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ABSTRACT: The aim of this paper is to analyze the time-dependent stress redistribution of a rotating  Review History:
magneto-electro-elastic disc. The disc is supposed to be placed in an axisymmetric temperature and  Received: 1 Dec. 2018
moisture fields. Besides, the disc is under a centrifugal body force, an induced electric potential in  Revised: 5 Feb. 2019
addition to magnetic potential. Using equilibrium, electrostatic and magnetostatic equations, strain-  Accepted: 14 Apr. 2019
displacement and stress-strain relations together with hygrothermal equations, a differential equation is ~ Available Online: 27 Apr. 2019
obtained in which there are creep strains. Primarily, disregarding the creep strain, an analytical solution
for the initial stresses, electromagnetic potentials and displacement is developed. Then, using Prandtl-  Keywords:
Reuss relations, creep stress rates and electromagnetic potentials rates are obtained. Finally, the history  Rotating disc
of stresses, electric and magnetic potentials is obtained iteratively. In the numerical section, the influence
of creep evolution, hygrothermal environmental condition, angular velocity and temperature- and  Time-dependent creep
moisture-dependency of elastic coefficients on the behavior of magneto-electro-elastic disc is analyzed  Hygrothermal loading
comprehensively. The results show that the effect of hygrothermal loading and angular velocity becomes

less significant after creep evolution. Also, the results imply that analysis of the effect of temperature- and

moisture- dependence after creep evolution must be considered in the design progress. Besides, to avoid

cracking, increasing in the tensile hoop stress at the internal surface with increasing in hygrothermal

Magneto-electro-elastic

loading must be considered in design progress..

1. Introduction

Due to huge application of rotating disc in rotating
machinery, they have been focused by many researchers.
They have many industrial usages such as compressors, turbo
generators, flywheels, gas turbine rotors, automotive braking
systems, ship propellers and computer disc drives [1]. On
the other hand, Magneto-Electro-Elastic (MEE) composites
that are a type of intelligent materials have been focused
by many researchers. Due to the presence of magnetic and
electric coupling effect, these materials allow an extra degree
of freedom in the design of actuators, sensors, storage devices
and transducers. Their requests can be found in turbine rotors,
aerospace, magnetic storage elements and magnetic structural
elements.

Since smart materials are mostly selected to work in
presence of magnetic field or in high temperature and humid
environments [2], several papers are presented in the literature
for static hygrothermal analysis of them. Akbarzadeh and
Chen [3] presented a solution for hygrothermal stress problem
in Functionally Graded Piezoelectric Material (FGPM)
cylinder and spheres. Analysis of the interaction of electric
field, elastic deformation, thermal and moisture condition in
hollow and solid piezoelectric cylinders was presented by
Allam et al [4]. Saadatfar and Aghaie-Khafri [5] analyzed
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the static response of a Functionally Graded MEE (FGMEE)
thick-walled sphere in thermal and humid condition using
an analytical method. A long Functionally Graded Material
(FGM) cylindrical shell with FGPM sensor and actuators
under magneto-thermo-electro-elastic loading was analyzed
analytically by Saadatfar and Aghaie-Khafti [6]. Also, they
illustrated that the actuation and sensing authority of FGPM
layers mostly affected by the grading-index of the FGPM [7].
Then, they considered a FGM cylindrical shell integrated with
FGPM layers subjected to magneto-thermo-electro-elastic
[89] hygro-thermo-electro-elastic [10] and hygro-thermo-
magneto-electro-elastic [11] loadings. A closed-form solution
for a piezoelectric functionally graded fiber-reinforced hollow
cylinder in hygrothermal condition was derived by Zenkour
[12]. The static analysis of MEE plate in hygrothermal
environment was presented by Vinyas and Kattimani [13]
using the finite element method. Thermoelastic behavior
of a rotating disc with variable thickness made of FGMEE
was presented by Dai and Dai [14]. Also, several authors
have tried to analyze the creep response of composite, FGM
and smart discs. Using Sherby’s law, the creep progress
of an isotropic FGM rotating disk with thermal gradient
was considered by Gupta et al. [15]. Creep behavior of
FGM rotating disks with linearly varying thickness was
investigated by Deepak et al. [16]. Rattan et al. [17] tried to
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analyze the creep progress of an isotropic rotating disk made
of particle reinforced FGM. Dharmpal et al. [18] analyzed
the steady-state stress redistribution in a FGM rotating disk
with variable thickness. Gupta and Singh [19] made an
attempt to present an analytical method to analyze the creep
progress in non-FGM/FGM rotating disk with uniform and
non-uniform thickness. The steady-state creep behavior of an
isotropic rotating disk made of parabolically varying FGM
in thermal environment is investigated by Bose and Rattan
[20]. Loghman et al. [21] considered the creep response of
FGPM rotating disc under magneto-electro-thermal loads
using a semi-analytical method. They show that the history of
electric potential can be used for condition monitoring of the
smart disk without any need to destructive or non-destructive
testing. A new analytical-numerical way to analyze creep
evolution of rotating disk made of nonlinear piezoelectric
polymer in thermal environmental condition was presented
by Loghman and Azami [22]. They show that a significant
electric potential redistribution due to stress redistribution
has occurred during the lifetime of the disk.

Literature review reveals that creep analysis is vital
for rotating disk. Also, smart materials are subjected
to hygrothermal loading in some of their application.
Moreover, they show considerable creep effects under severe
environmental condition [23]. Therefore, to have advanced
performance and reliability of intelligent structures, creep
response must be investigated when MEE structures are used
in hygrothermal environmental condition. However, the creep
analysis has not been investigated for the MEE disc so far. So,
the novelty of the present research is to investigate the time-
dependent creep stress and electric and magnetic potentials
redistributions during the lifetime of a MEE disc in steady-
state hygrothermal environment considering-temperature and
moisture- dependency of elastic constants using analytical
methods.

2. Basic Formulation of the Problem

Consider a uniform thickness MEE disc rotates about z
axis with a constant speed as shown in Fig. 1. The disc is
assumed to be subjected to hygrothermal field in addition
to electro-magnetic potentials at inner and outer surfaces.
Regarding symmetry and plane stress condition, nonzero
components of temperature, moisture concentration, electric
potential, magnetic potential and displacement are function
of radius.

Tb,Mb, @b, Wb

Ta,Ma,Qa,a

2.1 Formulation of the hygrothermal field

In an uncoupled hygrothermal analysis, the temperature
distribution as well as moisture concentration distribution can
be achieved independently [24]. The Fourier heat conduction
equation and Fickian moisture diffusion equation without
source of heat and moisture for a disc in axisymmetric steady-
state condition are expressed as [25,26]:

10 r 0T
2 k" =0, l-a
r@r(r 6r) (1-2)
10 oM
~ (k= =0, 1-b
7 or (r 8}”) (1-0)

Integrating Eq. (1) twice gives:

T(ry=W,In(r)-W,,
M (r)=S,In(r)-S,.

2)

In this research, moisture concentration change M, and
M, and temperatures change 7 and 7, are assumed at the
inside and outside of the disc, respectively. The unknown
constants can be achieved using these hygrothermal boundary
conditions as:

W = T, —bTa ,
In(%)
a 3-a
r-T (3-2)
W, =——<In(b)~T,.
In(—)
a
S] == Mb _bMa B
In(>)
v “M (3-b)
S, =—t—"<In(b)-M,.
In(—)
a

2.2 Basic equations of the MEE rotating disc

The entire strains are supposed to be sum of magnetic,
electric, elastic, hygrothermal, and creep strains. Therefore,
the stress-strain relations can be written in the following form
[25,27]:

Tb,Mb, @b, Wb

Ta,Ma, 00, Va MEE

Fig. 1. MEE rotating disc
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Oy =Cpy (5n _grcr)-l_CZZ (599 _5;9)+ (4-b)
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913 (822 _gjz)+8llEr +dyH, +mT+yM

where

A =@, +eyy e,
Ay =0, + 0ty ey, (5-a)

Ay =t 0ty + oyt

& =y B e By +esp.
42 ZCIZﬂr +czzﬂ9 +023ﬁz (5-b)
&y =B, +epfy+eyp.

The equilibrium equation of the rotating MEE disc is
presented as [14,21]:

90, + (o, =) + pra’ =0. 6)

or r

Without electric charge and electric current densities, the
electrostatic and magnetostatic equations can be written as
[14,25]:

oD, D _, -
or r
0B B

L+ —L=0. (7-b)
or r

Two types of mechanical boundary condition are taken
named Fixed-Free and Free-Free boundary conditions
[22,28]. Also, the inner and outer surface is subjected to
electric potential and magnetic potential. These boundary
conditions can be presented as:

Fixed — Free > u, =0, o, = 0,
r=a 7=l

_ =0, o, = 0,
¢ =4, ¢, =4 ®)
Vi, =V I S
Solving Eq. (7), gives:

A

D =1 -

p == (9-a)

A

B = — (9-b)
r

where, A| and A, are unknown constants. Due to plane stress
condition, the z component of stress is set to zero. So, we
have:

— ¢ —
o, —03(6‘22—822)——

(10)
C (4
23(5% 9)+iEr+@H,+£T+éM
Gy Gy Gy G Oy
Also, we know that:
P —
rr ara’ 60 ” > a (11)
g--2 pg__%%
or or
Using Eqgs. (10) and (11), the Eq. (4) can be rewritten as:
u u 0
o, =q —+c1'2—+e1'1—¢+
r or
5 (12-a)
! W ! ! ! C ! C
4, — 4 T-CM - &, —cly&
or
gy B OB oV
12 ch 1275 12 ar (12-b)
A T—GM —clye, —cheg
, ou , u , a¢ , a[//
D, =e +ep, 11 &4t
0 or (12-c)
T+ M —e &, —e,&4,
,Ou ,u 04 . Oy
B. =q/,—+q,——¢&| —dj,—+
or r or or (12-d)
mT +y/M —q,&,, —q},&4
where
2
c C.C
a zcll_;’ C{zzclz_ua
33 Cy3
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2 0 A A
c . =c % "= +el3§3 o =CEic, v, v, v CT+
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where,
r_ (P 02313
/11 _Al ’ ﬂ'z AZ ' ' ' ' ' '
Cs3 Cy3 C =cq +eL +q,h, C,=c,+e,L,+q,b,
= _ bs l=C _ 6 (13) C =6l —q, C, =—eLs+q,,P,
1 =61 > 2762
C33 Cs3 Cs=¢\L,+q,,P, C,=e\L,+q,h, (17)
yi=y+ §3Q13 m' = m + A4 E =c,+e,L +q,B, E,=cy,+e,L,+q,P,
1 I b ' ’ ' ’
Cs3 Cs3 E; =e,L;, —q,,F, E, =—e,Ls+q,B,
2 E.=e L, +qg P, E =e L +q P
q / € 5 = €pply T4y, 6 = €l T 4121
dl'l d11+ 13 ﬁllzﬂu"'ﬁa
C33 53 Substituting Eq. (16) into Eq. (6), the equilibrium equation is
€415 en A now can be expressed as:
51'1 =&+ " p] bt > ,

S % ) €33 ou 1 ou 1 4 T
Substituting Eq. (9) into Egs. (12-c) and (12-d), after —+ M —+Mu=+M;y T+M,—+
rearranging, gives: o r oo r

oT 4, 4 4
o u A (-M,+M)—+M,—=+M;—F+Mir M+
L—+L—+L 2+LT+ or r r (18)
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r
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oy (r) _| or r r (14-b)
or 4, . .
})6M_P57_Plgrr_P2€90 M1=CI+C2_E1’ M2=_E2,
Cl Cl
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Substituting Eq. (14) into Egs. (12-a) and (12-b) gives:
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3. Solution of the Equations
3.1 Primitive hygrothermal analysis of the MEE rotating
disc

To find initial stresses, eliminating creep strains in the
differential equation of Eq. (28), we have:

_M3VV2_M9S2_
azu+%a_u %uz M4I/I/;_M10Sz_ -1
or’ roor 1 MW +MW, —
M, S +M,S, (20)

+(W M+ S My + WM, +SM,,)In(r)r +
M7A2r72 -i—MsA]}f2 M .r

The complete solution of Eq. (20) may be considered as:
where B1 and B2 are unknown constants and:

u=Br" +B,r"™ +Byr+Br’+B, A+
BA, —BSF(ln(r) _ ]
(l_m1)(m2_m1) 1—m, (21)

+ Byr (ln(r)— ! ]
(l_mz)(mz_m1) 1_mz

Using Eq. (21) in Eq. (14-a) and then integrating, one has:

m,, = %(—(Ml “n+f(m, -1y —am, )

_M4VVZ _M10S2 _M3VV2 _M9S2
_ —M”S1 +M S —MSVV] +M6W

B3 1272 ) (22)
M +M,
B _ VI/IMA + SIMIO + VVIMZ + SIM‘)
’ M, +M, ’
Bs _ _M13 ,
6+3M +M,

where, Z1 is an unknown constant. With a similar method, is
Br™ +By"™ + By + B, + B’ -

p=hy_ B (rln(r)2r d j
(1=m)(m, —m,) 1—m,

B [r In(r) - 2r —— n +
(I=m,)(m, —m,) 1—m,
B,

L om

B B
P 2™ 4 B+ =S
m, m, ’ 3

(B7A2 + By A, )ln(r) (23)

L

2

—B5r[ln(r)—l— ! J+
(A=m)(m, —m,) 1-m

Bsr[ln(r)—l—l ! J

(l_mz)(mz _ml) —m,

+ L, (WrIn(r)—Wr+W,r)+
Lo (S, In(r) =S, 1+ S,r) +(—LsA, + LA, ) In(r) + Z,
achieved as:
m my 3
Br™ +B,r"™ + By + B, + Bgr” —

=P
Vi) P T (rln(r)—Zr— ! J
(l_ml)(mz_ml) 1_ml

- B (rln(r)—Zr—r BJr
(l_mz)(mz_m1) l_mz

PZ[B‘rm‘ +£rmz +B3r+%r3+(B7Az+BsA1)ln(r)

m, m,
(24)
—Bsr{ln(r)—l— ]+
(1_m1)(m2 _ml) —m

By [1n(r) —1—11j

(1_m2)(m2 _ml) —m,
+ P, (WrIn(r)—W,r + W,r)+ B, (S,r In(r) - S,y + S,r ) +
(=PA, +PA,)In(r)+ Z,

where, Z, is an unknown constant. Using Egs. (21) and
(2) into Eq. (16), the radial and hoop stresses are achieved as:

Blmlr""’1 +Bzm2r"’f1 + B, +3B6r2 -
o =C
T 5 (ln(r)— ! +1J
(1=my)(m, —m,) 1—m,
+ B, (ln(r)— ! +1j +
(I=m,)(m, —m,) 1-m,

C,(Br™ +Byr™ + Byr + By’ + B, A, + B4
(25)
- Byr (h’l(l")—;jﬁ-
(I=my)(m, —m,) 1-m,
B.r (ln(r)— 1 ]
(l_mz)(mz_ml) 1_mz

c3ﬁ+c4i+(c5—/11 ) (7, In(r) + 7, ) +
r r

(€< )(S,In(r)+5,)

o, =E B

Blmlr'”l_l + Bzmzr"’z_l + B, + 3861’2 -
1
_— [ln(r) - + IJ
(I=my)(m, —my) 1-m,
B

+ : (m(r) S 1D+ (26)
(l_mz)(mz_ml) 1_mz

E,(Br™ +Byr™ + Byr + By + B, A, + By A,
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B.r b
_(l_ml)(mz_ml)[ ( ) _m1j+

B.r B
(l_mz)(mz_ml)[ ( ) _sz

+(E5—/11 )(Wlln(r)+Wz)+

AZ Al
+E, —+E,—
r r

(E6 -¢, )(S1 In(r)+35,)

The unknown constants A , A,, B, B,, Z, and Z, can be
determined by employing the magneto-electro-mechanical
boundary conditions. The boundary conditions result in a
system of six linear algebraic equations. These six algebraic
equations are expressed in the form as:

X[Bl B, 4, 4, Zl Zz]T =E, (27)

where, the component of matrix X and E are presented
in the Appendix A. Solving the system of equations results
in obtaining the initial stresses, electric potential, magnetic
potential and radial displacement analytically at zero time.

3.2 Creep analysis of MEE rotating disc
Considering the steady-state hygrothermal condition,
differentiation Eq. (18) with respect to time yields:
u 1 on 1 : 4
— =M, —+—Mi=+M, i+M8—]+
ot r or i P P

o’ o 0&:
+ M+ M —2
or or

Well-known Prandtl-Reuss equations relate the creep
rates to the stresses as follows [27]:

(28)
M, é

14

& = 8—3(0',_ -0.5(c, +0)))
o

e

(29)

e

& = g—"(O'Z -0.5(o, +Gr))
o

e

where £ (i =r,0,9) is creep strain rate, £, is effective

creep strain rate and 0, is effective stress. Norton’s law is
considered as the creep constitutive model as [27]:

& =B(r)o""” (30)

where material creep parameters B(r) and n(r) are function
of radius as [27]:

B(r)zborb‘, n(r)=n, 31)

108

where b,b, and n0 are constants. Regarding the plane

stress condition and substituting Eq. (30) into Eq. (29) gives:

& =byr"ol (o, -0.50,)
& =byr"ol " (c,-0.50,) (32)
& =—(& +£9)

The Von Mises equivalent stress is presented as:
2 2
O-e = \lo-r +O_€_O-ro-€ (33)

By the same way as in previous section, the solution of
Eq. (28) can be considered as:
W=Dy +D,r" +Gr" +Gyr™ + B A, +Bd,  (34)

where G, (r) and G, (r) can be achieved using the method
of variation of parameters as [21]:

b Mol [M15+ ]+
J' Mléb M, - -b dr

B_ob

Gll(r) - 2 m, —m a n
2 1 (Mm _l)rb]—ml+1 g'e
' (35)
o gt (Mls " j+
G, (r) = _ﬁ b, J‘ Mb, —M,,—b, dr

2 m,—m o
(e 00

or

Now, rates of stresses, electric potential and magnetic
potential can be gotten by differentiation Egs. (14) and (16)
with respect to time as:

6, =C a—u+sz+C3—2+
' or r r (36-2)
A . v
C,—-Cé, —Céy,
r
=F, 6_u E —+E, i%—
or r r
p (36-b)
E, —- Eé, —E\éy
r
7 . . A
%lea—u+L2z+L3—2—
or or r r
y (36-c)
Ls _I_Llé;' _Lzéga
r
W _pdi pli,ph_
8}" " or r r (36-d)
4,

P,—2-PRé, —Péy,
r
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Substituting Eq. (34) into Eq. (36) and integrating Eqgs.

(36-c) and (36-d), after rearranging, gives:

5 =D (nC 4 €)1+ )

CB +C ﬁ+ CB +C é+
278 4 277 3r

r

oG oG
C (“ "+ G 2 Gmmzrmzlj

or r
+Cyr! (Gllr"" +G,r™ )—
byl (C1 (0,-0.50,)+C,(0,-0.50, ))

6, =D, ((mE,+E,)r" ")+

D, ((sz, +E2)r"’2")+((E2 ) B, +E4)%

+((E2)B7+E3)%+

oG
—"M L G omyr
0}‘ 111
oG _
e 2L+ Gymyr™ !
r

+Er! (Gllr"" +G, ™ )—

m—1

+
El

byo! (El (0,-0.50,)+E,(c,-0.50, ))

. L L
¢=Dr™ (Ll + 2] +D,r™ [Ll + Zj -
ml m2

(By(L,)—Ls)In(r) 4 —(B, (L) +L, )In(r) 4,
%rm‘ + G,m]r""_l +
or
L oG +
25" + Gymyr™!
or

+I L2(+Glr’"“1 +G2r’"2‘1)— dr +J,

~C ~C
L, —Lygg,

v =Dr™ {P] +PZJ+D2;A’”2 (Pl +sz—
m m,

(B(R) )"

oG, _
& L™ + Gmr™ ™ +
"
e "
2" 4 Gymyr™
or

+I P, (+Glr""’l +G2r’”2’1)— dr+J,

e e
})lgrr _})2899

Al _(B7 (Pz)_Ps)ln(’”)Az

(37-a)

(37-b)

(37-¢)

(37-d)

Using the boundary conditions, the unknown constants
can be determined. The boundary condition of inner and outer
radii of the MEE disc does not vary with the time, so there:

Fixed-Free—>u,| =0, &, . =0,
Free-Free—»o,| =0, o, L= 0,
) ) r=a =i (38)
g9 _ =0 ¢ =0,
l/)r:a:O’ l/)r:b =0.

The resultant system of linear equations can be solved like
as previous section. The details are presented in the Appendix
A. To achieve history of stresses, electric and magnetic
potential during creep progress, the rates of stresses, electric
potential and magnetic potential are needed. First of all, a
suitable time increment (dr”) needs to be taken. The entire
time is the sum of timing steps as the creep evolutions
during the time. The total time after the i timing step can be
presented as:

t, =Y dt™ (39)
k=0

In the following time steps, the radial and hoop stress
redistributions for former step are available, and then, the
radial and hoop stress rates are acquired from Egs. (37-a)
and (37-b). Lastly, using an iterative method, the creep stress
distribution can be achieved as:

O-r(i)(rati):O_ii_l)(ratifl)+(.7£i_1)(rati71)dt(i)

O'g)(r,ti):o'éi_l)(r,ti_l)+o"§,i_l)(r,ti_l)dt(i)

(40)

4. Numerical Results and Discussions

In this section, employing MATLAB software, the
influence of various parameters on the creep response of MEE
disc is investigated using some numerical examples. Material
constants for the MEE can be found in Table 1 [5,27]. The
inner radii =0.04 m and outer radii b=0.15 m are taken for
the disc. The following non-dimensional quantities are used
for the numerical results:
r-a e u(r) ’ .

o
, o =—,(i=r0),
b-a a " P ( )

@1)
o |Bu b)) |dy ()
¢_\Eb"” fb

Firstly, the creep evolution during the time is investigated.
The boundary conditions are supposed as:

§,=0, ¢,=5000, y,=0, y,=0,
T =0, T,=50, M, =0, M, =05, 0=30z

(42)
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Table 1. Material constants.

Property Unit Value
Cii GPa 215
C12 GPa 120
C23 GPa 120
C22 GPa 218
€11 C/I‘I‘l2 7.5
en C/m? 2.5
O 1/K 6x10°
oo 1/K 15x10°¢
d12 N/(Am) 265
Bui C?/Nm? 5.8x107
di Ns?/C? 95x10°¢
€11 Ns/VC 2.82x107
Br m’/kg 0.8x10*
Be m’/kg 1.2x10*
m; N/AmK 2.5%10°
b Cm/kg 0
P, C?/m*K -2.5x10°
71 Nm?/Akg 0
No - 3
b - -5
bo - 0.11x107%¢

Figs. 2 to 7 show the creep evolution of MEE disc under
multiphysical loading for the Free-Free mechanical boundary
condition. In this analysis, time increment dt=5x10* s is
used. It is observed that radial stress, electric potential and
magnetic potential are constant during the time at the inner
and outer radii of disc which satisfy the constant electro-
magneto-mechanical boundary conditions. Concerning to
Fig. 2, the tensile radial stress decreases with the time. Also,
the location of maximum radial stress is changed during the
time. Fig. 3 shows that the absolute value of circumferential
stress is decreasing with time at the internal and external
surface of the MEE disc during the time. Also, the location of
maximum hoop stress is moved from internal surface toward
middle of thickness. Fig. 4 illustrates that the effective stress
is decreased with time significantly. Besides, the distribution
of equivalent stress through the thickness becomes more
uniform during the creep progress. Fig. 5 illustrates that the

t=0

t=250dt
t=500dt
t=1000dt
t=2000dt
t=4000dt
t=6000dt

0
1 T Ll T T
0 0.2 0.4 0.6 0.8
R
Fig. 2. Radial stress redistribution during creep progress (Free-
Free)
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—v—  t=500dt
—o—  t=1000dt
—o—  t=2000dt
20- —>—  t=4000dt
—»—  t=6000dt

Ll Ll T T

0 0.2 0.4 0.6 0.8
R
Fig. 3. Hoop stress redistribution during creep progress (Free-
Free)
40 —o— =0

—a—  t=250dt
——  t=500dt
—o—  t=1000dt
304 —o—  t=2000dt
—b—  t=4000dt
——  t=6000dt

Fig. 4. Equivalent stress redistribution during creep progress
(Free-Free)

1.6
—o— =0
—=—  t=250dt
——  t=500dt
1.44 —o— t=1000dt
——  t=2000dt
—— t=4000dt
t=6000dt

u'x103

0.81

O.GI T T T I
0 0.2 0.4 0.6 0.8

R
Fig. 5. Radial Displacement redistribution during creep progress
(Free-Free)

displacement rises with serving the time. According to Fig.
6, the maximum electric potential is decreased during the
creep evolution. Since the disc is radially polarized, the radial
stress redistribution has some effects on the electric potential
distribution. Consequently, with the aim of condition
monitoring, the electric potential histories may be used in the
intelligent disc. Fig. 7 shows that the creep evolution has not
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Fig. 6. Electric potential redistribution during creep progress
(Free-Free)
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Fig. 7. Magnetic Potential redistribution during creep progress
(Free-Free)

a significant effect on the distribution of magnetic potential.

Figs. 8 to 10 show the creep evolution of MEE disc for the
Fixed-Free mechanical boundary condition. Other boundary
conditions are as before case. It is observed that radial stress
at the outer radii as well as the radial displacement at the inner
radii is constant during the time which satisfies the Fixed-
Free boundary conditions. Regarding Fig. 8, the tensile radial
stress decreases with the time. Also, during the time, the
location of maximum radial stress is changed from inner radii
to middle of thickness approximately. Fig. 9 shows that the
general behavior of hoop stress of the MEE disc during the
time is similar to the previous case. Fig. 10 depicts that the
radial displacement rises during the time. The enhancement is
more considerable at outer radii.

The effect of temperature and humidity on the primitive
and creep behavior of the MEE disc is disclosed in Figs. 11
to 15. The temperature and moisture concentration on the
interior surface are taken as zero. However, the temperature
and moisture concentration rise on the exterior surface
(Mb=Tb/100). The Free-Free boundary condition is taken
and other boundary conditions are same as before. According
to Fig. 11, increasing in hygrothermal loading rises the tensile
radial stress both for primitive and after creep evolution.
Furthermore, changes in primitive radial stress are more

111
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Fig. 8. Radial stress redistribution during creep progress (Fixed-

Free)
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Fig. 9. Hoop stress redistribution during creep progress (Fixed-
Free)
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Fig. 10. Radial displacement redistribution during creep progress
(Fixed-Free)

significant rather than creep one.

Fig. 12 depicts that, for primitive state, there is a fix point
near the middle of thickness in which the circumferential
stress does not change with change in hygrothermal loading.
Before this point, rising in hygrothermal loading increases
the tensile circumferential stress. While, after this point, it
increases the compressive hoop stress. This enhancement
must be considered in designing of MEE disc because high



M. Saadatfar, Amirkabir J. Mech. Eng., 4(1) (2020) 103-118, DOI: 10.22060/ajme.2019.15375.5770

—o— t=0, T,=30
161 -o - t=6000dt,T,=30
—— t=0,T,=60
- % - t=6000dt, T,=60
12 —o— t=0,T,=90

t=6000dt, T,=90

L T
0.6 0.8 1

Fig. 11. Effect of hygrothermal loading on the initial and creep
radial stress
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Fig. 12. Effect of hygrothermal loading on the initial and creep
hoop stress

tensile hoop stress provides proper opportunity for cracking
at the inner surface of MEE disc. The effect of hygrothermal
loading on the hoop stress after creep evolution is insignificant
according to Fig. 12. As observed in Fig. 13, for the primitive
state, the effective stress is increased by increasing in
hygrothermal loading. While, for the creep state, the effect
of hygrothermal condition is inconsiderable. Fig. 14 reveals
that an increase in applied hygrothermal loading results in
an increase in both primitive and creep radial displacements.
Fig. 15 demonstrated that rising in temperature and moisture
concentration increases the maximum of electric potential for
both initial and after creep evolution. The changes are more
extensive in primitive case. In general, Figs. 11 to 15 implies
that the effect of hygrothermal loading condition after creep
evolution becomes less significant comparison with the static
case.

For the next case, the influence of angular speed on the
creep behavior is considered. The results are demonstrated
in Figs. 16 to 19. Figs. 16 and 17 show that increasing in
angular velocity has no considerable effect on the creep
radial and hoop stresses. While, it increases the static radial
and hoop stresses at increasing rate. According to Fig. 18,
as the angular velocity rises, the initial effective stress
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Fig. 13. Effect of hygrothermal loading on the initial and creep
equivalent stress
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Fig. 14. Effect of hygrothermal loading on the initial and creep
radial displacement

increases at an increasing rate in the internal surface and
decreases in the external surface. The angular velocity has
no considerable effect on the effective creep stress. Fig. 19
depicts that increasing in angular velocity leads to an increase
radial displacement in both initial and creep state. It can be
concluded from Figs. 16 to 19 that generally the effect of
angular velocity becomes less significant after creep progress.
To explore the influence of temperature- and moisture-
dependent elastic coefficients on the response of MEE disc,
the elastic coefficients can be expressed in the following form
[25]:
o =C”0(1+a*T +fM) (43)
To avoid having non-linear equations, the temperature
and moisture dependence is only assumed for the case that
temperature and moisture concentration increase uniformly.
So, the temperature and moisture concentration increases
uniformly as: T=50, M=0.5. The Free-Free boundary condition
is taken and other boundary conditions are kept unchanged.
Figs. 20 to 23 reveals the influence of the hygrothermal
dependence of the elastic coefficients on the initial and creep
response of the MEE disc. Due to similarity of the effect of
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Fig. 15. Effect of hygrothermal loading on the initial and creep
electric potential
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Fig. 16. Effect of speed of rotation on the initial and creep radial
stress
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Fig. 17. Effect of speed of rotation on the initial and creep hoop
stress

the temperature and humidity on the multiphysical behavior,
the similar values are used for the empirical constants of
temperature and moisture dependence. It is obvious that
a*=B*=0 indicates the material properties are independent of
temperature and moisture. As shown in Figs. 20 to 23, the
empirical constant has a negligible effect on the distribution
of initial stresses and radial displacement of MEE disc.
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Fig. 18. Effect of speed of rotation on the initial and creep

equivalent stress
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Fig. 19. Effect of speed of rotation on the initial and creep radial
displacement
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Fig. 20. Effect of hygrothermal dependency on the initial and
creep radial stress

Fig. 20 shows that a positive empirical constant results in a
reduction of creep radial stress. While, the effect of a minus
value of empirical constant is vice versa. Fig. 21 depicts that
the positive empirical constant reduces both the compressive
creep hoop stress at the outer radii and tensile creep hoop
stress at the inner radii. While, a negative empirical constant
has an opposite influence. Fig. 22 shows the creep equivalent
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Fig. 21. Effect of hygrothermal dependency on the initial and
creep hoop stress
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Fig. 22. Effect of hygrothermal dependency on the initial and
creep equivalent stress
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Fig. 23. Effect of hygrothermal dependency on the initial and
creep radial displacement

stress rises (decreases) using negative (positive) value of
empirical constant.

As observed in Fig. 23, using a positive empirical constant
result in a reduction in radial displacement. While, using a
negative one has a reverse effect. It can be concluded from
Figs. 16 to 19 that analysis of the effect of temperature and
moisture dependence after creep evolution is more important
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rather than initial state and it must be considered in the design
progress.

5. Conclusion

In this article, a magneto-electro-elastic rotating disc
subjected to an axisymmetric hygro-thermo-magneto-
mechanical loading is considered. Applying the Prandtl-
Reuss equations and Norton’s law, the time-dependent creep
behavior of the disk is analyzed analytically for the first time.
The following conclusions can be expressed from the results:

1. The radial stress and absolute value of hoop stress
decrease with the time in both Fixed-Free and Free-Free
boundary conditions. While the radial displacement rises
with serving the time.

2. Increasing in hygrothermal loading rises the initial
radial stress, equivalent stress, radial displacement and
maximum electric potential. Also, it increases the tensile
hoop stress at the internal surface. Thus, to avoid cracking,
this enhancement must be considered in design progress.

3. Increasing in angular velocity increases the initial
radial and hoop stresses in addition to radial displacement at
increasing rate.

4. Generally, the effect of hygrothermal loading and
angular velocity becomes less significant after creep evolution
comparison with static case.

5. Positive empirical constant of temperature- and
moisture- dependency yields to a decrease in radial stress,
absolute value of hoop stress, equivalent stress and radial
displacement after creep evolution, while the negative value
has an opposite effect.

6. The results imply that the effect of temperature-
and moisture- dependence after creep evolution is more
considerable and must be considered in the design progress.

Appendix A:

The component of matrix X and E for the primitive state
with Free-Free boundary condition can be expressed as:

Also, for the Fixed-Free boundary condition, the following
components are changed as:

Besides, for the state of creep progress, the components
of X are as before case and the component of E for Free-Free
boundary condition can be rewritten as:

Also, for the Fixed-Free boundary condition, the following
components are changed as:

X, =(C1m1 +C2)am"l, X, =(C1m2 +C2)a'”2’1,
v, CrCh  GrCB

13 ’ 14
a

Xi5=X,=0

X, =(Cm +C,)b" 7 X,y =(Cmy +C, )b™ ™,

P C,B;+C, X - C,B,+C,
23 b > 24 b

Xzs :X% =0

B
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Nomenclature
a Inner radius of disc
b Outer radius of disc
B, Magnetic induction [T]
Cj Temperature and moisture independent
elastic coefficient [N/m?]
cij Elastic coefficient [N/m?]
D, Electric displacement [C/m?]

di Magnetic coefficient [N.s?/C?]

ey Piezoelectric coefficient [C/m?]

k¢ Moisture diffusivity coefficient

K" Thermal conductivity coefficient

my Pyromagnetic coefficient [N/A.m.K]
i Pyroelectric coefficient [C/m?K]

qij Piezomagnetic coefficient [N/A.m]
X Hygroelectric coefficient [C.m/kg]
Greek symbols

0 Thermal expansion coefficient [1/K]
o* Empirical material coefficients

for moisture dependence

il Inhomogeneity parameter
Bi Moisture expansion coefficient [m*/kg]
L Empirical material coefficients
for temperature dependence

Bii Dielectric coefficient [C%/N.m?]

Vi Hygromagnetic coefficient [N.m?/A.kg]
11 Electromagnetic coefficient [N.s/V.C]
A Thermal modulus [N/m?.K]

¢ Hygroscopic stress coefficient
p Density [kg/m’]

o Stress [N/m?]

¢ Electric potential [W/A]

W Magnetic potential [A]

® Rotating speed [rev/min]
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