Geometry Shape Effects of Nanoparticles on Fluid Heat Transfer Through Porous Channel

A. T. Akinshilo

Mechanical Engineering Department; University of Lagos, Akoka-Yaba, Nigeria

ABSTRACT: In this paper the geometry effects of different nanoparticles such as cylindrical, spherical and lamina on heat transfer of fluid transported through contracting or expanding micro channel are considered. The nanofluid flow and heat transfer through the porous channel are described using mathematical models. Since the mathematical models are nonlinear in nature the homotopy perturbation method, an approximate analytical method is adopted to provide solution to the mathematical model. The fast convergence rate coupled with analytical procedural stability motivates the use of the homotopy perturbation method as the favored method in providing solutions to the system of coupled, higher order differentials. The obtained analytical solution is used to investigate the influence of particle shape of the nano sized materials on heat transfer of fluid flowing through a porous medium considering a uniform magnetic field. It is illustrated from results that lamina nanoparticle shape shows higher dimensionless temperature and thermal conductivity when compared with nano shaped particles of cylinder and sphere respectively due to variations in thermal boundary layers. Results obtained from this study prove useful in the advancement of science and technology including micro mixing, nanofluidics and energy conservation. Comparing obtained analytical solution with fourth order numerical solution, good agreement was established.

1- Introduction

The significance attached to fluid heat transfer in modern times cannot be over emphasized. This is as a result of increasing energy pricing associated with fluid transportation. Since energy pricing plays an important role in the transport phenomena, it therefore becomes imperative to determine best ways of conserve fluid energy during transport. As it has tremendous importance in applications including but not limited to polymer processing, power plant operations and oil recovery applications. Upon this, heat transfer of fluid flowing through a porous medium considering a uniform magnetic field is influenced by nanoparticles shapes owing to simultaneous effect of density and thermal conductivity. The need to investigate nanoparticle shapes effect on working fluids becomes important [19,20]. Effect of size and surface chemistry of nanoparticle shapes was studied Albanese et al. [21] on biological systems. Geometrical description of metallic nanoparticles was presented by Rodriguez-Lopez et al. [22]. Jo et al. [23] investigated therapeutic effect of nanoparticles size, surface charge and shapes on brain and

*Corresponding author’s email: ta.akinshilo@gmail.com

Natural convection flow in circular wavy cavity containing nanoparticles was studied by Hatami et al. [8] to optimize heat transfer. Shortly after Hatami and Ganji [9] extended their research to motion of spherical particles on rotating parabola adopting analytical techniques. Natural convective heat transfer of nanofluid flow through double sinusoidal walls was investigated by Tang and Jing [10] considering various phase deviations. Asymmetric porous channel heat transfer and flow of nanofluid was studied by Hatami et al. [11] using approximate analytical schemes.

Earlier works on the nanofluid study was performed by Choi [12]. The purpose of his research was to improve the transport and energy capacity of base fluids. Therefore he proposed the inclusion of nanometer sized metallic particles in base fluids such as grease, water and ethylene. It was discovered that fluid thermal conductivity as improved to about three times its initial state. Upon this other researchers have built upon [13-18]. Due to its relevance in practical modern science such as biomedicine, fuel cells and manufacturing. However since thickness of thermal boundary layer is influenced by nanoparticles shapes owing to simultaneous effect of density and thermal conductivity. The need to investigate nanoparticle shapes effect on working fluids becomes important [19,20]. Effect of size and surface chemistry of nanoparticle shapes was studied Albanese et al. [21] on biological systems. Geometrical description of metallic nanoparticles was presented by Rodriguez-Lopez et al. [22]. Jo et al. [23] investigated therapeutic effect of nanoparticles size, surface charge and shapes on brain and
The heat transfer of the engine oil base fluid containing various shapes of alumina nano sized particles is described by ordinary and nonlinear differentials of the higher order. Therefore it is required to adopt either numerical or analytical methods to generate solutions to the system of coupled equation. Hence analytical and numerical methods have been utilized by researchers in solving nonlinear problems in science and engineering [19-31].

The current paper therefore investigates the heat transfer effect of nano sized particle shapes of lamina, cylindrical and spherical considering an expanding or contracting flow channel with externally heated bottom plate. Utilizing the Homotopy Perturbation Method (HPM).

2- Model Development and Analytical Solution

The nanofluid considered is a mixture of engine oil and alumina. The fluid flows unsteadily through horizontally arranged parallel plates under the effect of applied magnetic field as described in the physical model diagram, Fig. 1. Component of velocity in the x and y direction is taking as u and v respectively. The upper plate contracts and expands at a uniform rate while the bottom plate is externally heated and fixed. Following the assumptions that the nano mixture is thermodynamically compatible, incompressible fluid flow since flow is in liquid phase only and negligible radiation effect due to flow geometry. Since fluid is viscous the Navier-Stokes equation is presented as Akinshilo [13]:

\[
\begin{align*}
 df(0) &= 0, \quad \frac{df(0)}{d\eta} = 0, \quad f(1) = 1, \quad \frac{df(1)}{d\eta} = 1 \\
 q_m(0) &= 1, \quad q_m(1) = 0
\end{align*}
\]

\[
f(0) = 0, \quad \frac{df}{d\eta}(0) = 0, \quad f(1) = 1, \quad \frac{df}{d\eta}(1) = 1 \\
q_m(0) = 1, \quad q_m(1) = 0
\]

The effect of expansion or contraction on the fluid is measured by \(\alpha \), applied magnetic field intensity is predicted by the Hartmann parameter \(M \), the influence of momentum diffusivity against thermal diffusivity is determined by the Prandtl number represented as \(Pr \). The significance of inertia compared to viscous fluid is measured by the Reynolds number depicted as \(R \).

Nanofluid constant parameters are stated as:

\[
A_1 = \frac{\rho_{nf}}{\rho_f}, \quad A_2 = \frac{\mu_{nf}}{\mu_f}
\]

\[
A_3 = \frac{(\rho C_p)_{nf}}{(\rho C_p)_f}, \quad A_4 = \frac{k_{nf}}{k_f}
\]

where heat capacitance \((\rho C_p)_f\), effective dynamic viscosity \((\mu_f)\), effective density \((\rho f)\), thermal conductivity \((k_f)\) is represented as above. The nanoparticles shapes are considered following the model proposed by Hamilton and Crosser [19,20] defined as follows:

\[
\rho_{nf} = (1-\phi)\rho_f + \phi\rho_s
\]

\[
(\rho C_p)_{nf} = (1-\phi)(\rho C_p)_f + \phi(\rho C_p)_s
\]

\[
\frac{k_{nf}}{k_f} = \frac{k_s + (b-1)k_f - (b-1)\phi(k_s - k_f)}{k_s + (b-1)k_f - \phi(k_f - k_f)}
\]

The empirical shape factor \(b \), whose thermo physical properties are expressed in Table 1. According to Fig. 2 the ratio of the height (h) to diameter (d) is expresses as \(N \). Hence the shape factor is represented as

\[
(N) = \frac{2N + 1}{2N^{\frac{1}{2}}}
\]

\[
(N) = \frac{2N + 1}{2N^{\frac{1}{2}}}
\]

With appropriate boundary condition introduced as
N \leq 0.1. Its numerical values are given in Table 2. Similarly sphericity (\varphi) which is the ratio of the surface area of the sphere geometrical shape to the surface area of the real shape at the given volume. This is expressed as

\[\varphi = \frac{\frac{8\pi}{3} R^3}{S} = \frac{12\pi \eta^2}{4\pi \eta^2} \]

With the numerical values given in Table 2.

2-1- Application of the homotopy perturbation method

Geometry effect of nanoparticles on heat transfer of fluid transported through the channel is analyzed utilizing the homotopy perturbation method whose principles and fundamentals have been described thoroughly by Kargar and Akbarzade [1]. Therefore homotopy perturbation method, an approximate analytical solution is considered in this paper. The fast convergence rate coupled with analytical procedural stability motivates the use of the HPM as the favored method in providing solutions to the system of coupled, higher order differentials. Upon constructing the homotopy, the Eqs. (1) and (2) is expressed as:

\[f_1(p, \eta) = (1-p) \left[\frac{d^2 f_p}{d \eta^2} \right] + \cdots \]

\[f_2(p, \eta) = (1-p) \left[\frac{d^2 f_p}{d \eta^2} \right] + \cdots \]

Taking power series of velocity and temperature fields yields

\[f = P^0 f_0 + P^1 f_1 + P^2 f_2 + \cdots \] (a)

\[q_m = P^0 q_{m0} + P^1 q_{m1} + P^2 q_{m2} + \cdots \] (b)

Substituting Eq. (13-a) into Eq. (11) and selecting at the various order yields

\[P^0 : \frac{d^4 f_0}{d \eta^4} \]

\[P^1 : \frac{d^4 f_1}{d \eta^4} + \frac{A_1}{A_2} \frac{d^3 f_0}{d \eta^3} + 3 \frac{A_1}{A_2} \frac{d^2 f_0}{d \eta^2} \]

\[+ \frac{A_1}{A_2} \frac{d f_0}{d \eta} - \frac{A_1}{A_2} R \frac{d^2 f_0}{d \eta^2} - M^2 \frac{d^2 f_0}{d \eta^2} \]

Fig. 2. Shapes for different nanoparticle type.

Table 1. Thermo physical properties of nanofluid [31].

<table>
<thead>
<tr>
<th></th>
<th>Density (kg/m²)</th>
<th>Specific heat capacity (J/kg.K)</th>
<th>Thermal conductivity (W/m.K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Oil</td>
<td>884</td>
<td>1910</td>
<td>0.144</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3970</td>
<td>765</td>
<td>40</td>
</tr>
</tbody>
</table>

Table 2. Values of empirical and shape factor for different nanoparticle shape.

<table>
<thead>
<tr>
<th></th>
<th>Sphere</th>
<th>Cylinder</th>
<th>Lamina</th>
</tr>
</thead>
<tbody>
<tr>
<td>\varphi</td>
<td>1</td>
<td>0.4710</td>
<td>0.1857</td>
</tr>
<tr>
<td>\beta</td>
<td>3</td>
<td>6.3698</td>
<td>16.1576</td>
</tr>
</tbody>
</table>

\[H_2(p, \eta) = (1-p) \left[\frac{d^2 q_m}{d \eta^2} \right] + \cdots \]

\[P = \frac{A_3}{A_4} PrRe \frac{dq_m}{d \eta} + \frac{A_3}{A_4} PrRe \frac{dq_m}{d \eta} \frac{\alpha P Pr Re}{\eta} \frac{dq_m}{d \eta} \]

\[(12) \]
\[p^2 \frac{d^4 f}{d \eta^4} + \frac{A_1}{A_2} \alpha \eta \frac{d^3 f_1}{d \eta^3} + 3 \frac{A_1}{A_2} \alpha \frac{d^2 f}{d \eta^2} + \frac{A_1}{A_2} R f_0 \frac{d^2 f}{d \eta^2} + \frac{A_1}{A_2} R f_1 \frac{d^2 f_0}{d \eta^2} \]

\[- \frac{A_1}{A_2} R \frac{df_0}{d \eta} \frac{d f_1}{d \eta} \frac{d^2 f_0}{d \eta^2} - \frac{M^2}{A_2} \frac{d^3 f}{d \eta^3} \]

Substituting Eq. (13-b) into Eq. (12) and selecting at the various order yields

\[p^0 \frac{d^2 q}{d \eta^2} \]

\[p^1 \frac{d^2 q_1}{d \eta^2} - \frac{A_1}{A_2} \alpha \eta \frac{d f_0}{d \eta} + \frac{A_1}{A_2} R f_0 \frac{d^2 q_0}{d \eta^2} \]

\[+ \frac{A_1}{A_2} R f_1 \frac{d^2 q_0}{d \eta^2} \]

\[+ \frac{A_1}{A_2} \alpha \eta \frac{d q_0}{d \eta} \]

\[+ \frac{A_1}{A_2} \alpha \eta \frac{d q_0}{d \eta} \]

Leading order boundary condition is given as

\[f_0(0) = 0, \quad \frac{df_0}{d \eta}(0) = 0, \quad f_0(l) = 1, \quad \frac{df_0}{d \eta}(l) = 1 \]

Simplifying Eq. (14) applying the leading order boundary condition Eq. (20) yields

\[f_0 = \frac{3}{2} \eta^2 - \frac{\eta^3}{2} \]

Leading order boundary condition is given as

\[q_{w0}(0) = 1 - \eta \]

First order boundary condition is given as

\[f_1(0) = 0, \quad \frac{df_1}{d \eta}(0) = 0, \quad f_1(l) = 1, \quad \frac{df_1}{d \eta}(l) = 1 \]

Simplifying Eq. (15) applying the first order boundary condition Eq. (24) yields

\[f_1 = \frac{3A_1 \alpha \eta^4 + 9A_1 \alpha \eta^2 + 9A_1 \alpha \eta^4}{12A_2} + \frac{3A_1 \alpha \eta^2 + 9A_1 \alpha \eta^4}{1440A_2} - \frac{27A_1 \alpha \eta^2 + 9A_1 \alpha \eta^4}{480A_2} \]

\[= \frac{27A_1 \alpha \eta^2 + 9A_1 \alpha \eta^4}{1440A_2} + \frac{27A_1 \alpha \eta^2 + 9A_1 \alpha \eta^4}{480A_2} - \frac{27A_1 \alpha \eta^2 + 9A_1 \alpha \eta^4}{1440A_2} + \frac{27A_1 \alpha \eta^2 + 9A_1 \alpha \eta^4}{480A_2} \]

\[\frac{\eta^3}{6} \left[12 - 36A_1 \alpha + 324A_1 \alpha R + 12M^2 \right] + \frac{\eta^2}{2} \left[-6A_1 \alpha + 4A_1 \alpha R - \frac{M^2}{40} \right] \]

First order boundary condition is given as

\[q_{w1}(0) = 1, q_{w1}(l) = 0 \]

Simplifying Eq. (18) applying the first order boundary condition Eq. (26) yields

\[q_{w1} = \frac{3A_1 \alpha \eta^2 + 3A_1 \alpha \eta^4}{24A_2} + \frac{3A_1 \alpha \eta^4 + 3A_1 \alpha \eta^4}{24A_2} \]

\[+ \frac{\alpha A \alpha \eta^2}{6A_2} + \frac{\alpha A \alpha \eta^4}{6A_2} \]

The order two coefficients for \(f(\eta) \) and \(q_{w}(\eta) \) in Eqs. (16) and (19) were too voluminous to be mentioned here but are expressed graphically in the results and results validation, Table 3. Therefore final expressions for flow and heat transfer is expressed as

\[f(\eta) = f_0(\eta) + f_1(\eta) + f_2(\eta) \]
Relevant phenomena with practical significance on heat and mass transfer can be reduced to the Nusselt number defined as

\[\eta = \frac{q_m}{\eta} = q_{m0}(\eta) + q_{m1}(\eta) + q_{m2}(\eta) \]

(29)

3- Results and Discussion

In this section, graphical presentations are used to describe obtained analytical solutions as shown in Figs. 1 to 4. With the influence of nanoparticle shape geometry on heat transfer through the porous channel discussed. The accuracy of the approximate analytical result obtained using the homotopy perturbation method is validated using numerical solution as shown in Table 3 for active parameters. Numerical solution is obtained using the Runge-Kutta-Fehlberg method whose accuracy has been improved through the addition of mid-point in the step which has been used as suitable method [4-6]. The effect of Reynolds parameter (R) on heat transfer is depicted in Fig. 3. As observed Fig. 3(a) depicts the effect of spherical shaped nanoparticles on heat transfer. It is seen that quantitative increase in R leads to decreasing temperature distribution which is significant towards the mid plate. The effect of cylindrical shaped nanoparticles on heat transfer as shown in Fig. 3(b) shows decreasing temperature distribution with higher R parameter though effect is more when compared with the sphere nanoparticles. Also the influence of the lamina shaped nanoparticle geometry is presented in Fig. 3(c) which depicts numeric increase in R parameter shows decreasing temperature distribution which is coherent with the sphere and cylindrical shape nanoparticles. This is due to decreasing thermal boundary layer thickness. However the lamina shaped nanoparticle present the highest temperature distribution amongst the three nanoparticle shapes adopted.

Table 3. Comparison of values of η for dimensionless temperature distribution. Where R=m=α=1, φ=0.05, M= b=0.

<table>
<thead>
<tr>
<th>η</th>
<th>Numerical Solution</th>
<th>Present Study (HPM)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.8937</td>
<td>0.8937</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.7877</td>
<td>0.7877</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.2</td>
<td>0.6824</td>
<td>0.6824</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5781</td>
<td>0.5781</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4754</td>
<td>0.4754</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.5</td>
<td>0.3747</td>
<td>0.3747</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.6</td>
<td>0.2765</td>
<td>0.2765</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.7</td>
<td>0.1812</td>
<td>0.1812</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.8</td>
<td>0.0889</td>
<td>0.0889</td>
<td>0.0000</td>
</tr>
<tr>
<td>0.9</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Table 4. Comparison of values of η for dimensionless temperature distribution for sphere, cylinder and lamina nanoparticles. Where R=m=α=1, φ=0.05, Pr=0.2, M=0.

<table>
<thead>
<tr>
<th>η</th>
<th>Sphere</th>
<th>Cylinder</th>
<th>Lamina</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.7853</td>
<td>0.7854</td>
<td>0.7855</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6783</td>
<td>0.6786</td>
<td>0.6787</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5730</td>
<td>0.5734</td>
<td>0.5735</td>
</tr>
<tr>
<td>0.5</td>
<td>0.4700</td>
<td>0.4705</td>
<td>0.4706</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3696</td>
<td>0.3702</td>
<td>0.3704</td>
</tr>
<tr>
<td>0.7</td>
<td>0.2725</td>
<td>0.2729</td>
<td>0.2731</td>
</tr>
<tr>
<td>0.75</td>
<td>0.2250</td>
<td>0.2254</td>
<td>0.2255</td>
</tr>
<tr>
<td>0.8</td>
<td>0.1784</td>
<td>0.1787</td>
<td>0.1788</td>
</tr>
<tr>
<td>0.85</td>
<td>0.1325</td>
<td>0.1327</td>
<td>0.1329</td>
</tr>
</tbody>
</table>
cylindrical shaped nanoparticles, heat transfer effect can be observed in Fig. 4(b) which shows similar trend with the sphere nano shaped particle. More so the lamina shaped nano particle predicts a slight increase in temperature profile with increasing \(\alpha \) parameter towards the lower plate but around \(\eta = 0.45 \) (not determined accurately) there is decrease in the temperature profile which is obvious towards the upper plate. Nano sized particles of lamina shape shows stronger thermal boundary layer thickness compared with cylindrical and spherical shapes respectively. This is physically explained as a result of increasing injection velocity variations.

Temperature index (m) effect on heat transfer of the nanofluid is observed in Fig. 5. As illustrated from Fig. 5(a), numeric increase in m parameter causes decrease in temperature distribution adopting the spherical nanoparticle but using the cylindrical shaped nanoparticle decreasing temperature distribution is also observed in Fig. 5(b). The temperature distribution of the cylindrical shaped nanoparticle is higher compared with the sphere shaped. Also utilizing the lamina shaped nanoparticle Fig. 5(c), decreasing temperature distribution is seen. Lamina shaped nano size particle predicts a lower rate of temperature decrease compared with the cylindrical and sphere nanoparticles as a result of wall temperature variations.

Nano particle concentration (\(\phi \)) effect on temperature distribution is represented by Fig. 6. As observed in Fig. 6(a) adopting the sphere shaped nanoparticle numeric increase of \(\phi \) shows significant decrease in temperature profile across the plate, however towards the upper plate slight decrease in temperature distribution is demonstrated. This result is
similar to the result obtained in Adnan et al. [31]. Effect of cylinder shaped nanoparticle is depicted in Fig. 6(b) where it is observed that increasing nanoparticle concentration effect shows concentration decrease across the flow channel. While nanoparticle concentration effect using lamina shaped nano sized particle is shown in Fig. 6(c). It is observed from the plot that increasing ϕ causes slight decrease in temperature distribution across the region of flow. This phenomenon can be explained physically due to high mass and heat transfer caused by increased thermal conductivity leading to increased thickness of thermal boundary layer. However should the nanoparticle be neglected from the fluid, effect is demonstrated as $\phi=0.00$. Increasing effect of nanoparticle concentration improves the thermal performance most especially the lamina shape then the cylinder and sphere shape respectively as depicted in Table 4. This is in good agreement with the conclusion obtained in Adnan et al. [31].

Influence on the nano shaped size particle can be observed from the Fig. 7. Though the effect is not too significant on the plots. However it can be depicted from the plots that as nano centration increases quantitatively heat transfer rate increases but towards the upper plate around $\eta=0.7$ (not accurately determined) a reverse trend is notice. The sphere nano shaped particle as the highest Nusselt number followed by the cylindrical shape. More so the lamina shape nanoparticle has the lowest Nusselt number, amongst the nano shaped sized particle under consideration.

4- Conclusion

The geometry effect of nanoparticles such as cylinder,
lamina and sphere on heat transfer through porous channel is considered in this paper. Analyses of heat transfer of nano fluid through porous channel are performed adopting the homotopy perturbation method. Results obtained from the approximate analytical solutions due the fluid mechanics are used to investigate the effect of important fluid parameters on heat transfer. It is proven from analysis that the lamina shaped nanoparticles as a higher dimensionless temperature and thermal conductivity at the same fluid parameters compared with the cylinder and spherical shape respectively. Present study provides exciting insights to numerous engineering applications such as energy conservation, micro mixing and nano fluidics amongst others.

Conflict of Interest
The author declares no competing interest as regard paper publication.

Nomenclature

- \(f(\eta) \): Stream function variable
- \(k \): Thermal conductivity
- \(M \): Index of temperature
- \(Nu \): Nusselt number
- \(R \): Reynolds number
- \(Pr \): Prandtl number
- \(T \): Temperature
- \(u \): x velocity component
- \(v \): y velocity component
- \(M \): Hartmann parameter

Greek symbols

- \(\alpha \): Expansion ration
- \(\mu \): Viscosity
- \(\phi \): Nanoparticle concentration
- \(\rho \): Density
- \(\eta \): Non-dimensional y direction \([y/a] \)

Subscript

- \(f \): Fluid
- \(nf \): Nanofluid
- \(s \): Solid
- \(w \): Wall

References

