eq. (44). 

 ,
TV V

f e t
t e
 

 


 


 
 

   1 11,
2

T
T T TV

g e t R S e e Q S R S e
e


          


 
  


 

   2
1 1 , ,
2

T
TV

k e t k e t
e


   
 

  
     

 (44) 

   1, , 0T V
g e t R g e t

e

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 
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 (44)

For every ( ) 0max Rηγ σ> ≥ , where maxσ  indicates the 
maximum singular value, the optimal control law can be 
expressed as Eq. (45). 

   * 1 ,
,T T V e t

u R S e g e t
e

 
    




 
   
  

 (45) 
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Theorem 2: 

Suppose a Lyapunov function 

( ) ( )0 0
1,
2

T TV e t e T e T eη η η η η η η ην=  where, ( )eην  is a 

symmetric and positive definite matrix with the following 
structure: 

 
  0 0

0
0

J
e Y X Y

X Y Z Y
    

   




 
   
   

 (46) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (46)

where, 3 3, ,X Y Zη η η
×∈  are three symmetric and positive 

definite matrices and 1 2 0Z X Y X Xη η η η η
−− + ≥ . This 

Lyapunov function constitutes the HJB equation in Eq. (44) 
if the expression Eq. (47) holds. 

0
2 2 2

2 0

T

Y X
T K T Y X Z X Q

X Z X

 

       

  

 
     
  

 (47) 

 1
2

1 ( ) 0T T T TT T S T R S T      
      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (47)

  
Proof: 

The proof of this theorem can be found in reference [19]. 
According to reference [24] and making simplifying 

assumptions similar to previous section, the control law for 
the rotational subsystem can be described by Eqs. (48) to 
(53). 

 * 1 Tu R S T e   
    (48) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (48)

Putting these elements into the original structure of the 
control law presented in Eq. (39), the overall control statement 
can be written as Eq. (49). 
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   
¨

* ,dd m d dJ C        (49) 

      d D P IJ K K K e         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (49)

For convenience, the structure of the matrices Qη , Rη  and 
Sη  were chosen as follows. 

2
1

2
2

2
3

2

0 0
0 0 ,
0 0

0
, 0 .

0

I
Q I

I

R r I S
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 
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  
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

 
   
  

 
    
  

 (50) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (50)

As a result, the gain matrices can be calculated from the 
Eqs. (51) to (53). 

2
2 1 22

1 1

2
PK I I  


 

  
 


   (51) 
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1
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 (51)

2
2 1 2 1

2
1

2 1
D mK I J C I

r
  


 

  



  

     
 (52) 
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2 1
2

1

1
I mK J C I

r



 





 

   
 

 (53) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (53)

Although a threshold γ  was defined in the control design 
and appeared in the first expressions of the control law, it 
can be seen that the final expression for the gain matrices is 
independent from this parameter and therefore it can be used 
as a general expression for compensating the disturbance 
effects. 

5- Stability Analysis
In the previous sections, two control algorithms were 

developed for position tracking and attitude stabilization 
based on Eqs. (1) and (2). In dynamic modeling, it was 
mentioned that the position tracking subsystem uses three 

independent force components to regulate the tracking error 
signal. Although there exists an explicit relation between 
three force components and euler angles based on Eq. (6), but 
the attitude tracking stability can not guarantee the stability of 
the overall cascade system solely. In fact, the error dynamic 
models for inner and outer loops have a coupling term 
which affects the stability of the cascade system. To analyze 
the stability behavior Eq. (54) is used which considers the 
coupling terms between two subsystems. 

       
     

Δ fe f e g e q k e w e

e f e g e u k e d
       

      

    


  
 (54) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (54)

where, , , , ,f f g g kξ η ξ η ξ  and kη  have the same 
definitions as stated in Sections 3 and 4. Äf  is the coupling 
term between inner and outer loop and is equal to 

1
0 1 Δ

1

Δ 0
0

f

m
T T f 



 
 
 

  
 
 
 

 (55) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (55)

where, ( ) ( )Ä t cf R F t fη= −  and can be obtained from 
Eq. (56). 

   
   
   

Δ

d d d d d

t d d d d d

d d

f
C S C S S C S C S S

u C S S S C C S S S C
C C C C

         
         
   



   
    
  

                                                                        (56)      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (56)

Following lemmas are introduced to analyze the stability 
of cascade NL H∞  system for Eq. (54) based on [28, 30-31]. 

Lemma 1
If there exists a proper solution 0V ≥  for HJB equation 

and the system ( )x f x=  in Eq. (57) is zero state observable, 
Then ( ) 0V x >  for 0x x≠ , and the closed-loop system 
defined by Eq. (57) is Globally Asymptotically Stable (GAS). 
 

      ,x f x g x u k x d    (57) 

     0 0, 0, 0y h x f x h x    

 
T

T Vu g x
x


 
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, ,n m q px u d y     

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (57)
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Lemma 2
The system ( ), ,e f e e dξ ξ η= 

 is Input-to-State Stable (ISS) 
if and only if there exists a 1  positive definite radially 
unbounded function ( )V eξ

 such that: 

 

 
     

1

2, ,
T

e e

V e
f e e d e

e

 


  



 


 



 (58) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (58)

where, 1  and 2  are two class   functions. 

Lemma 3
If the system ( ), ,e f e e dξ ξ η=   is ISS, then if 0eξ =  is 

a GAS equilibrium point for ( )1e f eξ ξ= , and there exists 
a 1  partial state feedback control ( )u k eη=  such that 
the equilibrium point 0eη =  of ( )2e f eη η=  is GAS, then 
the feedback ( )u k eη=  achieves GAS of the equilibrium 
( ) ( ), 0,0e eξ η =  of the cascade Eq. (54) 

Using the above lemmas, the problem is reduced to prove 
the following theorem to ensure that the cascade system 
controlled by *q  and *u  guarantees the stability of the 
system. 

Theorem 3: 
Given the system in Eq. (54), the control laws *q  from Eq. 

(32) and *u  from Eq. (48) guarantee the asymptotic stability 
of the equilibrium point ( ) ( ), 0,0e eξ η = , if all conditions 
presented in lemma 2 hold. 

 
Proof:

According to Eqs. (54) to (56) for the coupling term, the 
following relation can be written: 

 

 1Δ ,f tu H e
m   (59) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (59)

where, dδη η η= −  and ( ),H eξδη  is defined in Eq. 
(66). 
 

 
     1 2 3

,

0 0 0 0 0 0

H e

h t h t h t
  

  
 (60) 
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 
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 

 
 

 3 d dh t C C C C      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (60)

On the other hand, tu  can be obtained from Eq. (61) as 
follows: 

 

 

 

¨
* 1

dt c D P Iu f m K G K K K e
m                (61) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (61)

According to NL H∞  problem definition, if ( )2 0,w ∞∈
, then for any limited initial state vector, the values of *

cf  
and eξ  remain in ( )2 0,∞  and relations through Eq. (62) 
are satisfied.  

 

¨ ¨1 1 ,d dK K l
m m          (62) 

¨ 1
dt D P Iu m g K K K e

m             
 

  D P Im l g K K K e           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (62)

where,
¨ 1

dl K
mξ ∞ ξ ∞ξ ξ= +



  

. If 

{ }max , ,c D P Il K K Kξ ξ ξ=      

, then Eq. (63) is 
obtained. 
 

 

D P I cK K K e l e         (63) 
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Hence, tu  establishes the following inequalities. 
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In addition, based on reference [28], the following relations 
are satisfied for ( ) ( )1 2,h t h t  and ( )3h t .  
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2 2 2 2
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 (65)

where, 1 2,ζ ζ  and 3ζ  are three positive constants. 
Accordingly ( ),H eξ δη 

 is satisfied in Eq. (66). 
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Now, assuming ( )
1   0

c

m g l
C

l
ξ+

= > , the following inequality 
is also satisfied. 
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Defining ( )1
1
2

TV e e eη η η= , and differentiating it with 

respect to time, and using the error dynamics, we have 
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where, 1

0 0 0
0 0

0 0
R I

I

 
 =  
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 and 2 0
0

I
R

 
 =  
  

. Accordingly, 

it can be written that: 
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Hence, 
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Since, ∞δη 
 and dξ ∞ 

 are both bounded, if cl  is 

chosen large enough, then 
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is a class   function. On the other hand,
 ( )1 1e C eξ ξ=     is a class   function which satisfies 
the inequality ( )1 1C e eξ ξ≤ ≤    . Using ( )1 eξ   and 

( )2 eξ   Eq. (72) yields: 
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which means ( ),e f e eξ ξ η= 

 is ISS according to lemma 2. 
On the other hand, based on lemma 1 and using ( )V eξ ξ  and 
( )V eη η  defined in Sections 3 and 4, it can be concluded that 

*e f g q k wξ ξ ξ ξ= + +  and *e f g u k dη η η η= + +  are both GAS at 
0eξ =  and 0eη = . Therefore, all conditions stated through 

lemma 1, 2 and 3 are established and Theorem 3 is proved. 
Accordingly, the asymptotic stability of the equilibrium point 
( ) ( ), 0,0e eξ η =  for the cascade system is guaranteed by using 

*q  and *u  obtained in Eqs. (36) and (54) as control laws for 
outer and inner loops.

6- Simulation Results
In this section, simulation results are presented to show 

the effectiveness of the algorithm discussed in the previous 
sections. To implement the algorithm, data presented in 
Table 1 are utilized. Nominal values for dynamic simulation 
parameters are taken from reference [29].

To implement the control algorithm a block diagram is 
used as shown in Fig. 1. 

The defined mission for the simulation consists of three 
parts: 

A curved path in the horizontal plane and a smooth climb 
phase.

A translataion along a semi rectangular path in the 
horizontal plane and maintaining the altitude,

Vertical descent to the base altitude without any translation 
in horizontal plane.

On the other hand, random forces and moments acting 
on the system were assumed as environmental zero-mean 
disturbances. Another type of perturbation acting on the 
system, is a sustained disturbance modeled as a step function 
with random acting moment and applied on each force and 
moment components, independently. The measurement 
vectors included a noise assumed to be zero-mean and 
Gaussian. 

Monte-Carlo simulations were accomplished by repeating 
the above scenario 1000 times and evaluating the mean 
behavior and the standard deviations for flight parameters 
and performance indexes. To show a more explicit view of the 
system performance, two numerical indexes were introduced. 
The Integral Square Error (ISE) and the Integral of the 
Absolute value of the control Derivative (IADU) [29] indexes 
were obtained for states and control signals, respectively.

Fig. 2, shows the position tracking error and its variation 
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Fig. 1. Block diagram used for simulation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Position tracking for defined mission
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model uncertainty and disturbance attenuation. Utilizing 
integral actions in both inner and outer loops causes the full 
elimination of the force and moment disturbances arisen from 
unexpected conditions, as shown in Figs. 3 and 4. 

Statistical results of ISE index for position tracking errors 
are depicted as a box-plot presented in Fig. 5. According to 
this figure, the tracking performance in horizontal plane was 
obtained to be more accurate, and the altitude control more 
sensitive to disturbances acting on the system.

The ISE index for the error signals in Euler angles is 
depicted in Fig. 6. Based on these results, the proposed 
algorithm shows an acceptable performance in stabilizing the 
attitude dynamics in a general mission.

Moreover, for statistical analysis on control efforts in this 
mission, the IADU index is shown for the net force and three 
components of torque vector in Fig. 7. 

As mentioned earlier, for a quantitative comparison, ISE 
index was obtained for state tracking performance. Table 2 
demonstrates the comparison of ISE index for the suggested 
cascade system and two previous algorithms based on MPC 
plus NL H∞ , and Backstepping methods. As depicted in this 
Table, ISE index has decreased for all states, which means 
an acceptable tracking performance in similar conditions 
compared to other algorithms. 

The values of IADU index are also compared in Table 
3 for cascade NL H∞  implementation and two previous 
methods simulated in reference [19]. As listed in this Table, 
the values attained for this index were found to be less than 
other algorithms. 

Considering the discussed results and quantitative 
comparisons made based on ISE and IADU indexes, it 
can be concluded that the proposed scheme for controller 
design has an acceptable robust performance in the presence 
of parameter uncertainties, exogenous disturbances and 
measurements noise. Moreover, the stability of the system 
examined by simulations is consistent with the analytical 
stability establishment in Section 5.

7- Conclusions
In this paper, a cascade NL H∞  scheme was suggested for 

position tracking problem consisting inner-loop and outer-
loop controllers to stabilize the rotational motion and track 
the desired flight path, respectively. To achieve a reliable and 
appropriate performance in position tracking, a NL H∞  control 
algorithm was developed for compensating the parametric 
uncertainties especially in inertial parameters and rejecting 
exogenous disturbances. For the inner-loop controller, 
another nonlinear H∞  algorithm was implemented based 
on reference [19] together with an integral action to decrease 
the steady state errors in presence of sustained disturbances 
and improve the tracking results. The proof of stability was 
accomplished using existing theorem for cascade systems 
and examined numerically by Monte-Carlo simulations. For 
this reason, 1000 simulations were performed and for each of 
them a set of model parameters was sampled due to variation 
bounds assuming a uniform distribution. In addition, other 
stochastic parts of the simulation such as measurements noise, 
atmospheric random disturbances and random action time 
for sustained disturbances were changed in each simulation. 
Simulation results for flight parameters were depicted by the 
mean behavior and the upper and lower bounds with respect 
to standard deviation index. To show more explicit results 

bounds. It can be seen that the state error vector converges to 
zero asymptotically. Accordingly, the system has an excellent 
robustness against uncertainty and external deterministic 
disturbances.

Fig. 3, shows the three-dimensional view of the simulation 
results for the defined mission. As shown, the difference 
between mean conditions for the position vector and its 
estimation was found to be insignificant.

The performance of the attitude stabilization and robustness 
against parameter uncertainty and external disturbances is 
depicted in Fig. 4. It can be seen that the cascade system 
has an appropriate tracking performance in the presence of 

Parameter Value 
General Parameters 

Weight 7.26 N 
Weight uncertainty 50% 

xxI 2 3 kg.m-4e 

yyI 2 3 kg.m-4e 

zzI 2 3 kg.m-8e 

xyI 2 4 kg.m-4e 

Inertia uncertainty 50% 

(m)0  0 0.5 0.5 

(deg)0 [0 0 0.5] 

K  0.01 0.01 0.01 

uncertainty K 50% 

K  0.01 0.01 0.01 

uncertainty K 50% 

Inner-loop controller parameters 

r 1.5 

1 0.1 

2 5 

3 15 

Outer-loop controller parameters 

r 1 

1 1.2 

2 5 

3 2 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Simulation and controller data
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Fig. 3. 3D thrajectory for defined mission
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Euler angles for the first scenario
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Fig. 5. Control forces acting on the system in the second path following scenario

Fig. 6. Control torques acting on the system in the second path following scenario

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



F. Rekabi et al., AUT J. Mech. Eng., 4(2) (2020) 151-168, DOI: ﻿ 10.22060/ajme.2019.15561.5779

166

on tracking errors and control efforts, two ISE and IADU 
indexes were used. The box plots were used to show the mean 
and variation bounds for these indexes in the predefined 
mission. According to these results and comparing them with 
other methods, it can be seen that the error compensation 
performance was comparable with algorithms presented by 

reference [19, 28]. Further investigations should involve the 
practical implementation on a real quadrotor. Because of 
the convenient architecture of the proposed controller and 
straightforward calculations in control laws for both inner 
and outer loops, all standard robotic control boards like 
Raspberry Pi can be nominated for hardware implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Control torques acting on the system in the second path following scenario

 

 

 

States HCascade NL HMPC+NL Backstepping 

x 3.14 18.28 26.14 

y 3.1 16.44 22.06 

z 8.28 11.29 19.020 

 0.15 4.63 19.43 

 0.14 4.78 8.063 

 1.108 4.62 5.22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Mean-ISE index performance comparison
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