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ABSTRACT: In this paper the geometry effects of different nanoparticles such as cylindrical, spherical 
and lamina on heat transfer of fluid transported through contracting or expanding micro channel are 
considered. The nanofluid flow and heat transfer through the porous channel are described using 
mathematical models. Since the mathematical models are nonlinear in nature the homotopy perturbation 
method, an approximate analytical method is adopted to provide solution to the mathematical model. 
The fast convergence rate coupled with analytical procedural stability motivates the use of the homotopy 
perturbation method as the favored method in providing solutions to the system of coupled, higher 
order differentials.The obtained analytical solution is used to investigate the influence of particle shape 
of the nano sized materials on heat transfer of fluid flowing through a porous medium considering 
a uniform magnetic field. It is illustrated from results that lamina nanoparticle shape shows higher 
dimensionless temperature and thermal conductivity when compared with nano shaped particles of 
cylinder and sphere respectively due to variations in thermal boundary layers. Results obtained from this 
study prove useful in the advancement of science and technology including micro mixing, nanofluidics 
and energy conservation. Comparing obtained analytical solution with fourth order numerical solution, 
good agreement was established.
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1- Introduction
The significance attached to fluid heat transfer in modern 

times cannot be over emphasized. This is as a result of 
increasing energy pricing associated with fluid transportation. 
Since energy pricing plays an important role in the transport 
phenomena, it therefore becomes imperative to determine 
best ways of conserve fluid energy during transport. As it 
has tremendous importance in applications including but not 
limited to polymer processing, power plant operations and 
oil recovery applications. Upon this, heat transfer of fluid 
through porous micro channel as received wide considerations 
by engineers and scientist [1-15].

In recent times, research effort to study natural convective 
flows through porous channels was presented by Kargar 
and Akbarzade [1] using analytical methods. Pourmehran 
et al. [2] investigated the effect of micro channel heat sink 
on nanofluid to optimize thermal performance. Blood flow 
containing nanoparticles through porous arterial segment was 
analyzed by Ghasemi et al. [3] in the presence of magnetic 
field. Micropolar heat transfer and flow in permeable channel 
walls was presented by Fakour et al. [4] using analytical 
methods. Hatami and Jing [5] optimized mixed convective 
heat transfer in T shaped porous cavity. Flow through 
circular conduit using least square method was presented 
by Ghasemi [6] considering electro hydrodynamics. Hatami 
et al. [7] analyzed motion of spherical particles in plane 
coquette fluid flow adopting differential transform method. 

Natural convection flow in circular wavy cavity containing 
nanoparticles was studied by Hatami et al. [8] to optimize 
heat transfer. Shortly after Hatami and Ganji [9] extended 
their research to motion of spherical particles on rotating 
parabola adopting analytical techniques. Natural convective 
heat transfer of nanofluid flow through double sinusoidal 
walls was investigated by Tang and Jing [10] considering 
various phase deviations. Asymmetric porous channel heat 
transfer and flow of nanofluid was studied by Hatami et al. 
[11] using approximate analytical schemes.

Earlier works on the nanofluid study was performed by 
Choi [12]. The purpose of his research was to improve the 
transport and energy capacity of base fluids. Therefore he 
proposed the inclusion of nanometer sized metallic particles 
in base fluids such as grease, water and ethylene. It was 
discovered that fluid thermal conductivity as improved 
to about three times its initial state. Upon this other 
researchers have built upon [13-18]. Due to its relevance 
in practical modern science such as biomedicine, fuel cells 
and manufacturing. However since thickness of thermal 
boundary layer is influenced by nanoparticles shapes owing 
to simultaneous effect of density and thermal conductivity. 
The need to investigate nanoparticle shapes effect on working 
fluids becomes important [19,20]. Effect of size and surface 
chemistry of nanoparticle shapes was studied Albanese et 
al. [21] on biological systems. Geometrical description of 
metallic nanoparticles was presented by Rodriguez-Lopez 
et al. [22]. Jo et al. [23] investigated therapeutic effect of 
nanoparticles size, surface charge and shapes on brain and *Corresponding author’s email: ta.akinshilo@gmail.com
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retinal diseases.
The heat transfer of the engine oil base fluid containing 

various shapes of alumina nano sized particles is described 
by ordinary and nonlinear differentials of the higher order. 
Therefore it is required to adopt either numerical or analytical 
methods to generate solutions to the system of coupled 
equation. Hence analytical and numerical methods have 
been utilized by researchers in solving nonlinear problems in 
science and engineering [19-31]. 

The current paper therefore investigates the heat transfer 
effect of nano sized particle shapes of lamina, cylindrical 
and spherical considering an expanding or contracting flow 
channel with externally heated bottom plate. Utilizing the 
Homotopy Perturbation Method (HPM).

2- Model Development and Analytical Solution
The nanofluid considered is a mixture of engine oil and 

alumina. The fluid flows unsteadily through horizontally 
arranged parallel plates under the effect of applied magnetic 
field as described in the physical model diagram, Fig. 1. 
Component of velocity in the x and y direction is taking as 
u and v respectively. The upper plate contracts and expands 
at a uniform rate while the bottom plate is externally heated 
and fixed. Following the assumptions that the nano mixture 
is thermodynamically compatible, incompressible fluid flow 
since flow is in liquid phase only and negligible radiation 
effect due to flow geometry. Since fluid is viscous the Navier- 
Stokes equation is presented as Akinshilo [13]:
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With appropriate boundary condition introduced as 
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The effect of expansion or contraction on the fluid is 
measured by α, applied magnetic field intensity is predicted 
by the Hartmann parameter M, the influence of momentum 
diffusivity against thermal diffusivity is determined by the 
Prandtl number represented as Pr. The significance of inertia 
compared to viscous fluid is measured by the Reynolds 
number  depicted as R. 

Nanofluid constant parameters are stated as:

5 
 

1 ,nf

f

A 



   

2
nf

f

A 



                   (5) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   (5)

6 
 

 
 3

p nf

p f

C
A

C




  , 4

nf

f

kA
k


                         (6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   (6)

where heat capacitance ( ) p nf
Cρ , effective dyn

amic viscosity ( )nfµ , effective density ( nfρ ), thermal 
conductivity ( )nfk  is represented as above. The nanoparticles 
shapes are considered following the model proposed by 
Hamilton and Crosser [19,20] defined as follows:
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The empirical shape factor b, whose thermo physical 
properties are expressed in Table 1. According to Fig. 2 the 
ratio of the height (h) to diameter (d) is expresses as N. Hence 
the shape factor is represented as 
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Where N for cylinder is defined as N≥ 10 and lamina as 
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Fig. 1. Physical model of problem
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N≤ 0.1. Its numerical values are given in Table 2. Similarly 
sphericity (φ) which is the ratio of the surface area of the 
sphere geometrical shape to the surface area of the real shape 
at the given volume. This is expressed as

11 
 

32 1( ) 12
2
Nb N N

N


  (a) 
 

3
2 9( )

2 1 4
NN

N N
 


 (b)

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10-b)

With the numerical values given in Table 2.

2- 1- Application of the homotopy perturbation method
Geometry effect of nanoparticles on heat transfer of 

fluid transported through the channel is analyzed utilizing 
the homotopy perturbation method whose principles and 
fundamentals have been described thoroughly by Kargar and 
Akbarzade [1]. Therefore homotopy perturbation method, an 
approximate analytical solution is considered in this paper. 
The fast convergence rate coupled with analytical procedural 
stability motivates the use of the HPM as the favored method 
in providing solutions to the system of coupled, higher order 
differentials.Upon constructing the homotopy, the Eqs. (1) 
and (2) is expressed as:
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Taking power series of velocity and temperature fields 
yields
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Substituting Eq. (13-a) into Eq. (11) and selecting at the 
various order yields
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Fig. 2. Shapes for different nanoparticle type.
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 Density 
)3g/mk( 

Specific heat 
capacity(J/kg.K) 

Thermal 
conductivity 

(W/m.K) 
Engine Oil 884 1910 0.144 

3O2Al 3970 
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Table 1. Thermo physical properties of nanofluid [31].
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 Sphere Cylinder Lamina 

φ 1 0.4710 0.1857 

b 3 6.3698 16.1576 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Values of empirical and shape factor for different 
nanoparticle shape.
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Substituting Eq. (13-b) into Eq. (12) and selecting at the 
various order yields
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Leading order boundary condition is given as
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Simplifying Eq. (14) applying the leading order boundary 
condition Eq. (20) yields
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Leading order boundary condition is given as
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Simplifying Eq. (17) applying the leading order boundary 
condition Eq. (22) yields
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First order boundary condition is given as
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Simplifying Eq. (15) applying the first order boundary 
condition Eq. (24) yields
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First order boundary condition is given as

26 
 

 
 
 
 
 
 
 
 
 
 

1 1(0) 1, (1) 0m mq q                                          (26) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (26)

Simplifying Eq. (18) applying the first order boundary 
condition Eq. (26) yields
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The order two coefficients for ( )f η  and ( )mq η in Eqs. (16) 
and (19) were too voluminous to be mentioned here but are 
expressed graphically in the results and results validation, 
Table 3. Therefore final expressions for flow and heat transfer 
is expressed as
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Relevant phenomena with practical significance on heat 
and mass transfer can be reduced to the Nusselt number 
defined as
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3- Results and Discussion
In this section, graphical presentations are used to describe 

obtained analytical solutions as shown in Figs. 1 to 4. With 
the influence of nanoparticle shape geometry on heat transfer 
through the porous channel 

discussed. The accuracy of the approximate analytical 
result obtained using the homotopy perturbation method is 
validated using numerical solution as shown in Table 3 for 
active parameters. Numerical solution is obtained using the 

Runge-Kutta-Fehlberg method whose accuracy has been 
improved through the addition of mid-point in the step 
which has been used as suitable method [4-6]. The effect of 
Reynolds parameter (R) on heat transfer is depicted in Fig. 3. 
As observed Fig. 3(a) depicts the effect of spherical shaped 
nanoparticles on heat transfer. It is seen that quantitative 
increase in R leads to decreasing temperature distribution 
which is significant towards the mid plate. The effect of 
cylindrical shaped nanoparticles on heat transfer as shown 
in Fig. 3(b) shows decreasing temperature distribution with 
higher R parameter though effect is more when compared 
with the sphere nanoparticles. Also the influence of the 
lamina shaped nanoparticle geometry is presented in Fig. 
3(c) which depicts numeric increase in R parameter shows 
decreasing temperature distribution which is coherent with 
the sphere and cylindrical shape nanoparticles. This is due 
to decreasing thermal boundary layer thickness. However the 
lamina shaped nanoparticle present the highest temperature 
distribution amongst the three nanoparticle shapes adopted.

expansion ratio (α) causes increase in temperature 
distribution towards the bottom plate and as the upper plate 
is approached a slight decrease in temperature distribution 
is seen using the sphere shaped nanoparticles. Utilizing 
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η q(η)   
 Numerical Solution Present Study (HPM) Error 

0 1.0000 1.0000 0.0000 
0.1 0.8937 0.8937 0.0000 
0.2 0.7877 0.7877 0.0000 

0.3 0.6824 0.6824 0.0000 
0.4 0.5781 0.5781 0.0000 
0.5 0.4754 0.4754 0.0000 
0.6 0.3747 0.3747 0.0000 

0.7 0.2765 0.2765 0.0000 
0.8 0.1812 0.1812 0.0000 
0.9 0.0889 0.0889 0.0000 

1.0 0.0000 0.0000 0.0000 
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η q(η)   
 Sphere Cylinder Lamina 

0.2 0.7853 0.7854 0.7855 
0.3 0.6783 0.6786 0.6787 
0.4 0.5730 0.5734 0.5735 

0.5 0.4700 0.4705 0.4706 
0.6 0.3698 0.3702 0.3704 
0.7 0.2725 0.2729 0.2731 

0.75 0.2250 0.2254 0.2255 

0.8 0.1784 0.1787 0.1788 
0.85 0.1325 0.1328 0.1329 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Comparison of values of η for dimensionless temperature distribution. Where 
R=m=α=1, ϕ=0.05, M= b=0.

Table 4. Comparison of values of η for dimensionless temperature distribution for 
sphere, cylinder and lamina nanoparticles. Where R=m=α=1, ϕ=0.05, Pr=0.2, M=0.
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cylindrical shaped nanoparticles, heat transfer effect can be 
observed in Fig. 4(b) which shows similar trend with the 
sphere nano shaped particle. More so the lamina shaped nano 
particle predicts a slight increase in temperature profile with 
increasing α parameter towards the lower plate but around 
η=0.45 (not determined accurately) there is decrease in the 
temperature profile which is obvious towards the upper plate. 
Nano sized particles of lamina shape shows stronger thermal 
boundary layer thickness compared with cylindrical and 
spherical shapes respectively. This is physically explained as 
a result of increasing injection velocity variations.

Temperature index (m) effect on heat transfer of the 
nanofluid is observed in Fig. 5. As illustrated from Fig. 
5(a), numeric increase in m parameter causes decrease in 
temperature distribution adopting the spherical nanoparticle 

but using the cylindrical shaped nanoparticle decreasing 
temperature distribution is also observed in Fig. 5(b). The 
temperature distribution of the cylindrical shaped nanoparticle 
is higher compared with the sphere shaped. Also utilizing the 
lamina shaped nanoparticle Fig. 5(c), decreasing temperature 
distribution is seen. Lamina shaped nano size particle 
predicts a lower rate of temperature decrease compared with 
the cylindrical and sphere nanoparticles as a result of wall 
temperature variations.

Nano particle concentration (ϕ) effect on temperature 
distribution is represented by Fig. 6. As observed in Fig. 6(a) 
adopting the sphere shaped nanoparticle numeric increase of 
ϕ shows significant decrease in temperature profile across 
the plate, however towards the upper plate slight decrease 
in temperature distribution is demonstrated. This result is 
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Fig. 3. Effect of Reynolds number on temperature profile (a) 
Sphere shaped nanoparticle. (b) Cylinder shaped nanoparticle. 

(c) Lamina shaped nanoparticle.

Fig. 4. Effect of expansion ratio on temperature profile (a) Sphere 
shaped nanoparticle. (b) Cylinder shaped nanoparticle. (c) 

Lamina shaped nanoparticle.
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similar to the result obtained in Adnan et al. [31]. Effect of 
cylinder shaped nanoparticle is depicted in Fig. 6(b) where it 
is observed that increasing nanoparticle concentration effect 
shows concentration decrease across the flow channel. While 
nanoparticle concentration effect using lamina shaped nano 
sized particle is shown in Fig. 6(c). It is observed from the 
plot that increasing ϕ causes slight decrease in temperature 
distribution across the region of flow. This phenomenon 
can be explained physically due to high mass and heat 
transfer caused by increased thermal conductivity leading 
to increased thickness of thermal boundary layer. However 
should the nanoparticle be neglected from the fluid, effect 
is demonstrated as ϕ=0.00. Increasing effect of nanoparticle 
concentration improves the thermal performance most 
especially the lamina shape then the cylinder and sphere 

shape respectively as depicted in Table 4. This is in good 
agreement with the conclusion obtained in Adnan et al. [31].

Influence on the nano shaped size particle can be observed 
from the Fig. 7. Though the effect is not too significant on the 
plots. However it can be depicted from the plots that as nano 
centration increases quantitatively heat transfer rate increases 
but towards the upper plate around η=0.7 (not accurately 
determined) a reverse trend is notice. The sphere nano shaped 
particle as the highest Nusselt number followed by the 
cylindrical shape. More so the lamina shape nanoparticle has 
the lowest Nusselt number, amongst the nano shaped sized 
particle under consideration.

4- Conclusion
The geometry effect of nanoparticles such as cylinder, 
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Fig. 5. Effect of temperature index on temperature distribution 
(a) Sphere shaped nanoparticle. (b) Cylinder shaped nanoparticle. 

(c) Lamina shaped nanoparticle.

Fig. 6. Effect of nanoparticle concentration on temperature 
distribution (a) Sphere shaped nanoparticle. (b) Cylinder shaped 

nanoparticle. (c) Lamina shaped nanoparticle.
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lamina and sphere on heat transfer through porous channel 
is considered in this paper. Analyses of heat transfer of nano 
fluid through porous channel are performed adopting the 
homotopy perturbation method. Results obtained from the 
approximate analytical solutions due the fluid mechanics are 
used to investigate the effect of important fluid parameters on 
heat transfer. It is proven from analysis that the lamina shaped 
nanoparticles as a higher dimensionless temperature and 
thermal conductivity at the same fluid parameters compared 
with the cylinder and spherical shape respectively. Present 
study provides exciting insights to numerous engineering 
applications such as energy conservation, micro mixing and 
nano fluidics amongst others.
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