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ABSTRACT: Properties of functionally graded materials as nonhomogeneous solids with gradually varied
composition make them suitable for many applications, such as coating in interfacial zones. The present study
investigates the plane elasticity problem for an isotropic functionally graded material layer containing multiple
cracks using the distributed dislocation technique. The layer has a finite thickness and infinite length where
it’s top and bottom surfaces are fixed. The elastic modulus of the medium is assumed to vary exponentially in
the thickness direction. The Fourier integral transform method is used to obtain the stress fields caused by an
edge dislocation in the layer. The stress components exhibit familiar Cauchy as well as logarithmic singularity
at the dislocation position. In fact, the dislocation solution in this study is primarily employed to derive a set
of integral equations to analyze cracks with arbitrary configuration. The numerical solution of these equations
yields dislocation densities on a crack surface which is used to compute the crack stress intensity factors.
Then after validating the formulation for homogenous case, several configurations of embedded cracks such
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as a rotating crack, a stationary horizontal and a rotating crack, two fixed vertical and a horizontal crack with N_hxed'm"de
variable location are investigated. Moreover, effects of important parameters on stress intensity factors suchas ~ F ixed boundary
crack geometries, material non-homogeneity and boundary condition are studied. Multiple cracks

1- Introduction

Functionally Graded Materials (FGMs) are usually a mixture
of two distinct materials whose properties vary gradually in a
specific spatial direction. Most FGMs are made of ceramics
and metals to create high temperature resistance and great
toughness at the same time. The accurate stress analysis
of a FGM structure as a safety-critical structure is the first
step in the design process. The task is more highlighted in
structures with sharp geometric discontinuities such as
cracks. Recently, considerable amount of analytical studies
are focusing on fracture behavior of FGMs. However due
to intrinsic complexity of the problem, most of studies are
limited to infinite or semi-infinite domains, special crack
orientations or a single crack in the media. A brief review
of studies concerning analytical fracture analysis of FGM
media under static loading is presented here. Erdogan and
wu [1] considered a FGM layer containing an embedded
crack perpendicular to its boundaries under three different
mechanical loading. Kadioglu et al. [2] solved the problem of
a FGM layer attached to an elastic foundation weakened by a
vertical crack. Jin and Paulino [3] studied a horizontal crack
in a visco-elastic FGM strip subjected to tensile loading. A
Functionally Graded (FG) coating-substrate structure with
an embedded or edge crack perpendicular to the interface
was investigated by Guo et al. [4]. Long and Delale [5]
obtained modes I and II Stress Intensity Factors (SIFs) of an
arbitrary oriented embedded crack in a FGM layer. They also
in a separate study [6] extended their efforts on analyzing a
FGM layer bonded to a homogenous half-plane weakened
by a crack. El-Borgi et al. [7] analyzed a vertical edge crack
in a graded coating bonded to a homogenous substrate. Dag
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et al. [8] considered an orthotropic FGM layer weakened by
an embedded crack under mechanical and thermal loading.
They solved the problem using a numerical enriched finite
element as well as an analytical approach and then compared
the results. Zhong and Cheng [9] employed a multi-layered
model to analyze arbitrary variations of material properties
of a FGM strip with a single horizontal crack. Two bonded
dissimilar FG strips containing an interface crack was
studied by Cheng et al. [10]. The problem of a horizontal
crack in an orthotropic FGM layer bonded to a semi-infinite
homogeneous medium was addressed by Ben-Romdhane
et al. [11]. Petrova and schmauder [12] considered crack
interaction problem in a FG coating on a homogenous
substrate. The problem was formulated as singular integral
equations and effects of different parameters on SIFs were
studied. Guo et al. [13] developed a pieswise-exponential
model to analyze the mixed-mode interface crack problem of
FGM coating structure. In the aforementioned studies, mainly
a single crack problem is investigated and their methods may
not be used to handle interaction between multiple cracks
with arbitrary arrangement. Recently, Monfared et al. [14]
analyzed an orthotropic FGM layer containing multiple
cracks. They used Distributed Dislocation Technique (DDT)
and Airy stress function method to solve the problem. They
considered free-free boundary conditions for the layer.

The main objective of the present study is to apply DDT for the
stress analysis of multiple cracks in a FGM layer with fixed
edges. Moreover, Navier equations are solved directly which
allows analyzing layers with different boundary conditions
more easily. The method is also capable of handling curved
cracks. However, crack closing is not allowed. The edge
dislocation problem in the FG layer is solved by integral
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transform method. By means of DDT, the dislocation solution
is used to formulate singular integral equations for a FG layer
weakened by multiple embedded cracks. Then after validating
the formulation, effects of nonhomogeneity parameter and
crack configurations on the SIFs are studied. The presented
results could be used as the initial step to fracture analysis
of FGM layers that are used as interfacial layer in different
applications.

2- Dislocation Solution

We consider a FGM layer with thickness /, Fig.1. The
coordinate system is such that |x|<co, and 0<y<h. Top and
bottom surfaces of layer are fixed. Gradation of the material
properties of the layer, except for the Poisson’s ratio, v,
which is assumed constant [1], is in the y-direction. In two-
dimensional elasticity, the equilibrium equations in terms of
in-plane displacement components u(x,y) and v(x,y) in the x-
and y-directions, respectively, are as follows

K+l 2 Ov du
Kk—-lox® K- 16x6y 6y

L] Gu(y)(au 6vj
u(y) v &y o
k+10v 2 0w %
Kk-10y" x—10oxdy ox°
1 ou(y) K+lov 3-kou)_,
u(y) oy \k-1dy x-1ox

where u(y) and x are elastic shear modulus and Kolosov
constant of the medium which is k=3-4v for plane strain and
xk=(3-v)/(1+v) for plane stress conditions. As commonly used
by fracture community [1,2], [4-8], the shear modulus of the
FGM layer is assumed to vary exponentially as

()

u(r)= e @

It is also shown that under mechanical loading, the effect of
different functions on estimating property distributions of
FGMs, on the SIFs is relatively small [15]. Eq. (1), in view
of Eq. (2) reduce to

K+10%u 2 62v+62_u ) 8_u+ﬁ
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The layer contains an edge dislocation located at (&#) where
dislocation cut is x >¢, Fig. 1. In the solution of static crack
problems by distributed dislocation technique, the orientation
of dislocation cut is immaterial. The equations identifying the
edge dislocation are

u(x,rf)—u(x,n') =B H(x-¢)
v(x.n")-v(x.n")=B,H (x-&)
o, (xn") =0, (xn)
o,(xn') =0, (x)

“4)
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Fig. 1. Schematic view of a FG layer weakened by an edge
dislocation

where B , B are the components of Burgers vector identifying
glide and climb of the edge dislocation respectively and
H(x) is the Heaviside step function. The layer is assumed as
clamped on longitudinal edges, thus boundary conditions are

u(x,O) = v(x,O) =0

5
u(x,h)=v(x,h)=0 ©)
Eq. (3) with boundary conditions (Egs. (4) and
(5)) is solved by means of the complex Fourier
transform, F, [16], with respect to variable x to Eq. (3),
[u(o,y),v(0, ) |=Flu(x,y),v(x,y);0]. Assuming that stress
components decay in a sufficiently-rapid manner as |x|—oo,
results in

2— — —
IU  pl _2a 4V s piv—a? St 720
dy dy x-1dy -1 ©)
6
23 Vv —
Ay LA N W e e
dy dy x+1dy K+1

The solution to Eq. (6) may be expressed as

By- r])Haeszkje Y ,

7 (.3) = w0() o L e 00
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j=1t ia
ke{l,Z}

where d(.) is the Dirac delta function and

S, =S, =B +a’ +iJ4a’ B (3

S =8, =\ +a* 4B (3-) (k1) ®)
S -p o (x+)/(x-1)
"5, 4 ) (k- 1) Jehay

In Eq. (7) and henceforth, subscripts k€{1,2} signify
regions 0<y<x and 17<y<h respectively. The eight unknown
coefficients A (a) in Eq. (7) may be determined from
boundary condltlons (Egs. (4) and (5)) in transformed space;
their derivation is explained in the Appendix. Utilizing
Hooke’s law and Eq. (7), we arrive at stress components as
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where sgn(.) is the sign function, M is an arbitrary constant, computational convenience we take 0<M<1, and also using
and A A, are the even and odd parts of 4 (0, wherein the definition of the Exponential Integral, Ei(.), as

B =B 71 with respect to parameter o. For the sake of
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In Eq. (10), y, is the Euler’s constant, Re(.) stands for the
real part and [k /2] is the largest integer < k/ 2. From Eqgs.
(9) and (10), results that stresses fields are Cauchy as well as
logarithmic singular in the dislocation position.

Due to analytical method of solution, some simplifications
such as exponential variation of FGM properties or infinity
of layer are inevitable. But these simplifications are very
common [1-2], [4-8], and are not meaningless. For example
if the crack has enough distance from the boundaries, effects
of boundary on static SIFs of the crack is small. So, layer
may be used to model cracked plate where cracks are not
near the vertical boundaries. Furthermore effects of different
functions on estimating property distributions of FGMs, on
the static SIFs are relatively small [15].

For fracture analysis of a specific real problem, numerical
solutions such as finite element method must be used. But
analytical solutions may be used to benchmark the results
obtained from numerical procedures. Furthermore, analytical
solutions demonstrate effects of key parameters more easily.

3- Cracks Formulation

The preceding dislocation solution may be used to construct
integral equations for analyzing strip with arbitrary oriented
cracks. The stress components due to presence of an edge
dislocation located at (¢ 7) are rewritten as

0<y<py

ijetnyl (11)

(x.3) {k (506 B, +K (5,3, 6.1) B,

k;' (x.3,¢,m)B, +k§Z (x,y,§,17)By n<y<h
where, k m L{ijyE{xy}, {Lm}€{1,2}, are the coefficients of
B and B in Eq. (9). Considering the layer be weakened by
N cracks which may be described with respect to coordinate
system x,y in parametric form as

=7(s), N} (12)

A moveable orthogonal coordinate system n _ s is chosen
for ith crack such that n-axis is perpendlcular to the crack
surface. Suppose edge dislocations with unknown densities
b, (¢) and b (?) are distributed on the infinitesimal segment

VOV(t)*+yx(t)?) dt at the surface of kth crack, where parameter
-1<¢<1 and the prime denotes differentiation with respect to
the argument. The components of traction on the surface of
ith crack results from distribution of dislocations on all N
cracks yield

0,0 ()= [ (KL (5.0, (0 + K2 (s.0)b, (DA + 70
0., =3[ (K .00, 0+ K20 b, WO + g dr, (1)

ie{l,2,.,N}

xizii(s),yi -1<s<1, ie{l,Z,

—-1<s<1,
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The kernels in integral Eq. (13) in terms of &, ”"( )in Eq. (11)
may be found in [16].

By virtue of the Buckner’s principal [17], the left-hand sides
of Eq. (13) are applied traction on the presumed surface
cracks with opposite sign. For the embedded cracks the
unique solution to Cauchy singular integral Eq. (13) should
satisfy the following closure requirements

j [ 008 (6, (1) =6, (1)) by, (1) +sin (6, (1) =6, (1)) b, () [N A' @) + 7'(¢)” dt =0

-1

j [ cos(6, (-6, (1))b,, (1) —sin (6, (1) -

-1

6,0)b, () |2 (Y + 7/ dr=0, (14)

ke{l,2,..,N}

In a cracked FGM body, stress fields near a crack tip exhibit
the familiar square-root singularity. Therefore, dislocation
densities are taken as

b,,((l‘): g[k(tz, —-1<t<l, le{s,n}, ke{l,Z,

N} (15)

Substitution of Eq. (15) into Egs. (13) and (14) with
application of the Gauss-Chebyshev quadrature scheme
developed by Erdogan et al. [18] result in g,(2), [E{s,n},
ke{l,2,....N}. Based on the definition of dislocation density
function in terms of crack opening displacement, the mode
I and 11 stress intensity factors, K, and K, for an embedded
crack may be expressed as

1

fso1. 23 [#C +2( fr-)

K l1+x

{Kl,l:}:_zu(ym)[i’(l)z +z'(1)2}% {gnk(l)}’ ke{l2,...N) 1o

K l+k g4 (1)

Subscripts L and R designate the left and right tips of a crack.

4- Numerical Results

Due to lack of results about FG layers with fixed edges, the
formulation is validated considering a central horizontal
crack in a homogeneous layer, Fig. 2. For analysis of a
homogeneous layer, gradation parameter f is set as a small
value but not exactly zero in accordance to Eqgs. (7) and
(8). The Poisson’s ratio of the layer is assumed v=0 and the
plane strain state is considered. Crack is subjected to uniform
normal traction. The variations of the normalized SIFs verses
width of layer are compared with those obtained by Fichter
[19] for the same problem which shows excellent agreement.
To study effects of material nonhomogeneity on SIFs, the
results for gradation parameter 2h=3 are also provided in
Fig. 2. In homogenous case, due to symmetry of problem
with respect to crack only mode / prevails. We observe that
as width of layer decrease, which means the crack gets closer
to fixed boundaries, mode / SIFs decrease significantly. Due
to material asymmetry in nonhomogenous case, mode // SIFs
exist which have opposite signs in left and right tips of crack.
In following examples to ensure the opening of cracks, the
layer is under constant biaxial traction ¢ on the edges and
at the far-field as |x|]—oo which results normal traction ¢
on crack surfaces. Furthermore, plane strain condition is
assumed and Poisson’s ratio is v=0.3. As the second example,
a FG layer with a central rotating crack around its center
with normalized lengths 2/=0.6 is considered. Variation of
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Fig. 2. Variation of normalized SIFs verses width of layer

SIFs verses orientation of crack is shown in Fig. 3 for three
different values of gradation parameter . As expected, it is
observed that in horizontal case, =0, mode I SIFs of left and
right tips of crack are equal and mode /7 SIFs have opposite
signs. Furthermore, in vertical case, #=90, mode /I SIFs
vanish due to symmetry considerations. In FGM layer, it is
observed that SIFs for crack tip R which is located in stiffer
region is larger than SIFs of crack tip L. Effect of gradation
parameter /5 on trends of variations of SIFs is not strong but
affects their values.

To show effect of fixed boundaries more clearly, SIFs
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Fig. 3. SIFs for a central rotating crack

of an off-center rotating crack are depicted in Fig. 4. In
homogenous case, =0, mode [ SIFs of crack tip L, which is
located farther from boundary, is greater than crack tip R. In
FGM layer with exponent f=0.5, for angle of rotation larger
than 0~65°, effects of fixed boundary conditions dominate
and mode 7 SIFs of crack tip L gets larger than tip R. But
for FGM parameter =1, effect of gradation of material is
stronger which causes SIFs of crack tip R being larger than tip
L for all values of §. Comparing mode // SIFs in Figs. 3 and
4, shows effects of asymmetry of boundary conditions which
causes larger SIFs for off-center crack.
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Fig. 4. SIFs for an off-center rotating crack
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As the next example, we consider a FG layer with two
cracks, one stationary and a rotating crack around its center,
with normalized lengths 2/=0.6. Fixed crack is horizontal
and centers of both cracks are in the mid of the layer.
Normalized SIFs verses different orientation of rotating
crack is shown in Fig. 5 for two different values of FGM
exponent f5. As expected, at #=0, i.e., the case of horizontal
cracks, mode / SIFs of tips L, and R, are equal to those at
R, and L, respectively. It is observed that the variation of f
has minor effects on trends of SIFs except on tip L, which
is influenced by interaction of cracks and material gradation
simultaneously. Mode / SIFs at right tip of rotating crack,
R,, which has weak interaction with fixed crack, increases
greatly with increasing £ due to the fact that the crack tip lies
in the comparatively stiffer location.

As the last example, the interaction of two fixed vertical
cracks and a horizontal crack with variable location is
considered. The lengths of cracks are 2/=0.4. The mode / and
11 STFs of cracks verses distance d for two different values of
f are shown in Fig. 6. Due to the symmetry considerations,
vertical cracks have the same SIFs; besides, SIFs at crack tips
L, and R, are equal. In homogenous case, =0, mode / SIFs
of crack tip L, is symmetric and values of SIFs at crack tips
L,and R, interchange as horizontal cracks passes to the other

1
40 50 60 70 80 90
8 (degrees)

(2)

| " [e—Liip-0-= REp-0—L2: =0~ RI:F=0

016
o-L1:f=1-+ Ruf=1—L2f=1-v-RI:E=1|
%% "% 20 30 40 50 e 70 80 %0
6(degrees)
(b)

Fig. 5. SIFs for a stationary and a rotating cracks
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side of layer central line. The variation of mode / SIFs for
both materials manifest the same trend except for crack tip
L, which results from variation of its location and material
gradation. Interaction between cracks causes magnification
of mode / SIFs at tips L, and R, Furthermore, shielding

phenomena at tip L, is observed.

[~ Lig=0  RI:B=0 2 =0 L

08 B o
—& - L:f=1 R:B=1 O Lzf=1] B
]
02 03 04 05 06 07 08
02

02 = 2 —
o v 106 13Yg3
9. . : : : :
3z 03 04 05 06 07 08

d

Fig. 6. SIFs for a variable location horizontal and two fixed
vertical cracks

5- Conclusions

The solution of an edge dislocation in a FGM layer with
fixed longitudinal boundaries is obtained. The distributed
dislocation technique is utilized to derive integral equations
for analyzing a layer weakened by multiple cracks. Effects
of fixed boundary conditions on SIFs and their dependency
on the material gradation parameter are studied for different
configuration of cracks. Cracks are assumed under normal
traction, thus mode /7 SIFs results from gradation of material
or interaction of cracks and their values were smaller than
mode / SIFs. It is observed that cracks closer to the boundary
experience lower SIFs values in contrast to usual free boundary
conditions. Furthermore, in general, crack tips located in a
region with higher shear modulus, have larger SIFs. We also
found that gradation parameter has weak effects on trends of
variation of SIFs but affects their values, as it is expected.
Several solved examples illustrate clearly the competing
effects of cracks configuration, material nonhomogeneity and
boundary condition on the SIFs.
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Appendix
The coefficients 4. (a) in Eq. (7) are obtained from the
following equation

X=D'F (17)
where, vectors X, F' and nonzero elements of matrix D are
—s;n -S,1 A
Dy =—e Dm e, jel1,2,3 4}
Dy, y=ime” /a s Dy, =—ime” /a . je{l,2,3,4}
D“,l =(p+)e™ | Dy, (ﬁ+1) , 16{1234}
Dy ==i(B+0)me™ Ja . Dy, =i(B+1)me™" o je{l,2,3,4)
18

D, =1, D =My s je {1,3,5,7} ( )
D= ' Dy=mpue X jel2,468)
F. =B , F,=B ., F,—iaB, , F,-ia>—%g

1= Fx 21 il 31 41 K+l x
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